The influence of size, metal loading and oxygen vacancies on the catalytic performance of Au/CeO2−x in the sunlight-powered reverse water gas shift reaction†
Abstract
This study reports the conversion of CO2 and H2 to CO and H2O at low temperature and low pressure (up to 203 °C, p = 3.5 bar) using plasmonic Au/CeO2−x photocatalysts, with mildly concentrated sunlight as the sole energy source (up to 9 kW m−2). Systematic catalytic studies were carried out by varying the CeO2−x particle size, Au particle size and loading, and the concentration of oxygen vacancies. Upon illumination, all Au/CeO2−x catalysts showed a CO production of up to 2.6 ± 0.2 mmol CO per gAu per h (104 ± 8 μmol CO per gcat per h), while the supports without Au did not show any activity. We determined that both photothermal and non-thermal effects contribute to the light-driven reverse water-gas shift reaction catalysed by plasmonic Au/CeO2−x. A photothermal contribution was found from the exponential relationship between the CO production and the solar irradiance. In the dark, all Au/CeO2−x photocatalysts and supports without Au produced CH4 instead of CO with ≥97% selectivity, indicating a significant non-thermal contribution in light. A linear dependence of catalytic activity on the accessible interface area between CeO2−x and Au was found, which is in line with an associative formate-mediated reaction mechanism occurring at the metal–support interface. Tuning the VO content through thermal treatments yielded decreased photocatalytic activity for oxidised samples, identifying them as pre-catalysts. The stability of the Au/CeO2−x photocatalysts was evaluated, demonstrating that the catalytic performance was affected by adsorption of H2O as a reaction product, which could be fully restored upon heating in vacuo.
- This article is part of the themed collection: 25 years of The Netherlands’ Catalysis and Chemistry Conference (NCCC)