Micromotors for antimicrobial resistance bacteria inactivation in water systems: opportunities and challenges

Abstract

The intensive use of antibiotics and the inadequate removal in water treatment plants have contributed to the phenomena of antimicrobial resistance. Bacteria colonies and biofilms present in water distribution systems and aquatic systems respond to the presence of antibiotics by the generation of resistance genes and other determinants transmitted through the environment. In this perspective, we identify the opportunities and challenges of self-propelled micromotors in the fight against antimicrobial resistance by the elimination of antibiotics and bacteria in water. Recent progress is contextualized in the current scenario in terms of bacteria and antibiotics found in real settings and current removal technologies. As illustrated in this perspective, the unique features of micromotors result in a high surface area to-mass ratio for enhanced degradation capabilities, for both antibiotic removal and bacteria biofilms inactivation, as compared with static current technologies. The autonomous movement of micromotors allows to reach more volumes of water and even hard-to-access areas, offering great opportunities to reach hard-to-access pipelines, not accessible by current approaches. Yet, as envisioned in this perspective, micromotors are far away from real applications, hampered mainly by the main challenges of the treatment of high-water volumes. We also advocate scientists to include in the proof-of-concept studies real water and the evaluation of a major number of antibiotics and bacteria commonly found in real settings, as will be described in this perspective. Micromotors hold considerable promise as a holistic approach to fight antimicrobial resistance, but cross-discipline collaborations are a must to translate the recent progress into real practical applications.

Article information

Article type
Perspective
Submitted
14 sep 2024
Accepted
18 dec 2024
First published
30 dec 2024

Environ. Sci.: Nano, 2025, Accepted Manuscript

Micromotors for antimicrobial resistance bacteria inactivation in water systems: opportunities and challenges

C. Cuntín Abal, A. Escarpa and B. Jurado Sánchez, Environ. Sci.: Nano, 2025, Accepted Manuscript , DOI: 10.1039/D4EN00863D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements