Recent advances in organocatalytic asymmetric multicomponent reactions
Abstract
Multicomponent reactions enable the simultaneous formation of multiple chemical bonds in a single synthetic operation, efficiently combining three or more reactants to access structurally complex molecules. The integration of chiral catalysts into such processes establishes a well-defined asymmetric environment, facilitating precise stereochemical control and delivering enantioenriched products containing stereogenic elements. In recent years, environmentally benign organocatalytic strategies have emerged as a powerful platform for asymmetric multicomponent reactions, demonstrating remarkable versatility in constructing diverse molecular architectures with high enantioselectivity. This review systematically categorizes recent advances in this field based on organocatalyst types, with a focus on their roles in distinct reaction mechanisms, key intermediates, and substrate activation modes. Representative transformations are discussed to illustrate design principles and challenges in achieving stereocontrol within multicomponent systems.
- This article is part of the themed collections: 2025 Organic Chemistry Frontiers HOT articles, 2025 Organic Chemistry Frontiers Review-type Articles and Organic Chemistry Frontiers 10th Anniversary Collection