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Inverse design of grafted nanoparticles for
targeted self-assembly
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Two dimensional nanoparticle lattices can exhibit unique optical, electrical, and chemical properties giving

rise to emerging applications for photovoltaic conversion, electronics and optical devices. In many applica-

tions, it is useful to be able to control the particle spacing, the crystal lattice formed, and the local compo-

sition of the lattice by co-locating nanoparticles of varying chemistry. However, control over all of these

variables requires exquisite control over the interparticle interactions, and a large number of degrees of

freedom affect the interactions. Achieving a particular structure by design requires solving the inverse-

design problem, where one must optimize the chemistry to meet the structure or property that is desired.

In recent years, a variety of examples have shown that one can finely control the interactions between

nanoparticles through the use of polymers grafted onto the nanoparticle surface and by controlling the

grafting density and the distribution of molecular weights on the nanoparticle surface. In this work, we take

the first steps on solving the inverse design problem using an approach that explicitly accounts for the

chemistry on the surfaces of the particles. Using two-dimensional hybrid particle/field theory calculations

and an evolutionary design strategy, we design polymer grafted nanoparticles that self-assemble into

targeted square, honeycomb, and kagome lattices. We optimize both the length and grafting density of the

polymers grafted to the nanoparticles, and we show that our design strategies are stable over a range of

nanoparticle concentrations. Finally, we show that three-body interactions are critical for stabilizing

targeted structures.

1 Introduction

Self-assembly of nanoparticles can give rise to a spectrum of
two dimensional lattices in both organic and inorganic mate-
rials. By tuning the lattice structure, it has been demon-
strated that enhanced or new functionalities including light
conversion,1 optical,2,3 and electronic4,5 properties can be ob-
served in the materials. In most of cases, to achieve and
maintain lattice structures other than beyond simple close-
packed forms (e.g., hexagonal packings) requires exquisite
control of the interparticle interactions. This task can be-
come particularly complex when it comes to nanoparticle lat-
tices in functional polymeric composites, where the interac-
tions between nanoparticles and polymers are relatively

weak, typically a few kbT, and either multi-body or aniso-
tropic effects become important. In this scenario, the design
of the interactions between nanoparticles can be quite chal-
lenging and involves optimizing a number of degrees of free-
dom to finely control the interparticle interactions.

One popular strategy to tackle the design challenge is to
use inverse design approaches.6–14 In this approach, a spe-
cific ordered structure is designated as the target. Then an
optimization approach is developed to vary the inter-
molecular potential between the particles such that the parti-
cles with the optimized potential will obtain the targeted
structure at equilibrium. Pioneering studies by Torquato,
Stillinger, and co-workers established an optimization frame-
work that searches for isotropic, pair-wise potentials where
the objective function is defined as the difference between
the ground state potential energies for the target structure
and other candidate structures.6 Their approach was
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In this work, we use an evolutionary design strategy to design polymer-grafted nanoparticles for targeted self-assembly. While the work is fundamental in
nature, it could have large impacts in the self-assembly of nano- and colloidal particles for optical applications. There is a clear molecular design compo-
nent to this work since we apply the evolutionary optimization strategy to the chemistry of the molecules on the nanoparticles' surfaces to achieve a
targeted structure.
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successful in searching for isotropic pair-wised potentials for
particles self-assembled into two dimensional and three di-
mensional lattices.7,8 More recently, Truskett and coworkers
have utilized simulated annealing techniques to optimize the
potential such that the stable density range over which the
target structure exhibits the lowest ground state potential en-
ergy against other candidate structures becomes maximized,9

and the form of the potential was restricted to purely-repul-
sive, convex forms. The method has been demonstrated in
potentials that stabilize both two and three dimensional par-
ticle lattices against finite variations in the particle den-
sity.13,14 However, one challenge that remains outstanding in
this field is providing direction for achieving a specific inter-
action between particles in an experimentally-accessible man-
ner. In other words, it remains unknown what specific chem-
istry should be used to induce a precise interparticle
interaction.

Grafting polymers to the surfaces of particles has long
been used to stabilize colloidal and nano-particles against ag-
gregation by effectively rendering the interparticle interac-
tions repulsive.15 For nanoparticles with monodisperse
grafting, previous studies have shown that at high grafting
density the potential of mean force (PMF) is purely repulsive
when long grafted polymers are wetted by short matrix poly-
mers and screen depletion forces between the nanoparticles.
In contrast, the PMF can become attractive when the grafted
polymer is shorter than the matrix polymer and dewets the
brush layer.16,17 When the grafting density becomes sparse,
studies show that the interactions between the nanoparticles
become anisotropic due to the open surface areas uncovered
from the grafted polymer.18,19 The anisotropy can be further
tuned by changing the grafted polymer length and density
giving rise to a series of nanoparticle assemblies.20–22

Jayaraman and coworkers have shown how polydispersity in
the molecular weight of the grafted polymer would affect the
PMF between polymer-grafted nanoparticles in a polymer ma-
trix that is chemically identical to the brush. By combining
polymer reference interaction site model (PRISM) theory and
Monte Carlo simulation, they found at high grafting density
condition the short range repulsion is enhanced by the crow-
ing of monomers from both long and short grafted polymers
while the attractive well in the intermediate range can be
suppressed by the steric repulsion between the long grafted
polymers.23,24 The enhanced repulsion between nanoparticles
in this grafting strategy has been demonstrated by experi-
mental studies, where inorganic nanoparticles with bimodal
PDMS grafts show strong miscibility in polymer matrices
with high molecular weight PDMS.25,26 Varying the graft ar-
chitecture and using either semi-flexible polymers, mixed
polymer brushes, Janus-grafted polymers, or block polymer
brushes are other alternative routes for tuning the inter-
particle interactions.17,27–31

Evolutionary design optimization schemes, in particular
the covariance matrix adaptive evolutionary strategy (CMA-
ES),32,33 have recently emerged as a route for solving complex
optimization problems in soft matter research. CMA-ES has

been used in both the design of granular particles with tai-
lored mechanical properties10 and in the guided pattern de-
sign of self-assembling block copolymers.11,12 In both appli-
cations, the method has been demonstrated to have efficient
convergence despite the complicated function that is opti-
mized. In this method, variables (denoted as a vector, ) to
be optimized are updated iteratively via a stochastic process
mimicking natural evolution. In an optimization trial de-
noted as j, mutations of variable j are generated. The quality
of each mutation is quantified by a predefined fitness func-
tion GjĲ). Then, the values of j+1 for the next generation are
determined both upon the covariance matrix of the fitness
function of the current mutations and the evolution path of
the previous generations. This process is then iterated until
convergence, which is typically taken when the fitness func-
tion becomes smaller than some threshold value.

In the manuscript, we employed CMA-ES as the optimiza-
tion method to establish an inverse design framework of
grafted nanoparticles based upon a polymer field theory
model. In our approach, rather than tuning the non-bonded
interactions between the nanoparticles to achieve a particular
self-assembled structure, we change the length and number
of grafted polymers on the surface of the particle, which in
turn modifies the interactions between the nanoparticles. In
this first demonstration, the CMA-ES method is applied to a
series of two-dimensional lattices by searching for optimized
grafting designs that minimize the free energy of square,
honeycomb, or kagome lattice unit cells. These optimized de-
signs are then validated using hybrid particle field theory
(HPF) simulations where a number of nanoparticles with the
optimized designs are sampled and shown to self-assemble
into the targeted lattice. After validating our approach, we an-
alyze the role that each grafted chain length plays in the as-
sembly, and we demonstrate that the many-body interactions
play a key role in the assembly of the nanoparticles into the
targeted structures.

2 Theory and numerical methods
2.1 hSCFT model of polymer grafted nanoparticle

The field theoretic model of polymer grafted NP
implemented in the CMA optimization scheme closely fol-
lows HPF.34 Here, we briefly describe the key ingredients in
the model. Each system contains n nanoparticles, and each
nanoparticle is grafted with a set of polymer chains that are
only distinguished by the number of monomers per chain;
each polymer of length Ni has a grafting density of σi. The
grafted polymer is modeled as a Gaussian chain linked by a

harmonic bonds, , where b is the average bond

length. Then the total bonded potential in the model is de-
fined as

(1)
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where i sums over the chains of unique lengths, j sums over
all of the individual chains of length i, and k is over the
monomers on each chain.

The mass of each monomer is distributed about its center

using a unit Gaussian function, ,

where a is the smearing size of the Gaussian function. In a
similar manner, the mass of a single NP is distributed about
its center according to a complimentary errors function,

, where the density decays from bulk

value, ρ0, within the particle radius, RP, to zero away from the
particle surface over a width controlled by ξ. The grafting
sites are distributed homogeneously over the nanoparticle,
and the distribution of grafting sites is given by

(2)

where σ0 is the normalization factor that enforces the nor-

malization . In a multi-NP system, the distribu-

tion of the grafting sites is defined as the convolution be-
tween Γσ (r) and the NP center distribution,

, which has the form,

(3)

The NPs are immersed in an implicit θ-solvent to the poly-
mer monomers, which allows us to neglect the pair-wise non-
bonded interactions between monomers, and the only non-
bonded interactions to be considered are the interparticle in-
teractions and the monomer-particle interactions. We assume
that the only interactions between the polymer monomers
and the nanoparticles are the excluded volume interactions,
which is defined as a convolution between the density distri-
bution functions of the two species,35,36

(4)

where u0 is the parameter indicating the interaction strength
between NPs and monomers and ri and rj are the centers of
NP i and monomer j, respectively. The total nonbonded po-
tential is therefore

(5)

where gĲr) is the distributions of monomer centers.
The particle based partition function of the grafted nano-

particle system has the form,

(6)

To develop the hybrid particle-field theory model, we
closely follow the particle-to-field transformation37 to decou-
ple pair-wise interactions between monomers and NPs and
transform eqn (8) into the field-based form as

(7)

Here  is the effective Hamiltonian with the form,

(8)

where qgiĲrg,Ni; [w]) is the single chain partition function of
the ith type grafted chain terminated at site rg. No approxi-
mations have been invoked in moving from eqn (6) to (7).
The continuous field wĲr) can be understood as the chemical
potential field conjugate with the continuous monomer den-
sity field, ρgĲr), and it captures the non-bonded interactions
of the monomers with the nanoparticles. After invoking the
mean-field approximation, the w and ρg fields can be solved
from minimizing  with respect to both the fields,

(9)

which gives rise to

(10)

Here, gĲr; [w]) is the density operator of the grafted
chains, which can be evaluated as the following,

(12)

where qgi and are the propagators of the ith type grafted

chain form the free end and grafted end, respectively. Note
that for brevity we did not include the explicit dependence
on the field, wĲr). To evaluate the propagators, a Chapman–
Kolmogorov equation is iterated according to

(13)

Φ(r) is a normalized bond transition probability Φ(r) =

u0e
−βubĲr), where u0 is defined so that . The Chap-

man–Kolomogorov equation is iterated with the following ini-
tial conditions,
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qgi(r, 0) = e−w(r), (14)

(15)

We note that the NP coordinates are retained through
the particle-to-field transformation and remain explicit in
the effective Hamiltonian. This makes the gNP model in
the family of HPF simulation approaches34 and we denote
it the hSCFT model of polymer-grafted nanoparticles. We
take b as the unit length in our simulations, and all ener-
gies are scaled by kbT.

During the optimization phase where we implement the
CMA-ES algorithm (described below), we perform our calcula-
tions in a unit cell with fixed particles that are not allowed to
move. Thus, evaluating eqn (6) for this unit cell gives us di-
rect access to the free energy of our system with a fixed nano-
particle lattice.

2.2 Hybrid particle field theory simulation

In the validation stage of our analysis, the NP coordinates
need to be evolved in order to sample their equilibrium posi-
tions and test whether our optimized grafted nanoparticles
will spontaneously self-assemble into the targeted structures.
To that end, we begin with a collection of grafted nano-
particles randomly distributed in a simulation box and equili-
brate them using a Brownian dynamics scheme.34 To avoid
strong overlap between NP cores during validation, a pair-
wise extended Lennard-Jones potential is employed to mimic
hard core repulsion between NP cores,

(16)

Thus, the total inter-particle core potential is

(17)

The equation of motion for the ith NP is given as

(18)

where θiĲt) is a Gaussian white noise and has the following
statistics,

(19)

The parameter ζ in the above equations is set to unity and
a time step of Δt = 2 × 10−3 is used here. We would like to

note that by tracking the inter-particle forces from Unn we do
not observe overlap between nanoparticle cores in all the
HPF simulations performed here. This is likely due to the re-
pulsion provided by the grafted polymer chains. We note that

the force, , experienced by each particle contains con-

tributions from both inter-particle and particle-monomer in-
teractions due to chain grafting.34

In our validation simulations, unlike standard self-
consistent field theory calculations, since the nanoparticle
positions are evolving direct access to the exact free energy of
the system is no long available. Therefore, we resort to an ap-
proximation of the free energy. The expression for [w, ρ]
given above in eqn (8) contains contributions from the
enthalpic interactions between the particles and the polymers
as well as the entropy of the grafted chains. The entropy asso-
ciated with the vibrations of the nanoparticles around their
equilibrium positions is absent, and this entropic contribu-
tion is approximated by using the classical form of the quasi-
harmonic approximation

(20)

where vi is the frequency of vibration of the ith normal mode
of the NP lattice. To obtain the normal modes, we first calcu-
late the displacement correlation matrix of NPs,

Dab = 〈ua(t)ub(t)〉, (21)

where uaĲt) is the displacement of the ath NP at time t and
〈…〉 denotes the average over the HPF simulation trajectory.
We subsequently diagonalize the 2n-by-2n matrix D, and the
frequencies vi are calculated from the eigenvalues as

vi = λi
−1/2, (22)

where λi denotes the ith eigenvalues of Dab.
38 Finally, we ap-

proximate the free energy of the system on a per-nanoparticle
basis as

(23)

2.3 Evolutionary design scheme

The implementation of CMA-ES here requires the definition
of two key parameters: the fitness function to be optimized
and the set of variables to be updated in the optimization.
For the jth optimization trial, the set of variables needed to
optimized are the lengths of the grafted chains Ni,j and the
grafting density associated with each grafted chain length
σi,j, which are denoted as the set of variables as j = {Nij, σij}.
To define the fitness function, we first choose a range of den-
sities, ρ ∈ [ρmin, ρmax], over which we wish to obtain a target
structure. At a specific density in this range, we calculate g(j,
ρ) = max [FtargetĲρ) − FcompetingĲρ)], where FĲρ) is the free
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energy of a crystal structure calculated using the unit cell hy-
brid particle-field theory described above, and the maximum
is taken over all competing structures. For example, when the
target structure is a square lattice, Ftarget = Fsq, and all of the
competing structures are the triangle, kagome, and honey-
comb lattices. For the sake of brevity, we use SQ, KG, and HC
to denote the square, kagome, and honeycomb lattices, re-
spectively. The fitness function for the jth optimization trial

is then defined as , where the sum is taken

over nρ discrete density values we have used in the range
[ρmin, ρmax].

With the goal of maintaining as simple of a grafted poly-
mer design as possible, we restrict the design to bidisperse
grafted nanoparticles; j consists of two chain lengths and
two grafting densities. The population size (number of muta-
tions for the set of j) is taken as seven times the number of
variables we are optimizing, giving a parameter population
size of 28. This choice is based on suggestions from previous
studies11,32 and our own tests for convergence. The larger
one of the two chains lengths is initialized randomly from a
Gaussian with a mean of (2RP)

2 (so the average end-to-end
distance is on the order of the particle diameter) and a vari-
ance of (RP/2)

2. The smaller chain length is initialized to one
half the longer chain length, and both grafting densities are
initialized to 2πRP.

At each iteration in the optimization procedure, a number
of mutations of the current generation of j are made, we
evaluate our fitness function Gj, and we call the CMA-ES rou-
tine to update the parameters that comprise a,j. The imple-
mentation here uses the CMA-ES developed by N. Hansen
and co-workers,32,33 which is freely available as a Python
package. In each trial, the CMA-ES routine continues until
the parameters no longer change and the change of Gj within
a tolerance of ΔGj/nρn = 10−4kBT or the global fitness function
Gj is less than −5kBT per nanoparticle in the unit cell. The to-
tal optimization process is then repeated to convergence for
fifty different trials, j ∈ [1, 50], and the solution with the low-
est Gj is taken as the converged solution and tested using the
Brownian dynamics HPF described above.

3 Results
3.1 Validation

We begin by presenting the details of the results of our opti-
mization scheme when we target a square lattice over a range
of NP areal densities ρ ∈ [0.034, 0.042]. From the set of opti-
mized grafting densities generated in our CMA-ES implemen-
tation, three representative designs denoted as SQ1, SQ2 and
SQ3 are selected and plotted in Fig. 1a as Ni vs. σi. The SQ1
shown in the black circles has the minimum global fitness
function amongst all the generated solutions. For all of the
selected solutions, the two optimized chain lengths are dis-
tributed about N1 ≈ 3 and N2 ≈ 16 (Fig. 1c and d), while the
variance in the grafting density is significant amongst the so-
lutions. The inset to Fig. 1a plots the scaled fitness function,

GjĲt) for the solution in blacks circle as a function CMA itera-
tion, t. The function quickly decreases and reaches a plateau
after about 50 iterations indicating a fast convergence rate.
We further investigate the quality of the selected solutions
over the range of ρ by presenting the fitness function, g(λj, ρ)
as a function of ρ in Fig. 1b. The profiles for the three se-
lected solutions exhibit different non-linear patterns. For SQ1
and SQ3, local minimum can be identified in the profiles at
about ρ = 0.035 and 0.040, respectively while the profile from
SQ2 exhibits a concave shape and a maximum at ρ = 0.038.
Overall, the profile from SQ1 has the lower values over the
range of ρ, as we expected. Finally, the convergence of the op-
timized designs is examined. According to the heat-maps of
Gj/n in Fig. 1c and d, the majority of designs from trials j ∈
[1, 50] with lowest values of Gj/n concentrates about the SQ1
(the star in the center of dark blue region on each figures),
which indicates a good convergence of the proposed optimi-
zation scheme, although less stable minima were also located
(yellow and green regions) with nearby grafting densities and
chain lengths.

We next tested whether the converged solutions were able
to spontaneously form the targeted structure by performing
HPF simulations with 100 NPs with the grafting design from
the solutions. Here, the assembled NP configurations from
two types of HPF simulations are presented. The first type
coming from simulations with initial NP configurations bi-
ased to square lattices (Fig. 2a), exhibits a defect-free square
lattice pattern for the NPs with design SQ1 over all the entire
range of ρ. For the other two sample converged designs SQ2

Fig. 1 (a) Three representative designs, SQ1 (black circles), SQ2 (red
squares), and SQ3 (green diamonds), are selected from all the
solutions generated in the CMA-ES process (with the range of ρ ∈
[0.034, 0.042]). The inset shows the optimization process of the scaled
global fitness function of SQ1. (b) The fitness function for the selected
designs is presented as a function of ρ. (c) & (d) Gj/n of the trials j ∈ [1,
50] are shown as the red circles in the heat-maps for the short (c) and
the long (d) chains designs ({Nij, σij}), where the three designs, SQ1,
SQ2, and SQ3, in (a) & (b) are highlighted as red solid circles, red solid
squares and red solid diamonds, respectively. The values in the heat-
maps are determined using the linear interpolation from Gj/n.
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and SQ3, the assembled structure become less ordered for
the highest density test, where ρ = 0.042. Similar results can
be observed in the results from simulations with random ini-
tial NP configurations (Fig. 2b), though generally speaking
more defects are present. The assembled structures from NPs
with the design from SQ1 also exhibit square lattice pattern
at ρ = 0.042, although the defects in the form of grain bound-
aries begin to appear in the pattern. However, for the NPs
with the designs from SQ2 and SQ3, the square lattice pat-
tern can only be observed in the lowest ρ value at 0.034. It is
interesting that the defective systems, SQ2 and SQ3, adopt lo-
cal motifs with five-particle symmetries, though long-range
order is clearly lacking.

3.2 Optimization of open NP lattices

Having demonstrated the optimization scheme on the forma-
tion of a square lattice, we proceed to apply the scheme to de-
sign honeycomb (HC) and kagome (KG) lattices in addition
to the square (SQ) lattices described above. The optimized de-
signs are shown in Fig. 3, where we see that the HC design
includes two longer grafted chains but much smaller grafting
densities. For the KG design, the two grafting chains show
the largest disparity in the chain lengths, where the longer
chain is about ten times longer than smaller one. The de-
signs shown in the inset are generated from the same optimi-
zation scheme, though they were generated at a single value
of ρ = 0.038. These designs optimized at a single density are
found to have similar chain lengths compared to when an ex-
tended range of ρ is used.

The above designs are tested using HPF simulations with
multiple NPs in the system. The assembled configurations
shown in Fig. 4a were produced from HPF simulations with
initial configuration biased to the target lattice. The NPs
using SQ and HC design are found to assemble into defect-
free square and honeycomb lattices at all three values of ρ,
while defects are observed in the KG lattice. If the initial con-
dition in HPF simulations is changed to a random configura-
tion, as presented in Fig. 4b the NPs using the SQ design still
predominantly show a square lattice, though defects and
grain boundaries do emerge. However, the NPs using the HC

design exhibit localized defects at small and intermediate
values of ρ. For the NPs using the KG design, we do not ob-
serve well-ordered KG structures at all the values of ρ. Both
the KG and HC lattices do provide an open structure, which
could be advantageous for 2D assemblies.

To quantify the ordering of the above shown assembled
structures, we construct a lattice order parameter SL based on
the distribution of angles formed by three adjacent NPs in
the structures. Briefly, we calculate the ratio of the number of
angles ϕ distributed within a small range (δϕ = ±5 degree)
about the characteristic angles in the lattices relative to the
total number of angles; the ratio of the number centered
about their characteristic angles to the total defines SL. For
example, square lattice has two characteristic angles at 90
and 180 degrees such that angles distributed in [85 95] and
[175 185] will be accounted to the numerator of the ratio.
This ratio has the limits of 1 when the NPs assemble into a
perfect lattice and 2δϕ/180 when the angle distribution is
completely random. The analyzed SL values from the above
structures are presented in Fig. 5. Amongst all the types of
NP designs, the structure coming from biased initial configu-
rations exhibit higher values of SL over the range of ρ com-
pared to these from the random initial configurations. This
trend is also observed for the structures coming from NPs
using designs optimized just at ρ = 0.038. For NPs with SQ
design, the SL in the assembled structure coming from ran-
dom initial configurations reaches highest value at ρ = 0.038,
in the HC design SL decreases as ρ increases, and for the KG
design SL is approximately constant.

Fig. 2 Snapshots from HPF simulations on the three selected designs
in Fig. 1a where the simulations were initialized with (a) biased and (b)
random initial configurations, respectively. The grafted chains are not
shown for clarity.

Fig. 3 Optimized design for NPs forming SQ, HC, and KG lattices over
the range, ρ ∈ [0.034, 0.042] (main figure) and ρ = 0.038 (inset).

Fig. 4 Snapshots from simulations where grafted nanoparticles are
optimized for targeted lattices (ρ ∈ [0.034, 0.042]). Images are shown
where the initial HPF configuration was (a) biased towards the target
structure and (b) random. The grafted chains are not shown for clarity.
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These results demonstrate that the biased states exhibit
fewer defects, and we next provide evidence that these config-
urations are lower free energy states. To approach this, the
free energy per NP of the assemble structures is quantified
from three contributions: the entropic energy from the
grafted chains, Hg, the enthalpic energy from NP-grafting
chain interactions, Hw, and the vibrational free energy from
NP configurations, Hq. Fig. 6 plots the per NP free energy, F,
of the assembled structures as a function of ρ. We observe
that for all lattices considered here the free energy has a
smaller value from the simulations with biased initial config-
uration over the range of ρ. As shown in the insets to the fig-
ures here, we also find that the majority of free energy contri-
bution arises from the entropy of the grafted chain, Hg.
Based on this set of results we would argue that the assem-

bled structures from the biased initial configurations are en-
ergetically more favored states, and the entropy of the grafted
polymers plays a dominant role in driving the system into
each configuration.

3.3 Anisotropic grafted chain distributions and multi-body
effects

The above free energy analysis indicates the importance of
the entropic contribution from grafted chains, which is
expected to correlate with the grafted chain conformations.
Therefore, in this section we explore the grafted chain distri-
bution about the NP cores and attempt to answer how the
distribution would affect the interparticle interactions. We
first investigate the density map of the grafted chains around
a single NP in the lattice as shown in Fig. 7. The distribution
of the shorter grafted chains (denoted N1) shows three- and
six-folds rotational symmetry in the HC and KG designs while
in SQ design where N1 has the shortest length, the grafted
chain distributions are generally homogenous around the
NP. The anisotropy becomes pronounced in the longer
grafted chains, N2, where four-, three-, and two-fold symmetry
can observed. From the scaled angular density profiles, (θ),
we notice that the two types of grafted chains have a very
similar angular distribution in the HC design. In contrast,

Fig. 5 Lattice order (SL) parameters plotted as a function of NP
density in assembled structures formed by NPs with SQ (a), HC (b) and
KG (c) designs. The open symbols come from the optimization over
the NP density range, ρ = [0.034 0.042] while the solid symbols are
calculated from the optimization at ρ = 0.038.

Fig. 6 The free energy per NP is plotted as a function of NP density, ρ,
in assembled structures formed by NPs with SQ (a), HC (b) and KG (c)
designs. The insets to the figures show the free energy contribution
from grafted chains, Hg as a function of NP density.

Fig. 7 Normalized grafted chain angular density profiles are shown in
the left column for SQ (upper), HC (middle) and KG (lower) designs.
The dashed green lines and read solid lines come from N1 and N2

grafted chains, respectively. These angular profiles are calculated on
the grafted chains distributed between RP to 2.0r0 away from the NP
center, where r0 is the equilibrium distance in the lattices. The heat
maps on the two right columns show the spatial distribution of the
grafted chain densities for N1 (dashed green frame) and N2 (solid red
frame) grafted chains. Only the grafted chain attached to the solid grey
NPs in the center of the maps are shown here. The NP–NP distance in
these calculations is fixed to the equilibrium distance corresponding to
the density ρ = 0.038.
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the angular distribution in the SQ and the HG designs are
quite distinct.

We next examine the NP–NP interactions through the two-
body potential of mean force (w2Ĳr)) between isolated NPs. As
shown in Fig. 8, all the potentials of mean force exhibit a
purely convex, repulsive nature when the NP–NP distance, r,
is below the equilibrium distance in the lattice, r0. Interest-
ingly, we observe that w2Ĳr) remains finite even at distances
where r is approximately two times r0. The importance of
these long-range effects becomes even more pronounced
when we investigate the multi-body interactions. To illustrate
this point, the total three-body potential of mean force, w3Ĳr),
is calculated. The results show that w3Ĳr) exhibits a finite
strength beyond 2r0 for each optimized design. Specifically,
for the w3Ĳr) from the HC and the KG designs, the interaction
range can exceed 4r0 (Fig. 9a). We further isolate the three
body component of the potential by subtracting off the two-
body potential between the three particles involved, u3Ĳr) =
w3Ĳr) − 2w2Ĳr) − w2Ĳr0); the result is shown in Fig. 9b. It is
interesting to observe that the potential shows a non-
monotonic change when r increases across the equilibrium
distance r0. In particular, u3Ĳr) from SQ design exhibits a peak
intensity right at the position where the three particles would
form an equilateral triangle. This local maximum in the po-
tential indicates that the three body interaction destabilizes
triangle structure in the assembly of NPs, which likely leads
to the stabilization of the square lattice.

4 Conclusion

In this manuscript, an optimization approach is presented to
solve the inverse design problem for systems with some
chemical detail, namely polymer-grafted nanoparticles (gNPs)
grafted with two distinct grafted polymer chain lengths. Our
approach uses an evolutionary optimization scheme (CMA-
ES) on a 2D field-theoretic NP model to search for the opti-
mized NP design on a unit cell of the lattice, and our designs
are verified on multi-NP systems where we allow the particles
to thermally sample their configurations. We find that in
many cases, our gNPs self-assemble into the targeted struc-
ture over the range of density, though defects are often pres-
ent at the edges of the density range. Our investigation on
the interactions amongst NPs with the optimized design in
the target lattice highlights the importance of many-body ef-
fects, which serve to prevent the NPs from assembling into
competing lattices and thus might contribute to the forma-
tion of the targeted lattice.

We take the methods and results presented here as a
promising first step towards designing the chemistry of nano-
particles that could be designed experimentally for targeted
self-assembly, but there are several assumptions that need to
be relaxed in future work. The first one is the definition of
uniform grafting density in the hSCFT NP model, which
might become an unphysical assumption when the grafting
density is small and the discrete nature of the grafting sites
becomes important. It is well-known that grafted particles at
low graft densities exhibit anisotropic interactions and as-
semblies.18 One strategy for addressing this issue can be to
adopt the dynamic mean field framework introduced by the
authors39 where the grafting sites on the NP surface are
treated explicitly, though this loses direct access to the free
energy. In addition, the polymer chain conformations are
treated entirely at the mean-field level in a θ solvent, and test-
ing the fluctuation effects and the influence of solvent quality
and the effects of other enthalpic interactions remains an
outstanding issue.
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