Integrating 3D printing of biomaterials with nitric oxide release

Abstract

The pivotal roles played by nitric oxide (NO) in tissue repair, inflammation, and immune response have spurred the development of a wide range of NO-releasing biomaterials. More recently, 3D printing techniques have significantly broadened the potential applications of polymeric biomaterials in biomedicine. In this context, the development of NO-releasing biomaterials that can be fabricated through 3D printing techniques has emerged as a promising strategy for harnessing the benefits of localized NO release from implantable devices, tissue regeneration scaffolds, or bandages for topical applications. Although 3D printing techniques allow for the creation of polymeric constructs with versatile designs and high geometric precision, integrating NO-releasing functional groups or molecules into these constructs poses several challenges. NO donors, such as S-nitrosothiols (RSNOs) or diazeniumdiolates (NONOates), may release NO thermally, complicating their incorporation into resins that require heating for extrusion-based 3D printing. Conversely, NO released photochemically from RSNOs effectively inhibits radical propagation, thus hindering photoinduced 3D printing processes. This review outlines the primary strategies employed to overcome these challenges in developing NO-releasing biomaterials via 3D printing, and explores future prospects in this rapidly evolving field.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
29 sep 2024
Accepted
06 jan 2025
First published
07 jan 2025

Biomater. Sci., 2025, Accepted Manuscript

Integrating 3D printing of biomaterials with nitric oxide release

H. V. de Almeida, M. P. Bomediano, D. M. Catori, E. H. C. da Silva and M. G. de Oliveira, Biomater. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D4BM01304B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements