Structure–reactivity relationships in CO2 hydrogenation to C2+ chemicals on Fe-based catalysts
Abstract
Catalytic conversion of carbon dioxide (CO2) to value-added products represents an important avenue towards achieving carbon neutrality. In this respect, iron (Fe)-based catalysts were recognized as the most promising for the production of C2+ chemicals via the CO2 hydrogenation reaction. However, the complex structural evolution of the Fe catalysts, especially during the reaction, presents significant challenges for establishing the structure–reactivity relationships. In this review, we provide critical analysis of recent in situ and operando studies on the transformation of Fe-based catalysts in the hydrogenation of CO2 to hydrocarbons and alcohols. In particular, the effects of composition, promoters, support, and particle size on reactivity; the role of the catalyst's activation procedure; and the catalyst's evolution under reaction conditions will be addressed.
- This article is part of the themed collections: 2025 Chemical Science Perspective & Review Collection and 2024 Chemical Science HOT Article Collection