Volume 250, 2024

An organic transistor for detecting the oxidation of an organic sulfur compound at a solid–liquid interface and its chemical sensing applications

Abstract

The development of chemical sensors has advanced due to an increase in demand; however, the potential of chemical sensors as devices to monitor organic reactions has not been revealed yet. Thus, we aim to propose a chemical sensor platform for facile monitoring of chemical reactions, especially at a solid–liquid interface. In this study, an extended-gate-type organic field-effect transistor (OFET) has been employed as a platform to detect chemical reactions at an interface between the extended-gate electrode and an aqueous solution. The OFET device functionalized with 4,4′-thiobisbenzenthiol has shown time- and concentration-dependent shifts in transistor characteristics upon adding H2O2. In a selectivity test using seven oxidant agents, the transistor responses depended on the oxidation of the organic sulfur compound (i.e., 4,4′-thiobisbenzenthiol) stemming from the ability of the oxidant agents. Therefore, the observed changes in the transistor characteristics have suggested the generation of sulfur-oxidized products at the interface. In this regard, the observed responses were caused by disulfide formation accompanied by changes in the charges under neutral pH conditions. Meanwhile, weak transistor responses derived from the generation of oxygen adducts have also been observed, which were caused by changes in the dipole moments. Indeed, the yields of the oxygen adducts have been revealed by X-ray photoelectron spectroscopy. The monitoring of gradual changes originating from the decrease in the disulfide formation and the increase in the oxygen adducts implied a novel aspect of the OFET device as a platform to simultaneously detect reversible and irreversible reactions at interfaces without using large-sized analytical instruments. Sulfur oxidation by H2O2 on the OFET device has been further applied to the indirect monitoring of an enzymatic reaction in solution. The OFET-based chemical sensor has shown continuous changes with an increase in a substance (i.e., lactate) in the presence of an enzyme (i.e., lactate oxidase), which indicates that the OFET response depends on the H2O2 generated through the enzymatic reaction in the solution. In this study, we have clarified the versatility of organic devices as platforms to monitor different chemical reactions using a single detection method.

Graphical abstract: An organic transistor for detecting the oxidation of an organic sulfur compound at a solid–liquid interface and its chemical sensing applications

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
23 aug 2023
Accepted
16 okt 2023
First published
16 okt 2023

Faraday Discuss., 2024,250, 60-73

Author version available

An organic transistor for detecting the oxidation of an organic sulfur compound at a solid–liquid interface and its chemical sensing applications

Y. Sasaki, Y. Zhang, K. Ohshiro, K. Tsuchiya, X. Lyu, M. Kamiko, Y. Ueno, H. Tanaka and T. Minami, Faraday Discuss., 2024, 250, 60 DOI: 10.1039/D3FD00149K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements