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Machine learning enabled quantification of the
hydrogen bonds inside the polyelectrolyte brush
layer probed using all-atom molecular dynamics
simulations†

Turash Haque Pial and Siddhartha Das *

The configuration of densely grafted charged polyelectrolyte (PE) brushes is strongly dictated by the

properties and behavior of the counterions that screen the PE brush charges and the solvent molecules

(typically water) that solvate the brush molecules and these screening counterions. Only recently, efforts

have been made to study the PE brushes atomistically, thereby shedding light on the properties of

brush-supported ions and water molecules. However, even for such efforts, there are limitations

associated with using a generic definition to estimate certain properties of water and ions inside the

brush layer. For example, water–water hydrogen bonds (HBs) will behave differently for locations outside

and inside the brush layer, given the fact that the densely closely grafted PE brush molecules create a

soft nanoconfinement where the water connectivity becomes highly disrupted: therefore, using the

same definition to quantify the HBs inside and outside the brush layer will be unwise. In this paper, we

address this limitation by employing an unsupervised machine learning (ML) approach to predict the

water–water hydrogen bonding inside a cationic PE brush layer modeled using all-atom molecular

dynamics (MD) simulations. The ML method, which relies on a clustering approach and uses the

equilibrium coordinates of the water molecules (obtained from the all-atom MD simulations) as the

input, is capable of identifying the structural modification of water–water HBs (revealed through appropriate

clustering of the data) inside the PE brush layer induced soft nanoconfinement. Such capabilities would not

have been possible by using a generic definition of the HBs. Our calculations lead to four key findings: (1)

the clusters formed inside and outside the brush layer are structurally similar; (2) the margin of the cluster is

shorter inside the PE brush layer confirming the possible disruption of the HBs inside the PE brush layer; (3)

the average ‘‘hydrogen–acceptor-oxygen–donor-oxygen’’ angle that defines the HB is reduced for the HBs

formed inside the brush layer; (4) the use of the generic definition (definition usable for characterizing the

HBs in brush-free bulk) leads to an overprediction of the number of HBs formed inside the PE brush layer.

Introduction

Polyelectrolyte (PE) brushes, which refer to charged PE chains
densely grafted to a surface, have received wide attention1–8 owing
to their extensive applications in a variety of disciplines including
fabrication of ionic diodes,9 ion and biosensors,10,11 and current
rectifiers,12 energy conversion,13–15 targeted drug delivery,16 water
harvesting,17 oil treatment,18 and many more. For all these appli-
cations, the responsiveness of the PE molecules to the environ-
mental stimuli (e.g., pH and ion concentration of the aqueous
medium) becomes critical. While there has been significant

experimental,19–23 theoretical,24–30 and simulation31–34 studies
focused on probing such responsiveness and behavior of the PE
molecules as functions of the water and ion properties, a pinpointed
atomistic understanding of the behavior of the brush supported
water molecules and ions has remained very limited. Only recently,
there have been efforts to study the PE brushes and the brush
supported ions and water molecules using all-atom molecular
dynamics (MD) simulations:35–40 the utility of such an approach is
that they provide unprecedented fundamental understanding about
the atomistic structure, properties, and behaviors of brush-
supported ions and water molecules, which in turn can be leveraged
for a variety of potential applications (such as coion-driven electro-
osmotic transport41 and simultaneous energy harvesting and flow
augmentation42 in PE brush functionalized nanochannels).

Among the parameters of interests that get revealed by the
all-atom MD simulations, one of the most important one is the
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water–water hydrogen bonds (HBs) formed by the water mole-
cules within the PE brush layer.37 In the brush-free bulk (i.e.,
outside the brush layer), water shows connectivity with nearby
water molecules forming HBs; on the other hand, closely
grafted PE brush molecules create a soft nanoconfinement
where the water connectivity becomes highly disrupted thereby
affecting the HBs inside the PE brush layer. In a previous
study,37 we showed that there occurred a significant decrease
in the water–water and water–PE hydrogen bond strengths with
an increase in the degree of PE brush-induced confinement
(quantified by the grafting density of the brushes). In that
study,37 we employed a generic definition of the HB when
analyzing water–water HBs inside the brush layer. A similar
definition was also used for quantifying the PE–water HBs. In
this generic definition, a cutoff value for the oxygen–oxygen
distance as well as the angle formed by oxygens and hydrogens
is used to describe a HB. These values are examined thoroughly
and highly calibrated, although mainly for bulk water. Inside a
highly charged confined system (inside a densely grafted poly-
electrolyte or PE brush layer, for example), on the other hand, it
is possible that water network is disrupted by the charged
atoms, as we showed in our previous study.37 Other studies
have shown that HBs might demonstrate different structural
behaviors when formed under different settings (e.g., in
presence or in absence of confinements, with variation in
species participating in such HB formation, etc.), and in the
process, cover a large range of structural properties and energy
values.43–45 As water structure and water density might change
inside the brush layer, a definition of the HB, which is used for
the water molecules present in the bulk water (i.e., outside the
highly charged confined system), might not be representative of
the actual local environment. Therefore, it is not always pru-
dent to use a generic definition (known for water) for quantify-
ing the HBs without considering the scenario where such
bonds have formed. On the other hand, a method to analyze
and quantify HB that is specific to a particular system (e.g., HBs
formed inside the PE brush layer) will not only ensure a more
robust quantification (including the number density, angle
associated with the HB, etc.) of the HBs formed inside the soft
nanoconfinement, but will also unearth several finer features of
the HBs that would have been missed if one would have used
the existing generic definition of characterizing the HBs. A
machine learning (ML) algorithm can help in this case. A
cluster-based algorithm, for example, can analyze the atomic
coordinates (of the atoms of the water molecules present inside
the densely grafted layer of the charged PE brushes) and
provide us useful information about the distribution of bonds
associated with these coordinates. From these clusters, we can
identify hydrogen bonds and as a result we can also check how
the structural definition of hydrogen bond is changing inside a
highly charged confined environment (namely the densely
grafted layer of the charged PE brushes).

In this paper, we first obtain an all-atom MD simulation-
based description of the structure of a cationic PE brush and
the brush-supported ions and water molecules. Using this all-
atom MD simulation enabled information of the equilibrated

atomic coordinates of the water molecules inside the cationic
brush, we employ an unsupervised machine-learning (ML)
based approach for obtaining an agnostic definition of HB
structure46 inside the PE brush layer. The approach relies on
identifying the structural modification of water–water HBs
inside the PE brush layer and in the process quantifies the
disruption of the number density of the HBs inside the brush-
enforced soft nanoconfinement. Our machine learning model
is based on the model of Gasparotto and Ceriotti,46 which
identifies atomic patterns automatically from molecular trajec-
tories, thereby providing an algorithmic definition of a bond
(here a HB) based solely on structural information. There have
been several studies in the broad domain of application of ML
in soft matter systems, where unsupervised learning has been
employed to discover previously unknown recurring structural
patterns or motifs in different macromolecular systems.47–49

The specific method of Gasparotto and Ceriotti provides clus-
ters of possible short ranges of recurring patterns: HBs can be
distinguished from other clusters by analyzing the corres-
ponding inter-atomic distances. As this method relies solely
on the available atomic coordinates, possible modification of
the HB structure inside the PE brush layer can be analyzed
using this method. Using these clusters, we can provide the
structural definition of a HB inside the brush layer. Our
calculations, enable us to obtain the following key results. First,
we find a qualitative similarity in the cluster formation inside
the brush layer and in the bulk (outside the brush layer).
Second, the analysis of the HB cluster (or the cluster that can
be considered to represent HBs) shows that the margin (in
terms of the parameters used to define the cluster) of the
cluster is shorter inside the PE brush layer. This result indicates
the possible disruption of the HBs inside the soft nanoconfine-
ment imposed by the grafted PE brush layer. Third, the average
‘‘hydrogen – acceptor-oxygen – donor-oxygen’’ angle that
defines the HB is reduced for the HBs formed inside the brush
layer (as compared to the HBs formed in the brush-free bulk).
Fourth and final, our approach enables us to define a more
rigorous set of conditions that should be used in defining the
HBs that are formed inside the specific cationic PE brush layer
simulated here: use of these set of conditions in defining the
HBs show that we invariably overpredict the number water–
water HBs formed inside the brush layer in case we use a
generic definition (used to define the HBs in the brush-free
bulk) to characterize the HBs inside the brush layer.

Methods
Molecular dynamics simulation

Our all-atom MD simulations considered 36 fully charged (posi-
tively charged) poly(2-methacryloyloxy)-ethyl-trimethylammonium
(PMETAC) chains grafted in a 6 � 6 (x � y) array (Fig. 1 shows the
PMETAC molecule and the simulation snapshot). Cl� counterions
are used to neutralize the polyelectrolyte (PE) segmental charge in
a solvent consisting of explicitly-modeled SPC/E water molecules.50

Continuous Lennard Jones (LJ, 12–6) and reflective walls (the LJ s
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or the LJ distance parameter is 3 Å, with a cutoff of 3.36 Å) are
placed at the bottom and the top of the simulation box, respec-
tively. This prevented the mobile counterions and the water
molecules from leaving the simulation system. Because of the LJ
parameter and associated cutoff, the wall does not allow any atom
up to a distance 3.36 Å from the wall. Chains are grafted by fixing
the end carbon above the bottom reflective wall. The distance
between the wall and the grafted carbon is 3.36 Å. The size of the
equilibrated simulation system is x � y � z = 9.4 � 9.4 � 19 nm3

(the z distance is the wall-to-wall distance). Also, the bulk water
region considered for analysis is around 5 nm above the PE layer.
The bulk water resides within the box. We have checked the water
density along the simulation box system. The water density is
smaller within the PE brush layer since a significant amount of
water is replaced by the PE atoms (please see Fig. S2 in the ESI†).
The particle trajectories were calculated using the Velocity–
Verlet algorithm with a time step of 2 fs. Non-bonded interactions
were modelled as the sum of a shifted-truncated 12–6 Lennard
Jones potential (ULJ) maintaining the cut-off of 13 Å. PPPM
(particle–particle particle–mesh) algorithm was used to calculate
the long-range coulombic interactions.51 The bonds and angles of
water molecules were conserved using the SHAKE algorithm.52

Periodic boundary conditions were applied in x and y directions,
while the fixed boundary condition was incorporated in z direc-
tion. Simulations were performed in LAMMPS (version 21st July,
2020).53 OVITO was used to visualize the simulation system.54 We
have used OPLS-AA force field55 to model the interaction para-
meters for the PMETAC chains. The Lennard Jones (LJ) parameters
for the Cl� counterions were taken from the work of Joung and
Cheathan.56 Geometric mixing rules were used for calculating the
LJ interactions between the different atom types. For mobile-ion-
water interactions, we used the Lorentz–Berthelot mixing rules to

be consistent with Joung et al.56 These parameters are very
accurate for monovalent ions in an aqueous system. For example,
ion parameters are calibrated to obtain proper hydration free
energy of the solvated ions, as well as proper ion–oxygen distance.
The LJ parameters are also calibrated for different water models,
and we are using the calibrated value for SPC/E water model.56 The
different forcefield parameters have been summarized in the ESI.†

After creating the initial configuration, the system was first
simulated in the NPzT ensemble (the subscript Z means that
only the system height was allowed to change) to obtain the
correct simulation box height at a temperature of 300 K and a
pressure of 1 atmosphere by applying the Nosé–Hoover thermo-
stat and the Nosé–Hoover barostat,57,58 with relaxation times of
0.1 ps and 1 ps for temperature and pressure, respectively.
Subsequently, the system was equilibrated in the NVT ensem-
ble to obtain the correct equilibrium configuration of the
system by using the Langevin thermostat.59 We performed
simulation until the brush height reached a plateau. After
equilibration, we performed the production run for 12 ns.

Agnostic description of hydrogen bond

We have used unsupervised machine learning approach to
identify hydrogen bonds (HBs) inside the brush layer as well
as in the bulk (i.e., outside the brush layer). This machine
learning approach, which follows the method proposed by
Gasparotto and Ceriotti,46 has been briefly described below.

The basis of the machine learning approach is that we
consider structural features to identify the formation of HBs.
A HB involves three atoms: one hydrogen atom (‘‘H’’ atom), one
donor oxygen atom (‘‘O’’ atom), and one acceptor oxygen atom
(‘‘O0’’ atom). The distances between these three atoms can be
checked to identify the formation of a HB.

Following Gasparotto and Ceriotti, we create a training
data set w = {xi}, where {xi} is a three-dimensional vector
such that each element of {xi} can be expressed as xi ¼ ðv ¼
d Oi �Hið Þ � d O0i �Hi

� �
, m ¼ d Oi �Hið Þ þ d O0i �Hi

� �
; r ¼ d

Oi �O0i
� �

. Here v is the proton transfer coordinate, m is the
symmetric stretch coordinate, and r is the acceptor–donor
coordinate. These three parameters describe the configuration
of a triplet of atoms (namely, the H, O, and O 0 atoms, see
above) that might lead to the formation of a HB. r indicates
the distance between O and O 0 atoms; v and m specify the
position of H. These coordinates have been schematically
shown in Fig. 2. This data set w will be used to obtain the
corresponding probability distribution: we employ the kernel
density estimation (KDE) to obtain an estimate of this prob-
ability distribution.

To select a sparser set of data points (for computational
efficiency) that will be used to calculate the KDE, we select
subset of the data samples Y D w using minmax criteria.
Obviously, one can write Y = {yi}. Subsequently, the KDE on
each grid point (of the data set Y) can be expressed as:

P yið Þ ¼
XN
j¼1

wjK xj � yi
�� ��; sj� �,XN

j¼1
wj (1)

Fig. 1 (left) Atomic structure of the poly(2-methacryloyloxy)-ethyl-
trimethylammonium (PMETAC) and (right) snapshot of the simulation
system. In this snapshot, red circles represent the counterions, blue circles
represent the atoms of the PMETAC, and small green dots represent the
water molecules. Our system has total 864 METAC monomers and
correspondingly 864 Cl� counterions. Periodic boundary conditions were
applied in x and y directions, while the fixed boundary condition was
incorporated in z direction (perpendicular to the brush layer).
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In eqn (1), K is a Gaussian kernel expressed as: where a
Gaussian kernel is used as

Kðx; sÞ ¼ ð2ps2Þ�D=2e�
x2

2s2 (2)

Also, in eqn (1) N is the total number of distance tuples, wj is
a weight function, and sj is an adaptive kernel width. We follow
the procedure of Gasparotto and Ceriotti46 to obtain wj and sj.
Also, in eqn (2), D is the dimensionality of the problem (for our
case D = 3).

After calculating KDE, we proceed to identify different
clusters. Quick shift60 algorithm is used to separate different
clusters. With the knowledge of the set of data points yi and the
probability P(yi) [obtained using eqn (1)] associated with that
data point, the quick shift algorithm constructs a tree where
each data point serves as a node, while the data point with
highest probability value serves as the root. Each data point is
connected to the nearest point with a higher probability den-
sity; in other words, yi is connected to yj such that

j ¼ argmin
P yjð Þ4P yið Þ

yi � yj
�� �� (3)

This search for data point with higher probability density is
stopped by introducing a cut-off length l. If no data point with
higher probability is found within l from the current data
point, the quick shift stops moving and an enclosed cluster is
found. It is to be noted that the quick shift is not particularly
influenced by this cut-off, so it automatically selected at around
B5sj where sj is the kernel grid point width (see eqn (1)). By
this procedure we automatically get clusters associated with the

atomic arrangements of H, O, and O0 atoms. From these
clusters we can define the hydrogen bonds to be associated
with the clusters with the shortest (v, m, r) tuples as this will give
strongest non-bonded interactions.

Results and discussions

We analyzed the structural modification of HBs inside the
cationic PE brush layer, as compared to the HBs in the bulk
(outside the brush layer), by using the machine learning
approach described above. For this purpose, we consider the
positions of H and O atoms of the water molecules from two
slabs (one inside the brush layer and another in the PE free
bulk) of height 30 Å. We use a cutoff of m, r r 4 Å to exclude
non-hydrogen bonded interactions. Fig. 2 shows the distribu-
tion of (v, m, r) tuples in the bulk (outside the brush layer) and
inside the brush layer. One observes a symmetry along v = 0
since a given O atom behaves as a ‘‘donor’’ in one HB and an
‘‘acceptor’’ in another HB. The probability density values are
colored according to the partition in clusters. Several clusters
indicate that there are more than one recurring configurations,
possibly happening in the second solvation shell. Generally, in
aqueous solution, water mediated HBs are considered to have
been formed when the oxygen–oxygen distance is less than
3.5 Å and the H–O0–O angle is less than 301.61,62 In Fig. 2,
among the different clusters, the blue cluster (for v 4 0) and
the green cluster (for v o 0) are the representation of the HBs.
Water connectivity is severely disrupted inside the PE brush
layer (or the confinement effect imposed by the densely grafted

Fig. 2 Top panel: The HB and the coordinates employed to perform the cluster analysis have been defined schematically. The dashed line indicates a HB
between doner H and acceptor O 0. Among the coordinates, r is shown explicitly. We have also shown d(O 0–H) and d(O–H). Please note that m = d(O0–H)
+ d(O–H) and v = d(O0–H) + d(O–H). Bottom panel: The distribution of (v, m, r) for water in bulk and inside the brush layer have been shown. The size of
the point at a given yi (i.e., a given value of v, m, r) is proportional to the corresponding underlying probability distribution P(yi) (obtained from the KDE)
associated with yi. Different color represents different clusters. Hydrogen bond clusters are indicated with arrows to guide the readers.
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PE brushes) since the PE atoms take up a significant amount of
space and introduce additional interactions between PE atoms
and water atoms. Despite such possible disruption, qualita-
tively similar clusters are observed for water both in the bulk as
well as inside the brush layer. Other than the HBs, four
different clusters (two for v 4 0 and two for v o 0) are also
partitioned inside the brush layer. This shows that long-ranged
recurring patterns continue to remain distinguishable even
after the water connectivity is disrupted by the presence of
the PE chains. This method can be important for analyzing
effects (such as ion–ion correlation, ion condensation, and
bridging interactions), which significantly influence the mor-
phology and properties of the PE chains.

We next look into the hydrogen bond clusters (blue and
green clusters in Fig. 2) more closely in Fig. 3. As SHAKE

algorithm is used to keep the H–O distance fixed (B1 Å), v ¼
d Oi �Hið Þ � d O0i �Hi

� �
is always B2 Å less than

m ¼ d Oi �Hið Þ þ d O0i �Hi

� �
. So, a 2D scatter plot of (m, r)

corresponds one-to-one to the 3D plot of (v, m, r) In Fig. 3, we
plot the two hydrogen bond cluster in (m, r) space: one cluster
represented [in 2D (m, r) space] the HBs formed by the water
molecules inside the PE brush layer, while the other cluster
represented [in 2D (m, r) space] the HBs formed by the water
molecules in the bulk (outside the PE brush layer). We can see
the qualitative similarity between these two clusters; both the
clusters peaked around v = 0.75 Å and r = 2.7 Å and smeared out
at high v values. Interestingly, we can observe the margin of the
cluster is shorter inside the PE brush layer. These points after
the margin are now clustered with the next cluster. These
findings confirm that the HB clusters are getting compacted
inside the brush layer. Water molecules form extensive HB
network in the bulk water. But the water molecules cannot form
these extensive networks inside the brush layer due to the
presence of the polyelectrolytes. Our results indicate that this
disruption can influence the putative HBs with large v. As large
v indicates that the acceptor O is very far from the doner H, the
spatial disruption caused by the presence of the PE chain can
cause the HBs to break or get disrupted. As a result, we are not
seeing HBs in this region. As a result, we are not seeing HB in
this region This result shows the importance of agnostic
definition of structural motifs in different situations and the
manner in which a generic definition of a quantity (here HBs)
can be modified inside a nanoconfinement (here, this nano-
confinement is the densely grafted PE brush layer enforced
nanoconfinement).

We next check the manner in which the hydrogen bond
angle is modified inside the PE brush layer. We use the (v, r)
margins from Fig. 3 as the cutoff of the HB search. We
manually analyzed the simulation snapshots using v and r
and count this angle (charactering the HB formation). It can
be observed that there is a significant modification of the angle
distribution (H – acceptor-O – donor-O angle or H–O0–O angle)
inside the brush layer. For the HBs distribution inside the
brush layer, there is a slight shift of the distribution peak
towards the smaller values of the H–O0–O angle: this indicates

that the HBs inside the brush layer become more linear. From
this HB distribution plot, we also observe the possibility of the
number of HBs with larger H–O0–O angle reducing inside the
brush layer. This kind of variation in hydrogen bond angles
have been previously observed in different ice phases as well as
in HBs formed by different molecules;63–65 here we are witnes-
sing this with water being a strong confinement imposed by the
presence of the densely grafted PE brushes. Generally, an angle
criterion of H–O0–Oangle being less than 301 is used in the
structural definition of water mediated hydrogen bond for-
mation. In Fig. 4, we calculate that for the HBs in the brush-
free bulk, 90% of the HBs correspond to the H–O0–O angles that
are smaller than 301. However, for the HBs inside the PE
brushes, as the H–O0–O angle distribution (corresponding to
which HBs are formed) is shifted towards the smaller angle (see
above), 90% of the HBs will correspond to a much lower value
of the H–O0–O angle: indeed, our calculations using Fig. 4
establish this cut-off angle as 241 for the case of the HBs inside
the PE brush layer.

Finally, we calculate the total number of HBs per water
molecules inside the brush layer. We consider two conditions
or definitions (see below) used to identify the formation of the
HBs and compare their impact on the total number of HBs
inside the PE brush layer. The first condition/definition is the
generally accepted definition for the HB formation in the bulk
water: oxygen–oxygen distance is less than 3.5 Å and the H–O0–
O angle is less than 301. In second definition, we modify the
condition on the H–O0–O angle that is associated with the HB
formation inside the PE brush layer: as per Fig. 4, we identify
this condition on the H–O0–O angle to be less than 301. Table 1
provides the number of HBs computed by these two separate
definitions at different locations within the PE brush layer. This
second definition leads to a much smaller number of HBs
inside the brush layer. This result, therefore, shows that if we
use the definition of HB in a bulk water for calculating the HBs

Fig. 3 Distribution of (v, r) for water in bulk and inside brush layer. The size
of the point at a given yi (i.e., a given value of v, m, r) is proportional to the
corresponding underlying probability distribution P(yi) (obtained from the
KDE) associated with yi. The dashed lines indicate the average location (in
v) of the edge of hydrogen bond cluster.

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
8 

no
ve

m
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 2
02

5-
01

-0
4 

00
:3

4:
26

. 
View Article Online

https://doi.org/10.1039/d2sm00997h


8950 |  Soft Matter, 2022, 18, 8945–8951 This journal is © The Royal Society of Chemistry 2022

inside a densely grafted (affording significant nanoconfine-
ment) PE brush layer, we would overcount the number of HBs.

Conclusions

ML based approach has been used to account for the specific
scenario, associated with the soft nanoconfinement effect
experienced by the water molecules present inside the densely
grafted cationic PE brush layer, probed using all-atom MD
simulations, while calculating the water–water HBs inside the
PE brush layer. The ML method is based on a clustering
approach: the result is multiple groups of clusters and the
HBs are represented only by certain specific clusters. While the
overall clustering data is similar to for the water molecules
inside and outside the PE brush layer, through these data, we
are able to identify several differences between the water–water
HBs formed inside and outside the PE brush layer. First, we are
able to identify that the margin of the cluster gets shortened
within the PE brush layer: this can be attributed to the possible
disruption of the HBs inside the PE brush layer. Second the H–
O0–O angle that characterizes the HBs gets reduced for the case
of the water–water HBs formed inside the PE brush layer: this
can be interpreted as the HBs inside the brush layer becoming
more linear. Third, we establish if the HBs that are formed
inside the specific cationic PE brush layer simulated here are
characterized by the generic definition of the HBs (used to
define the HBs in the bulk water outside the brush layer), we
overpredict the number water–water HBs formed inside the

brush layer. Overall, we anticipate that our paper will motivate
new research problems aimed at re-evaluating the properties of
ions and water molecules inside a PE brush layer using a more
system-specific definition/characterization motivated by differ-
ent ML approaches.
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58 S. Nosé, J. Chem. Phys., 1984, 81, 511.
59 T. Schneider and E. Stoll, Phys. Rev. B: Condens. Matter

Mater. Phys., 1987, 17, 1302.
60 A. Vedaldi and S. Soatto, Computer Vision-ECCV 2008,

Springer, 2008, pp. 705–718.
61 S. Han, Sci. Rep., 2018, 8, 9347.
62 A. Luzar and D. Chandler, Nature, 1996, 379, 55.
63 R. Zangi and A. E. Mark, J. Chem. Phys., 2004, 120, 7123.
64 W.-H. Zhao, J. Bai, L.-F. Yuan, J. Yanga and X. C. Zeng,

Chem. Sci., 2014, 5, 1757.
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