Electrocatalytic systems for NOx upgrading

Abstract

Chemical manufacturing utilizing renewable resources and energy presents a promising avenue toward sustainability and carbon neutrality. Electrocatalytic upgrading of nitrogen oxides (NOx) into nitrogenous chemicals is a potential strategy for synthesizing chemicals and mitigating NOx pollution. However, this approach is currently hindered by low selectivity and efficiency, limited reaction pathways, and economic challenges, primarily due to the development of suboptimal electrocatalytic systems for NOx upgrading. In this review, we focus on electrocatalytic systems for NOx upgrading and discuss newly developed components, including catalysts, solvents, electrolysers, and upstream/downstream processes. These advancements enable recent developments in NOx upgrading reactions that yield various products, including green ammonia (NH3), dinitrogen (N2), nitrogenous chemicals beyond NH3 and N2 (e.g., hydroxylamine and hydrazine), and organonitrogen compunds. Additionally, we provide an outlook to highlight future directions in the emerging field of novel electrocatalytic systems for NOx upgrading.

Graphical abstract: Electrocatalytic systems for NOx upgrading

Article information

Article type
Highlight
Submitted
29 okt 2024
Accepted
10 dec 2024
First published
11 dec 2024

Chem. Commun., 2025, Advance Article

Electrocatalytic systems for NOx upgrading

S. Jia, X. Sun and B. Han, Chem. Commun., 2025, Advance Article , DOI: 10.1039/D4CC05762G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements