Boronic acid-mediated mucin/surface interactions of zwitterionic polymer brushes

Abstract

Mucus is a substance that acts as a protective barrier, shielding tissues from infections caused by viruses and bacteria. Recent studies highlight the advantages of transmucosal drug delivery compared to traditional delivery methods. However, external particles in mucus struggle to penetrate its deeper layers and are often eliminated by mucus clearance mechanisms, hindering effective drug delivery. To gain a deeper understanding of how material surfaces interact with mucus, we grafted brushes of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) onto silica surfaces, followed by the straightforward installation of a terminal boronic acid moiety (3-phenylboronic acid, APBA). The modification process was carried out following a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP), a method known for its effectiveness in producing well-defined grafted polymers. After conjugation of APBA, we studied the effects of surface chemistry on properties such as pH-sensitivity and mucin adsorption. The surfaces modified with the zwitterionic polymer showed no mucin interaction regardless of system pH. However, all the surfaces containing the boronic acid showed boronic acid–sialic acid interactions, particularly at lower pH values. The insights gained from this study will enhance our understanding of the interactions between the zwitterionic PMPC and the boronic acid APBA with mucins, laying the groundwork for future chemical modifications of particle surfaces aimed at modulating their transport through mucus.

Graphical abstract: Boronic acid-mediated mucin/surface interactions of zwitterionic polymer brushes

Supplementary files

Article information

Article type
Paper
Submitted
19 dec 2024
Accepted
20 mar 2025
First published
02 apr 2025

Soft Matter, 2025, Advance Article

Boronic acid-mediated mucin/surface interactions of zwitterionic polymer brushes

K. E. Cureno Hernandez, J. Lee, S. Kim, Z. Cartwright and M. Herrera-Alonso, Soft Matter, 2025, Advance Article , DOI: 10.1039/D4SM01502A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements