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of GalNAc-helical peptide ligands
for efficient liver targeting†

Takahito Ito, ab Nobumichi Ohoka,c Michihiko Aoyama,d Takashi Nishikaze,e

Takashi Misawa, a Takao Inoue,c Akiko Ishii-Watabed and Yosuke Demizu *abf

There is a growing need for liver-selective drug delivery systems (DDS) in the treatment and diagnosis of

liver diseases. The asialoglycoprotein receptor, a trimeric protein specifically expressed in the liver, is

a key target for DDS. We hypothesized that peptides with reduced main-chain flexibility and strategically

positioned N-acetylgalactosamine (GalNAc) moieties could enhance liver selectivity and uptake

efficiency. The helical peptides designed in this study demonstrated superior uptake efficiency and liver

selectivity compared with the conventional triantennary GalNAc DDS. These peptides also showed

potential in protein delivery. Furthermore, we explored their application in lysosome-targeting chimeras

(LYTACs), gaining valuable insights into the requirements for effective LYTAC functionality. This study not

only highlights the potential of helical peptides as liver-selective DDS ligands, but also opens avenues for

their use in various therapeutic and diagnostic applications, making significant strides in the targeted

treatment of liver diseases.
Introduction

The liver is involved in many biological functions and contrib-
utes to the maintenance of homeostasis. Therefore, liver
diseases can be life-threatening.1 In recent years, the number of
reported cases of non-alcoholic steatohepatitis/non-alcoholic
fatty liver disease has increased.2 Additionally, hepatitis B
infections remain prevalent in Asia and Africa, and a lack of
effective treatments poses a potential threat in the development
of liver disease,3 as these infections oen progress to liver
cirrhosis and/or liver cancer. Estimates from the International
Agency for Research on Cancer for 2022 indicate that approxi-
mately 870 000 individuals are diagnosed with liver cancer
annually, of which 760 000 succumb to the disease worldwide.4

This alarming mortality rate highlights the severity of liver
cancer as a global health issue, emphasizing the pressing need
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for effective preventive measures, early diagnostic techniques,
and innovative treatment strategies to combat this devastating
malignancy. Consequently, there is a high demand for liver-
targeted therapies.

Among recent advances in therapeutic modalities, medium-
sized molecules have attracted signicant attention. Some of
these molecules target liver diseases, but oen require combi-
nation with drug delivery systems (DDS) because of their rela-
tively large molecular weights compared with traditional small
molecule drugs. The asialoglycoprotein receptor (ASGPR),
which is specically expressed in the liver, recognizes galactose
and N-acetylgalactosamine (GalNAc) and internalizes these via
endocytosis.5 GalNAc is therefore used in liver-targeted DDS.
ASGPR typically forms a trimer comprising two H1 units and
one H2 unit.6 Thus, ligands with three GalNAc moieties are
considered effective liver-selective carriers.7–9 Triantennary
(Tri)-GalNAc, a representative liver-selective carrier with three
GalNAc moieties, has been reported to enhance the antisense
activity of loaded antisense oligonucleotides more than ten-
fold.10 It has also been applied to diagnostic agents through
conjugation with radioactive nuclides.11 The structure–activity
relationships of Tri-GalNAc have been studied in terms of linker
length and structure, revealing that all versions exhibit highly
exible structures. In silico simulations suggest that ASGPR is
arranged at each vertex of a triangle, although highly exible
ligand structures are thought to be thermodynamically unfa-
vorable to such conformations.12 Therefore, we hypothesized
that more efficient DDS ligands could be developed by attaching
GalNAc on molecules that can dene their conformations
(Fig. 1a).
Chem. Sci., 2024, 15, 18789–18795 | 18789
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Fig. 1 (a) Strategic design of N-acetylgalactosamine (GalNAc)-helical
peptide ligands. (b) Geometry of each asialoglycoprotein receptor
(ASGPR) unit and its function. (c) The hypothesis that controlling
GalNAc orientation may lead to efficient endocytosis.

Fig. 2 (a) Peptides designed showing the positional relationship of N-
acetylgalactosamine (GalNAc) on the peptide. (b) The method used to
introduce GalNAc molecules on the peptide. B, b-alanine; FITC,
fluorescein isothiocyanate.

Fig. 3 (a) Calculated secondary structures of peptides 5 and 5S. (b)
and (c) Circular dichroism spectra of peptides <100 mM in (b) 50%
MeCN aqueous and (c) 20 mM phosphate buffer (pH 7.2).
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Short-chain peptides, although easily synthesized, generally
struggle to form helical structures. However, it is well-
established that a,a-disubstituted amino acids13,14 and side-
chain stapling15,16 stabilize helical conformations. Their incor-
poration into short-chain peptides enables the formation of
helical structures even in typically recalcitrant sequences.14,17

Such helical peptides have been included in various functional
peptides, including protein–protein interaction inhibitors,18–21

DDS,22–25 and antimicrobial peptides.26–28 These applications
18790 | Chem. Sci., 2024, 15, 18789–18795
rely on the consistent orientation of specic residues to func-
tion effectively.

We hypothesized that the orientation of GalNAc could be
controlled by using helical peptides as scaffolds and attaching
GalNAc moieties to their side chains, while simultaneously
reducing the molecule's degrees of freedom. We posited that
this approach could lead to the development of potent ligands
for ASGPR. The ASGPR subunits H1 and H2 form a trimer at
a 2 : 1 ratio (H1 : H2)5 and it is well established that H1 inter-
nalizes efficiently, whereas H2 does not (Fig. 1b).29 Considering
their linear nature, helical peptides can engage only two GalNAc
moieties simultaneously during binding. However, we hypoth-
esized that efficient endocytosis could still be induced, because
at least one of the bound receptors would be H1. Furthermore,
we postulated that incorporating three GalNAc moieties would
create three potential GalNAc pairs, thereby potentially
enhancing binding (Fig. 1c). This study therefore presents
a ligand design strategy based on secondary structure control
for the development of hepatocyte-selective carriers.

Results and discussion

We rst designed template peptides capable of forming helical
structures. To determine the optimal position for introducing
GalNAc, we designed the template peptides with three repeats
of a seven-residue unit. In the center (4th residue) of each unit,
the a,a-disubstituted amino acid Ac5c was introduced. Three
GalNAc moieties were introduced into the peptide, all designed
to face the same side of the helix (Fig. 2a). GalNAc was modied
with an alkyne via propargylation of the anomeric hydroxy
group and introduced into the peptide through a click reaction
(copper-catalyzed azide–alkyne cycloaddition [CuAAC]) to face
the same side of the helix (Fig. 2b). In later studies, we found
that the peptides exhibited high hydrophobicity. Therefore, we
designed peptides to form salt bridges, thereby reducing
hydrophobicity and further stabilizing the helix.30 To investigate
the importance of the helical structure in cellular uptake, we
also designed peptide LD, based on 5S, incorporating alter-
nating L- and D-amino acids to disrupt the secondary structure
(Fig. 2). Tri-GalNAc was synthesized according to methods
previously reported10 and was used as the control.

The stability of the helical structures of peptides 5 and 5S
was veried using computer-based molecular modeling. The
energy of the most stable conformation was negative for both
peptides, suggesting that the helical structure was stable. In
peptide 5S, hydrogen bonding was observed between the side
chains of glutamic acid and arginine. Considering that the
energy of the most stable conformation was lower than that of
peptide 5, it was suggested that the Glu–Arg salt bridge
contributed to the stability of the helix (Fig. 3a). Circular
dichroism spectrum measurements revealed that peptide 5S
had a larger maximum than peptide 5, indicating it formed
a more stable helical structure (Fig. 3b). The helix content also
showed a two-fold difference. In contrast, peptide LD did not
form a dened secondary structure (Fig. 3c).

The cellular uptake of uorescently labelled peptides into
HepG2 cells, which are derived from the human liver and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Cellular uptake of ligands against (a) HepG2 and (b) HeLa cells.
HepG2 or HeLa cells were treated with 5 mM of each compound for
2 h. Cellular uptake activities are indicated as the mean fluorescence
intensity (MFI) of three samples recorded using a flow cytometer. The
relative MFI was defined as the MFI of triantennary (Tri)-N-acetylga-
lactosamine (GalNAc) as one. (c) Hepatocyte selectivity was calculated
from the absolute MFI value of HepG2 divided by that of HeLa. Both
MFI values were subtracted from the background value. Significant
differences were calculated by the Dunnett's test for Tri-GalNAc-FITC.
*P < 0.05, ***P < 0.001 n.s., not significant. Error bars represent the
standard error of three samples.

Fig. 5 The effect of the number and position of N-acetylgalactos-
amine (GalNAc) moieties in a molecule on cellular uptake. (a) Cellular
uptake of peptides from 5S-FITC to 5S-200-FITC. Cellular uptake
activities are indicated as the mean fluorescence intensity (MFI) of
three samples recorded using a flow cytometer. The relative MFI was
defined as the MFI of 5S-FITC as one. Significant differences were
calculated by the Dunnett's test for 5S-FITC. ***P < 0.001 n.s., not
significant. (b) The side-chain flexibility of GalNAc-mounted residues
calculated using molecular dynamics simulation. The flexibility is
expressed as root mean square deviation.
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express ASGPR, was evaluated by ow cytometry. Tri-GalNAc
showed cellular uptake similar to that previously reported,31

but the helix-forming peptides 5-FITC and 5S-FITC exhibited
more efficient uptake. In contrast, the non-helix-forming
peptide LD-FITC showed lower uptake than peptides 5-FITC
and 5S-FITC, similar to that of Tri-GalNAc-FITC (Fig. 4a).
Therefore, it was suggested that the helical structure contrib-
utes to cellular uptake. In a later study, we conrmed that
GalNAc competitively inhibited the cellular uptake of peptide
5S-FITC (Fig. 6). We investigated whether this uptake was
mediated by ASGPR by comparing ASGPR positive and negative
cell lines. The uptake evaluation was performed in HeLa cells,
© 2024 The Author(s). Published by the Royal Society of Chemistry
which do not express ASGPR. No signicant uptake of cellular
uptake of Tri-GalNAc or peptide 5S-FITC was observed in HeLa
cells. In contrast, peptide 5-FITC showed uptake in HeLa cells at
lower levels than in HepG2 cells (Fig. 4b) suggesting peptide 5-
FITC was also internalized via an ASGPR-independent route.
Tri-GalNAc-FITC and peptide 5S-FITC exhibit high hydrophi-
licity, whereas peptide 5-FITC is comparatively hydrophobic.
Therefore, the high hydrophobicity of peptide 5-FITC is thought
to affect its uptake in HeLa cells. Based on these results, liver
cell selectivity was calculated as the uptake in HepG2 cells
divided by the uptake in HeLa cells. Peptide 5S-FITC demon-
strated approximately twice the selectivity of Tri-GalNAc,
whereas peptide 5-FITC exhibited lower selectivity.

ASGPRs are thought to be arranged at each vertex of
a triangle. It may be challenging for all three GalNAc moieties in
peptide 5S-FITC to bind simultaneously as these are arranged in
a straight line. Therefore, to identify which GalNAc units
contribute to ASGPR binding, we designed peptides 5S-1-FITC
to 5S-200-FITC, which contain fewer GalNAc moieties than
peptide 5S-FITC (Fig. 5). The uptake of peptides 5S-1-FITC to 5S-
100-FITC, each containing only one GalNAc moiety, was signi-
cantly reduced compared with that of 5S-FITC (Fig. 5a). The
binding affinity of a single GalNAc moiety to ASGPR has been
reported to be 40 mM,32 indicating that the inclusion of a single
GalNAc moiety is ineffective. Among the peptides containing
two GalNAc moieties, only 5S-2-FITC showed signicant uptake,
while 5S-20-FITC and 5S-200-FITC exhibited greatly reduced
uptake (Fig. 5a). This result was contrary to our expectations.
Since there was no difference in the secondary structure among
these peptides (Fig. S1†) and no clear difference in the relative
positions of the GalNAc moieties between 5S-2-FITC and 5S-200-
FITC. We hypothesized that the GalNAc moiety at position 3
would exhibit a stronger orientation than the moiety at position
1, as it is closer to the center of the sequence and thus subject to
more restricted side-chain freedom. Because there was no
difference in the uptake of molecules containing a single Gal-
NAc moiety, we concluded that the ease of binding at each
position does not differ signicantly. Molecular dynamics
simulations of peptide 5S-FITC revealed that the root mean
square deviation values (RMSD) of the alkyl side chains of
GalNAc at position 1 were larger than those of side chains at
other positions, suggesting higher exibility (Fig. 5b). This
observation indicates that the GalNAc moiety at the N-terminus
of the peptide may possess greater conformational freedom,
potentially enabling it to adopt a more favorable orientation for
binding to ASGPR. This suggests that the binding of GalNAc to
ASGPR occurs in a stepwisemanner rather than simultaneously.
Previous reports have indicated that the length of the GalNAc
linker should be neither too short nor too long, suggesting that
appropriate exibility of the ligand is necessary.33

The protein knockdown activity of various GalNAc ligand-
small interfering RNA (siRNA) conjugates is reportedly related
to the binding activity of the GalNAc ligands to ASGPR.9

Therefore, we evaluated the binding activity of the ligands to
ASGPR. Although surface plasmon resonance and isothermal
titration calorimetry have been used for binding activity evalu-
ation previously, these may not mimic the geometric
Chem. Sci., 2024, 15, 18789–18795 | 18791
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Fig. 6 Cell-based binding study. HepG2 cells were treated with 5 mM
compound in the presence of 0.03–100mMGalNAc for 2 h. Themean
fluorescence intensity (MFI) of three samples was recorded using
a flow cytometer. The concentration of N-acetylgalactosamine (Gal-
NAc) and MFI were plotted on the X- and Y-axis, respectively.
Sigmoidal curves were fitted to plots to calculate the 50% inhibitory
concentration (IC50) of GalNAc against the compounds tested. The
dissociation constant (Kd) was calculated by substituting the inhibition
constant (Ki; 150 mM) of GalNAc and the IC50 into the Cheng–Prusoff
equation.

Fig. 7 Cellular uptake of streptavidin. Each compound (1 mM) was
preincubated with 250 nM Alexa Fluor™ 647-conjugated streptavidin.
HepG2 cells were then incubated with the streptavidin complex for
2 h. Cellular uptake activities are reported as the mean fluorescence
intensity (MFI) of three samples recorded using a flow cytometer. The
relative MFI was defined as the MFI of Tri-GalNAc (Tri-Bio) as one.
Significant differences were calculated by the Dunnett's test for Tri-
Bio. ***P < 0.001. SA: Alexa Fluor647 labelled streptavidin without
carriers.
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environment of trimeric ASGPR in a physiological state. Thus,
we decided to perform a cell-based evaluation using ow
cytometry. By co-administering GalNAc to competitively inhibit
uptake and by varying its concentration, we were able to
calculate the 50% inhibitory concentration (IC50) of the ligands.
The dissociation constant (Kd) of the ligands was calculated by
substituting the known inhibition constant (Ki) of GalNAc and
the calculated IC50 into the Cheng–Prusoff equation.34–36 The
results suggested that the binding activity of peptide 5S-FITC to
HepG2 was approximately three times higher than that of
peptide LD-FITC and Tri-GalNAc-FITC (Fig. 6). The difference
between LD-FITC and Tri-GalNAc did not appear, which may be
related to the fact that both are highly exible molecules.

Next, we evaluated the molecules' delivery efficiency. The
peptide was biotinylated and the uptake of streptavidin (54
kDa), which binds to the biotinylated ligands, was evaluated.
We showed that peptide 5S-Bio could transport approximately
four times more streptavidin than Tri-GalNAc and signicantly
18792 | Chem. Sci., 2024, 15, 18789–18795
than streptavidin itself (SA) suggesting its potential to deliver
large proteins that cannot pass through the cell membrane on
their own (Fig. 7). Although, the uptake trends between peptide
5S-Bio and Tri-Bio were similar to the result of FITC-labelled
ligands, their differences became slightly smaller. Streptavidin
forms a tetramer with biotin, which is able to bind to each
streptavidin subunit. Therefore, there are four binding sites and
the apparent binding activity of Tri-GalNAc may have increased
due to this multivalent effect.36

Ligands comprising GalNAc or its analogs have been used as
extracellular protein degraders (e.g., lysosome-targeting
chimeras [LYTACs] or ASGPR-targeting chimeras).37–39 LYTACs,
which comprise a ligand that triggers endocytosis and a ligand
that binds to the target protein, have recently attracted atten-
tion. Therefore, we attempted to use peptide 5S as an endocy-
tosis ligand for LYTACs. A conjugate compound comprising
ligands and an anti-epidermal growth factor receptor (EGFR)
antibody (cetuximab) was synthesized with an intended drug-to-
antibody ratio of 8.0 (Fig. 8a). This ratio was subsequently
conrmed to be 7.2 for 5S and 7.4 for Tri-GalNAc via MALDI
mass spectrometry. The EGFR degradation activity in HepG2
cells was evaluated using western blotting. Both peptide 5S (5S-
ctx) and Tri-GalNAc (Tri-ctx) conjugates showed signicant
degradation activity at 20 and 200 nM (Fig. 8b). Next, we eval-
uated the clearance of EGFR frommembrane by ow cytometry.
The experiment was conducted using 1 nM of antibody-
conjugates on HepG2 cells. 5S-ctx showed signicant EGFR
clearance at 8 h in HepG2 compared to Tri-ctx, and this clear-
ance reached a plateau at 16 h (Fig. 8c). Although this experi-
ment does not evaluate the degradation of EGFR, when
combined with the western blot results, these ndings suggest
that 5S-ctx may have a higher degree of EGFR degradation than
Tri-ctx.

Conclusions

In this study, we successfully developed peptide-based
hepatocyte-targeting DDS ligands using helical structures to
control the orientation of GalNAc moieties. Our key peptide, 5S,
demonstrated greater uptake efficiency and hepatocyte selec-
tivity than the conventional Tri-GalNAc ligand. These ndings
underscore the effectiveness of our approach in enhancing
ligand binding to ASGPR through geometric control. Our
comprehensive analysis revealed that peptide 5S could facilitate
the endocytosis of large proteins, such as streptavidin, more
efficiently than Tri-GalNAc. This indicates its potential appli-
cability in delivering macromolecules that typically cannot
penetrate cellular membranes by themselves. Furthermore, the
use of peptide 5S as an endocytosis ligand for LYTACs shows
promise, despite the need for further optimization to enhance
protein degradation efficiency. The exibility of the Tri-GalNAc
linker emerged as a critical factor in binding efficiency, high-
lighting the necessity for balanced structural rigidity and
adaptability. Our molecular dynamics simulations and binding
studies provided a deeper understanding of how the positional
and structural attributes of GalNAc inuence ASGPR engage-
ment. Optimizing these ligands for in vivo applications remains
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Application to LYTACs for membrane protein degradation. (a)
Synthesis of antibody-conjugates by reaction between maleimide and
cysteine side-chain. (b) HepG2 cells were incubated with compounds
for 24 h. Epidermal growth factor receptor (EGFR) degradation was
calculated relative to the expression of b-actin, which was used as the
internal standard. (c) Evaluation of the EGFR clearance activity of
ligand–cetuximab conjugates. Ligand–cetuximab conjugates were
incubated with HepG2 cells for several hours. Cells were washed and
incubated with Alexa Fluor 488 labeled F(ab0)2 Fragment Goat Anti-
Human IgG, and the fluorescence intensity was measured using a flow
cytometer. The EGFR internalization of ctx, Tri-ctx, and 5S-ctx is
indicated as the mean fluorescence intensity (MFI) of four samples.
Error bars represent the standard error of the mean of four samples.
ctx, cetuximab.
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essential. The inherent versatility of peptides, coupled with
their ability to incorporate functional sequences, offers
a promising avenue for overcoming current limitations.40

Overall, our approach involving the use of helical peptides to
control ligand orientation represents a signicant step forward
in designing effective liver-targeted therapies. This method-
ology not only enhances the specicity and efficiency of DDS
ligands but also holds potential for broader applications in
targeting multivalent receptors, such as those involved in
various viral infections.41,42 Our ongoing efforts aim to further
rene these systems, potentially addressing membrane
permeability challenges in drug discovery modalities that
cannot penetrate membranes or target specic tissues
themselves.43–47
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