Regioisomers containing triarylboron-based motifs as multi-functional photoluminescent materials: from dual-mode delayed emission to pH-switchable room-temperature phosphorescence†
Abstract
Triarylboron compounds have been established as promising candidates in optoelectronic applications. However, realizing multi-functional properties in triaryl boron-based materials remains challenging. Herein, we present two regioisomers, 1 and 2, designed judiciously by connecting a dimethylamino donor and a dimesitylboryl acceptor at 1,4 and 2,6-positions of the naphthalene spacer, respectively. Both compounds 1 and 2 display simultaneous, delayed fluorescence and persistent room-temperature phosphorescence (580 nm, τav = 168 ms, Φ = 76% for 1; 550 nm, τav = 129 ms, Φ = 88% for 2 in 1 wt% PMMA), with the delayed fluorescence bands being sensitive to doping concentration (in PMMA). Notably, compound 1 in 1 wt% PMMA films demonstrates a reversibly switchable single-molecule phosphorescence from orange (580 nm) to green (λPh = 550 nm, τav = 42 ms) in response to pH, which can be utilized for anti-counterfeiting applications. These results were further corroborated by studying the respective cationic salts 1-OTF and 2-OTF. Moreover, 1 and 2 exhibited blue-shifted fluorescence in response to mechanical pressure. Compound 2 also showed three-photon (σ3P) absorption properties which were better compared to those of compound 1.
- This article is part of the themed collection: #MyFirstChemSci 2024