Structurally programmable, functionally tuneable Dendrimers in Biomedical Applications
Abstract
The application of nanotechnology in medical biology has seen a significant rise in recent years because of the introduction of novel tools that include supramolecular systems, complexes, and composites. Dendrimers are one of the remarkable examples of such tools. These spherical, regularly branching structures with enhanced cell compatibility and bioavailability have shown to be an excellent option for gene or drug administration. They are the fourth important architectural group of polymers after the three well-known types (branched, cross-linked, and linear polymers). These tiny macromolecules generate nanometer-size structures consisting of branching, with identical units assembled around a central core. By regulating dendrimer synthesis, it is possible to manipulate both their molecular weight and chemical content carefully, permitting predictable tailoring of their biocompatibility and pharmacokinetics, making them a promising candidate for biomedical uses. In contrast to their more easily obtainable synthetic techniques and comparable functions in hyperbranched polymers, dendrimers have demonstrated efficacy in biological applications, exhibiting remarkable sample purity and synthesizing reproducibility. Dendrimers are appealing as basic materials for manufacturing nanomaterials for uses in many different disciplines because of their highly specified chemical structure and globular form. Thus, much effort has been made to create functional materials with dendrimers. Especially looking at dendrimer-based nanomaterials meant for use in the biomedical domain, this review discusses the design, types, properties, and function of bionanomaterials employing several techniques, including surface modification, assembly, and hybrid development, and their possible uses.
- This article is part of the themed collection: Biomaterials Science Recent Review Articles, 2024