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We demonstrate a novel concept that addresses the pressing issue of Rare Earth Element (REE) 
extraction from waste coal ashes through multi-task machine learning. This approach allows a 
single machine learning model to simultaneously learn from test data measured for multiple 
REEs in coal ash samples. As a result, the model training process becomes significantly more 
efficient, even when working with a limited-sized REE dataset.

This novel multi-task machine learning framework is designed to predict REE concentrations in 
coal ashes efficiently and affordably. This concept sets itself apart from existing research by 
being the first to enable precise predictions of REE concentrations solely from simple X-ray 
fluorescence (XRF) measurements, eliminating the need for costly and advanced material 
characterizations.

Importantly, our innovation not only revolutionizes high-throughput screening for REE-bearing 
coal ashes but also has broader implications for the field of materials science. It effectively 
addresses the common challenge of dealing with sparse material datasets with multiple 
interrelated properties, making it a versatile tool for researchers in this domain. Our work thus 
contributes an additional layer of insight to the field of machine-learning-based materials 
science by presenting an efficient solution to enhance modeling capabilities when working with 
limited material datasets.
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23 Abstract: The increasing demand for rare earth elements (REEs) makes them a scarce strategic resource 
24 for technical developments. In that regard, harvesting REEs from coal ashes—a waste byproduct from 
25 coal power plants—offers an alternative solution to conventional ore-based extraction. However, this 
26 approach is bottlenecked by our ability to screen coal ashes bearing large concentrations of REEs from 
27 feedstocks—since measuring the REE content in ashes is a time-consuming and costly task requiring 
28 advanced analytical tools. Here, we propose a machine learning approach to predict the REE contents 
29 based on the bulk composition of coal ashes (which is easily measurable under the current testing 
30 protocol). We introduce a multi-task neural network that simultaneously predicts the contents of 
31 different REEs. Compared to the single-task model, this model exhibits notably improved accuracy and 
32 reduced sensitivity to noise. Further model analyses reveal key data patterns for screening coal ashes 
33 with high REE concentrations. Additionally, we showcase the utilization of transfer learning to improve 
34 the adaptability of our model to coal ashes from a distinct source.

35 Teaser: With machine learning, high-throughput screening of REE-bearing coal ashes can be fulfilled 
36 based on a simple measurement. 
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40

41 1. Introduction

42 Rare earth elements (REEs) are a collective term for 17 elements that are commonly found in a variety 

43 of minerals, but typically in low concentrations. The members of REEs include 15 elements of the 

44 lanthanoid series (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), yttrium (Y), and scandium 

45 (Sc). While they are not abundantly present as compared to other elements that are commonly seen in 

46 ore deposits (1), these elements are playing an increasingly vital role in many high-tech industries that 

47 are closely related to clean energy (e.g. high-efficiency lighting, advanced fuel cell systems, wind energy, 

48 and electric mobility) (2–5), along with many other key fields (e.g., permanent magnet motors and 

49 generators, semiconductor chips, optics, catalysts, and defense technologies) (6–10). Given the rapidly 

50 growing demand for REEs from various sectors in recent decades, the supply chain of these materials is 

51 currently under heavy pressure, and this pressure is anticipated to continue increasing at a 5-9% annual 

52 growth rate globally in the next three decades (3). For instance, according to the U.S. Geological Survey, 

53 the country’s REE consumption was fully relied on imports in 2019 (3, 11); in the face of the short supply, 

54 the White House has reiterated the strategic importance of developing REE-recovering technologies in 

55 form of an executive order in early 2022 (12).

56 Given the low supply and high demand for REEs from ore deposits in the predictable future, many 

57 recent studies have paid special attention to identifying new sources of REEs. Among the various 

58 available sources, coal ash (the burning residue of coal from power plants) has been considered as an 

59 important potential source of REEs (13–18). In that regard, the Department of Energy (DOE) has allocated 

60 $140 million to recover REEs from coal ashes (19). The large global reserves of coal have attracted 

61 numerous research efforts to extract REEs from coal ashes, whose worldwide average REE concentrations 

62 are estimated at around 400 ppm (by mass) (18). In addition, recovering REEs from coal ashes has several 

63 potential advantages over the ore-based extraction (14), which include obtaining higher concentrations 

64 of heavy and critical REEs (18) (which are much lower in supply, higher in price, and projected for a 

65 greater demand), incurring negligible mining cost (since coal ash is a byproduct from the coal 

66 production), and precluding the need of handling radionuclide hazards form the ore deposits. In recent 

67 years, a large number of studies have been published to promote the concept of extracting REEs from 

68 coal ash, and the relevant topics broadly revolve around (i) geological distributions, depositional 

69 settings, and resource characteristics of coal deposits containing REEs (17, 18, 20, 21), (ii) novel process 
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70 techniques that separate REEs from coal ashes (22–24), and (iii) advanced methods detecting the 

71 concentration of REEs in coal ashes, such as inductively coupled plasma mass spectrometry (ICP-MS) 

72 (25, 26), inductively coupled plasma optical emission spectrometry (ICP-OES) (27), SHRIMP-RG ion 

73 microprobe (28), and laser-induced breakdown spectroscopy (LIBS) (29).

74 Historically, coal ashes have commonly been used as a cement replacement in concrete  (as 

75 supplementary cementitious material, SCM) (30–32). To minimize the negative impact of cement 

76 replacement on concrete performance (e.g., strength reduction), certain restrictions on the physical 

77 properties (e.g., particle fineness) and chemical composition (e.g., CaO and unburnt carbon contents) of 

78 the coal ashes are typically imposed during recycling (33). As a consequence, this approach results in a 

79 considerable volume of off-specification coal ashes among those that are currently deposited in 

80 impoundments or landfills (34). Legacy coal ashes that have already been deposited in impoundments 

81 may pose a risk of environmental damage to their surrounding groundwater system due to chemical 

82 leaching (35, 36). In this sense, recovering REEs from legacy ashes further offers a potential environmental 

83 benefit to mitigate the pollution issue associated with coal ashes deposition.

84 For both freshly produced coal ashes and those deposited in impoundments, a batch-wise screening 

85 of the coal ashes is necessary for an effective REE extraction. This is because the REE concentration from 

86 a given coal source is affected by the combustion protocols, processing techniques, as well as storage 

87 conditions (13, 14, 37). Thus, to enable an efficient REE extraction, it is of special significance to develop 

88 accurate, rapid, and high-throughput screening methodologies that can identify the coal ashes presenting 

89 the highest potential for REE extraction, that is, the ashes featuring the largest REE content. From the 

90 production’s perspective, almost all the characterization techniques (e.g., ICP-MS or ICP-OES) for 

91 determining the REE concentration in coal ash are time and cost-prohibitive for real-time ash screening. 

92 In contrast, X-ray fluorescence (XRF) is a fast, convenient, and economical measurement that has been 

93 widely adopted for testing the composition of coal ashes. However, XRF is only capable of measuring 

94 the bulk contents of major elements (i.e., elements showing elevated concentration) and does not offer 

95 the level of accuracy that is required to detect REEs. Nevertheless, previous studies have suggested the 

96 existence of a certain correlation between the total REE content and the bulk composition of coal ashes 

97 (28, 38, 39). For instance, REEs tend to concentrate more in the amorphous aluminosilicate phase in coal 

98 ashes.
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99 To enable accurate, rapid, and high-throughput coal ash screening for REE extraction, it is 

100 imperative to establish a robust mapping that bridges the easily-measurable bulk XRF measurement to 

101 the total REE content. However, existing physical and chemical models are presently unable to support 

102 such a compositional mapping. In that regard, data-driven machine learning analysis offers a promising 

103 pathway to accomplish this mapping without the need for explicit knowledge regarding the nature of 

104 the compositional mapping. A major strength of machine learning is that it can uncover complex, non-

105 additive, and nonlinear patterns embedded in the data, whereby the mapping function between variables 

106 can be revealed without the presence of explicit knowledge (40). In fact, over the decade, machine 

107 learning techniques have enabled many critical advances in materials property prediction, material 

108 design, advanced characterization, new functional material discovery, high-efficiency computational 

109 methods (41–49), as well as REEs-related topics (50, 51). In particular, a few recent studies have 

110 demonstrated the feasibility of using machine learning analysis to rapidly screen fly ashes (52, 53), or 

111 REE-bear coal material (53). However, to the best of our knowledge, no machine learning approach has 

112 thus far been attempted for screening REE-bearing coal ashes.

113 In this paper, we explore the potential of using machine learning to predict the total REE content in 

114 coal ashes based on the sole knowledge of the easily-measurable bulk oxide contents. This kind of input 

115 information is readily available under the prevailing coal ash testing protocols, via XRF measurement. 

116 As such, this approach enables a fast, ready-to-use screening technique for coal ashes that can be applied 

117 at large-scale production/reclamation job sites, where batch-wise feasibility of REE extraction can be 

118 determined in real-time, before conducting subsequent characterization at a finer level. It is worth noting 

119 here that our data-driven approach aims to investigate the feasibility of inferring the REE content based 

120 on the presence of the major oxides. While the modeling work takes no assumption that the REEs are 

121 directly related to the presence of bulk oxides, they may present as two correlated consequences under 

122 the same hidden physics law (e.g., thermal history). The machine learning model is trained upon a coal 

123 ash REE dataset comprising 99 representative samples. To address the limited size of the dataset, a series 

124 of data processing techniques are implemented to boost the accuracy of our machine learning models. 

125 We adopt neural networks using as input the bulk composition of merely six oxides to predict as output 

126 the total REE content in coal ashes. 

127 As the key advancement of this study, we introduce multi-task neural network modeling to enable 

128 a simultaneous prediction of the total and the individual REE contents. While multi-task machine 

129 learning approaches have been proposed for years (54, 55), their potential for addressing material-related 
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130 problems has not been sufficiently explored. Herein, the use of a multi-task model is well-justified 

131 because certain REEs are known to co-occur in coal deposits (56). In addition to the reduced time and 

132 computational demands for training multiple single-task models, multi-task modeling provides 

133 significant merits, such as implicit data augmentation and regularization, that can enhance the accuracy 

134 of model predictions (57). The results indicate that, as compared to all the conventional single-task 

135 models considered in this study, our multi-task model achieves higher accuracy and lower sensitivity to 

136 input noise in predicting the total REE content. Further, our model analyses highlight the opportunity of 

137 extracting REEs from reclaimed coal ashes, which, on average, tend to exhibit higher REE concentrations 

138 than raw coal ashes.

139 2. Experimental procedures

140 2.1 The coal ash dataset

141 The coal ash dataset adopted herein was sourced by the Electric Power Research Institute (EPRI), based 

142 on the experimental work done at National Energy Technology Laboratory (NETL). This dataset comprises 

143 99 entries, which include 18 coal samples and 81 coal ash samples. These samples were originally 

144 investigated to represent the systematic variations in coal ash compositions across the United States of 

145 America, which cover four coal ranks (i.e., bituminous, sub-bituminous, lignite, and blend), three types of 

146 coal boilers (i.e., pulverized, cyclone, integrated coal gasification combined cycle), ten collection origins 

147 (e.g., fly ash, bottom ash, pond ash, and landfill ash), and nine different coal basins. All the samples were 

148 measured following the procedure described in DOE/NETL-2016/1794 report (58). In detail, for either the 

149 raw coal or coal ash samples, the moisture and organic compounds in the sample were first removed by 

150 calcination in a high-temperature furnace at 1100°C. After that, the burning residue was ground into fine 

151 powders that are less than 74 µm (200 mesh) in diameter, fused with lithium metaborate, and further fully 

152 dissolved in concentrated acid solutions. The concentration of each element in the sample was then 

153 measured using inductively coupled plasma mass spectrometry (ICP-MS), and the results were reported in 

154 terms of the mass fraction of the individual elements in the raw sample (i.e., either coal or coal ash). For 

155 each sample, the raw dataset reports the mass contents for a total of 51 major and trace elements, the latter 

156 of which include all the 16 REEs except for promethium (Pm). To filter out the effect of the molar mass of 

157 each element from the raw ICP data, we convert all the mass contents of the 51 elements measured from 

158 the calcinated samples into the molar contents of their corresponding oxides. The molar contents of those 

159 oxides are then renormalized based on the total oxide quantity in each sample.
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160 Since the goal of this study is to predict the content of REEs in ashes based on that of the non-REEs, 

161 the 51 oxides are divided into two groups (i.e., 35 non-REE and 16 REE oxides). With the specific aim of 

162 rapid ash screening in mind, we limit the input information for our machine learning model (hereafter, 

163 input feature) from the 35 non-REE oxides down to 10 major oxides. These oxides comprise more than 98% 

164 of the oxides in each sample (see Table 1), and, importantly, they are typically measurable in coal ash XRF 

165 characterization (31, 59). Although there is a difference between the ICP and XRF tests in that sulfur is not 

166 reported in the former, it is reasonable to omit SO3 as it has a low concentration in coal ashes. Hence, the 

167 model inputs adopted herein can be easily obtained from the XRF measurement—whereby the screening 

168 of high REE-bearing coal ashes can be greatly facilitated in industrial applications. A subset of 10 samples 

169 in the curated dataset is provided in in Supplementary Materials (Table S1). 

170 2.2 Techniques for addressing the sparse nature of the coal ash dataset

171 To address the sparsity of the coal ash dataset, we first implement a recursive feature elimination (RFE) 

172 feature analysis to scrutinize the change in the accuracy of our neural network model when progressively 

173 removing the least influential input features (60). The core idea of RFE is that, in each iteration of the feature 

174 removal, the change in model accuracy associated with the removal of each individual left in the feature 

175 pool is first evaluated, and then only the feature associated with the least influence on the model accuracy 

176 (i.e., the least informative feature) is dropped. Following such a step, the feature pool can be progressively 

177 reduced to only the most valuable features. This allows us to determine whether some of the ten input 

178 features in the coal ash dataset can be removed from consideration. To ensure a reliable RFE analysis, we 

179 evaluate the model accuracy based on 100 different extractions of the validation set samples in each iteration 

180 before removing a feature (while the model is only trained with the training set samples).

181 We also adopt the stratified sampling technique for splitting the coal ash dataset into training, 

182 validation, and test sets. For handling small datasets in machine learning analysis, a common yet easily 

183 overlooked problem is that a random split of the dataset cannot guarantee a good statistical representation 

184 of samples being extracted (41). This is because the samples in a small dataset tend to reside sparsely in 

185 the high-dimensional space, while a random extraction often only covers part of the space. As a result, 

186 the direction of model optimization (as guided by the training set samples) may be misled into a local 

187 optimum in the feature space, instead of toward the direction of a global optimum. To overcome this 

188 problem, the stratified sampling approach divides the raw dataset into several subsets based on the 

189 distribution of the output target (i.e., total REE content) and then extracts the training samples from each 
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190 of the subsets by proportion. Doing so helps to ensure a more robust evaluation of the true performance 

191 of the trained model (and, in turn, higher efficiency of the subsequent model training). Following our 

192 previous study (52), we divide the coal ash dataset into five portions and implement the stratified sample 

193 accordingly.

194 2.3 Neural networks modeling

195 We adopt artificial neural networks for predicting the output target (i.e., the total REE content) based 

196 on the input features (i.e., the contents of common oxides that can be easily measured by XRF). Here, we 

197 specifically adopt neural networks as a regression model because of their good flexibility in handling 

198 different types of datasets and interpolating complex relationships between the input features and output 

199 target (61). This approach has been previously adopted for studying many glass-based materials (41, 43, 

200 44, 48), including coal ashes (62, 63). Herein, the modeling process follows one of our previous studies 

201 that also used neural networks to analyze the chemical reactivity of coal ashes (52), wherein the basics of 

202 neural networks were thoroughly reviewed. The following contents focus on the core concepts of neural 

203 networks and the modeling details exclusive to the investigation of REE prediction. The modeling work, 

204 along with the analyses, in this study is conducted in Spyder IDE (version 5.4.3) with Python (version 

205 3.10.10), and the specific program libraries are further detailed in the text. All the artificial neural 

206 networks presented herein are implemented using the PyTorch deep learning library (version 2.0.0) (64). 

207 The other machine learning models investigated involved in this study are built using the scikit-learn 

208 (version 1.3.0) and XGBoost (version 1.7.6) libraries, as further detailed in Sec. 3.2 (40, 65). The core code of 

209 the modeling work is available on GitHub (see Sec. S5).

210 Figure 2a depicts the architecture of one of our neural network models (in this case, a single-task 

211 model with only one output). Within this architecture, each artificial neuron is a computational unit that 

212 handles a basic learning task, while the whole ensemble of these computational units is capable of 

213 mapping the complex relationship from the input to the output. Considering the limited size of the REE 

214 dataset while ensuring sufficient learning ability of the model, we adopt a relatively simple network 

215 structure of two layers of artificial neurons (which are known as hidden layers) for computing the 

216 relationship between input features (i.e., XRF compositions) and the output target (i.e., total REE content). 

217 An illustration of our selection of the two-layer model is provided in Sec. S2.

218  In detail, the artificial neurons in the first hidden layer are designed to extract low-level features 

219 directly from the inputs of the XRF composition, while those in the second layer are responsible for 
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220 further synthesizing the low-level features to obtain a final prediction (of the REE content in the coal ash). 

221 After each of the two hidden layers, we further add two functional layers, namely, batch normalization and 

222 nonlinear activation. The batch-normalization layer improves our model’s learning efficiency by avoiding 

223 any significant elongation of the loss landscape along a given direction (note that we use a batch of ten 

224 samples in each iteration for the model training) (66). The activation layer—here, Rectified Linear Unit 

225 (ReLU)—enables the model to learn nonlinear relationships for mapping the inputs to the output. In 

226 addition, we adopt the Adaptive Moment Estimation (Adam) algorithm to optimize the artificial neurons 

227 throughout model training. To ensure sufficient model training, we further fix the training epoch number 

228 to a relatively large value of 500 (wherein each epoch corresponds to one iteration of using all the samples 

229 for training the model). This number of epochs is found to be large enough to ensure a convergence of the 

230 loss function (herein, mean squared error, MSE).

231 In detail, the entire modeling work is divided into two phases, namely, model training and testing. 

232 The training phase consists in optimizing the parameters of the neural network model to improve its 

233 prediction accuracy on a subset of samples in the coal ash dataset (i.e., training set), while the testing 

234 phase is used to evaluate the actual performance of the trained model on the other subset of samples that 

235 are kept hidden to the model during the training phase (i.e., test set). Herein, we allocate 80% of the 

236 samples to the training set (wherein 20% of these samples are used as the validation set) and the 

237 remaining 20% to the test set. We primarily use the coefficient of determination (R2) to evaluate the model’s 

238 accuracy and further consider MAPE.

239 In the model training phase, we compare the model performance under the choices of three 

240 hyperparameters, namely, (i) number of artificial neurons, (ii) learning rate, which controls the rate for 

241 updating the parameters of the artificial neurons in each training iteration, and (iii) weight decay, which 

242 adjusts the level of model fitting based on L2 regularization. The hyperparameter selection is a critical step 

243 to determine the optimal complexity of the neural network model, so that it is neither too complex for 

244 the present coal ash dataset (to mitigate the risk of overfitting for such a small dataset), nor too simple to 

245 capture the true mapping function involved with the REE prediction (to avoid underfitting). Note that 

246 those hyperparameters need to be predetermined before the training of the machine learning model and, 

247 thereafter, are kept unchanged during model training and testing. For technical details about those 

248 hyperparameters, the reader is invited to refer to the webpage of the PyTorch library and other sources 

249 such as Ref. (67).
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250 We carry out the hyperparameter selection based on a grid search, by systematically varying the 

251 three hyperparameters within their respective reasonable ranges. The number of artificial neurons is 

252 varied from 2 to 32 (with an incremental factor of 2) in each layer; learning rate is varied from 10-5 to 100 

253 (with an incremental factor of 100.33); and weight decay is varied from 10-6 to 10-1 (with an incremental factor 

254 of 100.33). Following common practices in training machine learning models (43, 68), we split a small 

255 portion (20%) from the training set to validate the model performance based on the selected 

256 hyperparameters. Based on the model accuracy observed from the validation samples, we determine the 

257 optimal hyperparameters as (i) 20 and 6 neurons in the two hidden layers, (2) 10-3.33 for learning rate, and 

258 10-2 for the weight decay. Based on additional model comparisons, further increasing the model complexity, 

259 such as using more hidden layers, artificial neurons, or additional functional layers, does not result in 

260 notable improvements in the model performance. As a demonstration, the variation of model accuracy with 

261 different hidden layers is shown in Supplementary Materials (Sec. S2). 

262 Once the hyperparameters are optimized and fixed, we move on to the testing phase to evaluate the 

263 actual prediction accuracy of the fully-trained model. To this end, we first retrain the neural network 

264 model using all the 80% training samples (including the validation samples) with the optimal 

265 hyperparameters—which further boosts the model accuracy. We then evaluate the prediction accuracy 

266 of the retrained model by using the testing samples that are never exposed to model training. To avoid 

267 the randomness associated with neural networks, the evaluation is conducted based on 30 repetitions of 

268 the model training.  

269 2.4 Multi-task neural networks  

270 Since, in the present case, several outputs are simultaneously available (i.e., the content of each type 

271 of REE) and these outputs exhibit some level of correlation, we then investigate whether using a multi-

272 task neural network model could enhance the accuracy of the prediction of total REE content—as 

273 compared to a traditional single-task neural network that only predicts one output at a time. Multi-task, 

274 or multi-output, learning is an emerging approach in the field of machine learning (69, 55, 54), which has 

275 been drawing increasing attention in recent years (70, 71). The basic idea of this approach is to use a single 

276 machine learning model to simultaneously predict multiple targets that share the same input features. 

277 By ingesting the entire dataset, the multi-task model can transfer the feature mapping learned from one 

278 target to the others. Such a synergic approach has been recently demonstrated to be highly effective in 

279 studying polymers, wherein the different material properties are also highly correlated (72).
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280 For the present coal ash dataset, the rationale for applying multi-output learning lies in the facts that 

281 (i) the total REE content is the sum of the 16 individual ones and (ii) due to the presence of REE-bearing 

282 phases in coal ashes, a higher content of a single REE tends to suggest high contents of other REEs (and 

283 the total REE content thereof) (56). Figure 2b illustrates the architecture of the multi-task neural network 

284 model that is adopted in this study. To allow a fair comparison, this multi-task model is designed to have 

285 the same structure as the single-task model (Fig. 2a), with the only difference being the size of the output 

286 layer. Herein the output layer consists of a total of 17 targets, which include the total REE content and 

287 the individual contents of the 16 REEs (in their oxide forms). During the modeling process, the artificial 

288 neurons in this architecture are trained to attain the highest average accuracy over all 17 targets. To 

289 bolster the prediction of the total REE content, we further optimize the multi-task model by adjusting the 

290 weights associated with each target in the cost function, wherein we use the mean value of each target as 

291 weight. 

292 2.5 Evaluation of noise sensitivity of the single and multi-task neural networks

293 After investigating the model accuracy, we further compare the influence of input noise on the single 

294 and multi-task neural networks. This comparison is carried out on the entire dataset and for each of the 30 

295 model repetitions. Herein, we add two levels of Gaussian noise to each input feature. Based on the typical 

296 uncertainty of the XRF measurement (73, 74), the standard deviation of the individual input is set to 2% 

297 and 4% of the original value, respectively. The added noise is intended to simulate the uncertainty of the 

298 XRF measurement for the major elements in the high-throughput screening of coal ashes. For both the 

299 optimized single and multi-task neural network models, we record the change in the model prediction for 

300 the total REE content when subjected to the noisy inputs. This allows us to investigate the distribution of 

301 the variation of the model predictions between those two models. To facilitate the comparison of the two 

302 models, the resultant distributions are further fitted with normal distributions (see Fig. 3).

303 2.6 Interpretation of the trained machine learning model

304 To interpret the patterns that are learned by the optimized multi-task model, we implement two 

305 independent model analyses, namely, a SHapley Additive exPlanations (SHAP) analysis (75) and a feature 

306 effect analysis. The SHAP analysis evaluates the trained model based on the Shapley value (this is, the 

307 marginal contribution of each input feature to the output target) (52, 76). In particular, a major advantage 

308 of the SHAP analysis is that this approach considers the global influence of multiple input features as a 
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309 whole. As such, the SHAP analysis helps to capture the features associated with a significant joint impact, 

310 while those features may appear weakly influential when being evaluated individually.

311 In comparison, the feature effect analysis focuses on quantifying the change of the model prediction 

312 upon the variation of single input features (i.e., only one feature is jittered each time) (77). To perform the 

313 feature effect analysis, we first identify a reference composition based on the median value of each input 

314 feature, which serves as a representative baseline for the different samples in the coal ash dataset. Starting 

315 with this reference composition, we investigate the effect of each XRF content input on the total REE content. 

316 To avoid interrogating the response of the model to unrealistic coal ash compositions, we only jitter the 

317 feature of interest within its 20th-to-80th percentile range in the coal ash dataset (see Table 1) and maintain 

318 all the other features fixed. We then track the evolution of the output(s) predicted as a function of the value 

319 of the varying feature. After looping through all the input features, we compare their effects collectively in 

320 a single plot.

321 3. Results

322 3.1 Features selection

323 To investigate the REE concentration in coal ashes, we curate a dataset comprising representative 

324 99 coal ash samples, as detailed in Sec. 2.1. We select 10 major oxides to represent the bulk composition 

325 of each sample (i.e., model inputs), while the target of the model prediction is the molar contents of 16 

326 REEs (i.e., model outputs; note that Pm is not considered as this element is practically non-existent in 

327 nature). We further use their sum as the ultimate prediction target (i.e., total REE content). The statistics of 

328 this dataset are summarized in Table 1, and the correlation between the 16 individual REEs and the total 

329 REE content is displayed in Fig. 1a. Here, we observe some strong correlations between the contents of 

330 different REEs, which agree with the general idea that different types of REEs tend to be found within 

331 same chemical phases in coal ashes (56). More importantly, several experimental studies observed certain 

332 correlations between the presence of REEs in coal ashes and the bulk composition of some major elements 

333 (29, 39, 40). These observations provide a ground for mapping the bulk chemical composition of coal 

334 ashes to REE contents with machine learning, which is known to excel in capturing implicit data patterns 

335 without explicit knowledge (41).

336
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337 Table 1: Statistical distribution of the coal ash samples considered by the present machine learning 
338 analysis. Note that the content of each oxide presented here is normalized based on those of all oxides 
339 measured using inductively coupled plasma mass spectrometry (ICP-MS, see text).

Oxide fraction [molar%]
Statistics

SiO2 Al2O3 CaO Fe2O3 MgO Na2O K2O TiO2 P2O5 MnO Sum

Total REE 

[ppm, by molar]

0 33.3 8.0 1.2 1.5 0.6 0.2 0.1 0.5 0.0 0.0 98.3 80

20 44.4 10.9 2.1 2.6 2.1 0.3 0.4 0.9 0.1 0.0 99.5 117

50 63.0 13.7 6.0 4.9 2.7 0.7 1.2 1.1 0.2 0.0 99.6 157

80 67.9 18.5 27.2 8.2 7.4 1.3 1.7 1.3 0.4 0.0 99.8 246Pe
rc

en
til

e

100 79.3 21.3 37.7 12.8 14.1 13.3 2.3 2.6 0.9 0.8 99.9 293

Mean 58.1 14.3 13.7 5.5 4.5 1.0 1.1 1.1 0.2 0.1 99.6 170

Standard deviation 11.6 3.7 12.5 3.0 3.0 1.4 0.6 0.3 0.2 0.1 0.2 60

340 A major challenge of the machine learning analysis conducted in this study arises from the fact that 

341 the curated coal ash dataset has a relatively high dimensionality of input features (i.e., 10 by default; see 

342 Table 1) as compared to its small number of datapoints (99 samples), thereby resulting in a very sparse 

343 dataset. This issue makes it difficult to train a machine learning model efficiently—typically refers to as the 

344 “curse of dimensionality” (78). In that regard, the main concern arises from the fact that some of the ten 

345 input features may exhibit a weak correlation to the RRE content, thereby causing their contributions to the 

346 model prediction to be overwhelmed by noise (e.g., due to the systematic or random errors of the 

347 measurement on the oxide contents). As such, some of the weak features may actually impede the learning 

348 process of the machine learning model and, consequently, result in lower prediction accuracy and/or a 

349 higher instability for the trained neural network model.

350 To address the data sparsity challenge, we first focus on reducing the dimensionality of the input 

351 features (i.e., the major oxides summarized in Table 1). To this end, we implement a recursive feature 

352 elimination (RFE) analysis that aims at determining the optimal combination of the input features by 

353 progressively removing the least influential ones to the model prediction (see Sec. 2.2) (60). This analysis 

354 allows us to analyze the contribution of each feature to the prediction accuracy of our neural network model 

355 and gradually exclude the non-informative oxides from the consideration. To carry out this analysis, we 

356 use a two-layer neural network as the base model, which takes as input the concentrations of the major 

357 oxides and predicts as an output the total REE content. This base model is described in Sec. 2.3. The features 

358 are recursively selected based on the model accuracy on the validation samples, with 100 random 

359 repetitions. Note that, different from some other unsupervised approaches that simply aim to reduce the 

360 feature dimensionality such as principal component analysis (PCA), RFE is a supervised approach since 
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361 this approach specifically selects the features that are the most informative to predict the output target 

362 (herein, the REE content). 

363 The results of the RFE analysis are given in Figs. 1b and 1c. To ease the discussion, the prediction error 

364 displayed in Fig. 1b is normalized based on the mean absolute percentage error (MAPE) value achieved 

365 when all the ten features are used for training the model (i.e., when the model is trained with the maximum 

366 amount of information). With the features being iteratively added to the model, we initially observe a 

367 decline in the prediction error (and, hence, an improvement of the model accuracy) up to using six features. 

368 However, the error then flattens out when more than six features are used in the model. Eventually, we 

369 observe a slight increase in the prediction error. This suggests that these additional features do not provide 

370 meaningful information for improving the model accuracy and, rather, unnecessarily increase the risk of 

371 overfitting by increasing the model complexity and level of noise that the model is exposed to. By repeating 

372 the RFE analysis 100 times, we then determine the probability for each input feature (i.e., each oxide) to be 

373 selected as a function of the number of features being considered, that is, as a function of the RFE iteration 

374 step (see Fig. 1c). We observe that the oxides that are selected early on (i.e., even when the number of 

375 considered inputs is small) tend to continue to be selected after adding more features. This suggests that 

376 this feature selection analysis yields a stable selection of the oxides that are the most informative to the 

377 model. Based on Fig. 1c, the molar contents of Al2O3, Fe2O3, CaO, P2O5, TiO2, and MgO are determined to 

378 be more influential than the remaining four ones to infer the presence (or absence) of the REE-bearing 

379 phases. However, the results in Fig. 1c should not be interpreted in a way such that the unselected features 

380 are insignificant—rather, they are simply not contributing to further boost the prediction accuracy (e.g., due 

381 to a high correlation with the selected features). 

382 Therefore, these six oxides are selected as input features for training the machine learning models 

383 presented in this study. For additional insight, the correlation between the contents of the six oxides and 

384 individual REEs is detailed in Supplementary Materials (Sec. S3). It is apparent that the presence of REEs 

385 exhibits a degree of alignment with Al2O3, although the correlations with the other oxides are notably non-

386 linear. Additionally, the correlation to an REE can vary across the oxides. These factors are expected to 

387 introduce certain complexities for predicting REE content based on oxide content.
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388

389 Figure 1: Feature selection for the coal ash dataset. (A) Correlation heat map for the molar contents of 
390 the REEs (based on their corresponding oxide forms). Results of the recursive feature elimination (RFE) 
391 analysis: (B) variation of the model prediction error as a function of the number of considered input 
392 features, and (C) probability for each input feature (i.e., major oxides in coal ashes) to be selected at 
393 each step of the RFE analysis. For (B), the prediction error is normalized based on the mean absolute 
394 percentage error (MAPE) when all ten features are used, and the shadow indicates the standard 
395 deviation from 100 repetitions (see Sec. 2.2). For (C), the cross marks indicate the optimal set of the six 
396 features to be used as model inputs.

397 3.2 Single-task vs. multi-task neural network models

398 Using the six oxide features selected from the RFE analysis, we then evaluate the accuracy of our 

399 single-task neural network model (see Fig. 2a) in predicting the total REE content. This neural network 

400 model is further detailed in Sec. 2.3. As a benchmark, we also investigate the prediction accuracy obtained 

401 by a multivariate linear regression model, which is arguably the most basic machine learning model (42). 

402 The training and test accuracy of the two models are compared in Table 2. Note that, other single-task 

403 machine learning models (i.e., random forest, SVM, XGboost) have also been compared during our 

404 experiential work; however, those models did not exhibit superior performance than the single-task neural 

405 network model discussed herein. As a reference, a comparison of the different single-task models is 

406 available in Supplementary Materials (Sec. S4).

407 To ensure a fair comparison, identical train-test splits are used for the neural network and multivariate 

408 linear regression models—see Figs. 2c and 2d for a visual comparison of the two models. From Table 2, we 

409 first observe that stratification—a sampling technique implemented herein to address the data sparsity (see 

410 Sec. 2.2)—offers an evident improvement in the accuracy of the single-task neural network, as well as a 

411 reduction in the associated standard deviation. As expected, stratification meaningfully improves the 

412 robustness of the train-test split for this small coal ash dataset, in line with our previous results (52, 79). 
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413 Importantly, we find that, with the test set MAPE being lower than 10%, the single-task neural network 

414 model outperforms the linear model by a considerable margin, both in terms of model accuracy and 

415 stability (i.e., low standard deviation). Altogether, it is remarkable that the model achieves this accuracy 

416 based on the sole knowledge of the contents of the six major oxides. This confirms the potential of using the 

417 knowledge of the bulk oxide contents (e.g., via XRF) to conduct the rapid and high-throughput screening 

418 of REE content in coal ashes.

419 Table 2: Comparison of the accuracy in predicting the total REE content for the two machine learning 
420 models considered herein. The results are reported based on the coefficient of determination, R2, and 
421 mean absolute percentage error, MAPE; and the mean and standard deviation are obtained from 30 
422 repetitions of the model training.

Multivariate linear regression Single-task neural net

Stratification No Yes No Yes

R2 0.880 ± 0.014 0.876 ± 0.010 0.904 ± 0.041 0.940 ± 0.019
Training set

MAPE [%] 9.6 ± 0.1 9.8 ± 0.5 8.5 ± 1.7 6.7 ± 1.1

R2 0.804 ± 0.087 0.847 ± 0.060 0.819 ± 0.119 0.875 ± 0.037
Test set

MAPE [%] 11.1 ± 2.1 10.2 ± 2.0 10.8 ± 3.6 9.5 ± 1.3

423 Given the high correlations between the individual REEs (Fig. 1a), we further explore the potential 

424 of using a multiple-task neural network (see. Fig. 2b) for simultaneously predicting the total REE content 

425 and the contents of the 16 individual REEs (i.e., with a total of 17 distinct outputs). The rationale and 

426 additional details about this multi-task model are provided in Sec. 2.4. To ensure a fair comparison 

427 between the single- and multi-task neural networks, we maintain the same network structure (except for 

428 the output layer) that is used for the optimized single-task neural network. For multi-task neural 

429 networks, a key parameter is the weights that are attributed to the prediction loss terms associated with 

430 each output target, which carry the attention that a multi-task model pays to optimize the different 

431 targets. By default, all these weights are equal to each other. However, it is often preferable to assign 

432 larger weights to the most important output targets (such that they can be given more attention during 

433 the model training) (55, 80). In detail, the optimal weight assignment is contingent on the specific nature 

434 of the dataset and the goal of the machine learning analysis (70, 71). 

435 Here, we compare two multi-task neural network models. The first one is trained using equal 

436 weights. For the second one, we weigh the 17 targets based on their respective mean contents in the coal 

437 ash dataset, as a way to place more emphasis on the REEs that are the most predominant in the ashes 

438 and, a fortiori, on the total REE content. Figure 2e summarizes the prediction accuracy on all 17 targets, 
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439 as achieved by the two multi-task models, based on the same train-test splits as those used for the single-

440 task neural network. As a key result, we find that the two multi-task models both exhibit a notably 

441 enhanced accuracy as compared to that achieved by the single-task model (see the accuracy comparison 

442 between all the models in Figs. 2f and 2g). In detail, we then note that the model with equal weights tends 

443 to accurately predict all the targets, with an average MAPE of approximately 10%. In particular, it 

444 achieves a higher test accuracy and a lower standard deviation in predicting the total REE content than 

445 the single-task models (see Table 2), where the average MAPE decreases from 9.5% to 9.0%. Remarkably, 

446 the prediction accuracy scores shown in Fig. 2e are achieved by a single model, whereas predicting these 

447 17 outputs would have required 17 distinct neural networks if using conventional single-task models. 

448 Importantly, even when using the same weight for all the input features, the multi-task approach 

449 outperforms the single-task approach in predicting the total REE content. This broadly highlights the 

450 advantages of the multi-task approach (57), as further discussed in Sec. 4.1. 

451 Next, as also seen in Fig. 2e, the weight-optimized multi-task model achieves even higher accuracy 

452 and smaller deviation in predicting the total REE as compared with the equal-weight model. However, 

453 this comes at the expense of a lower accuracy in predicting a few individual REEs, such as Ho, Hg, Tb, 

454 and Tm. This is not surprising since these REEs show the lowest average contents in the ashes considered 

455 herein (see Table 1) and, hence, have the lowest contribution to the loss function used in the weight-

456 optimized model (which is accessible on GitHub as a reference, see Sec. S5). It should also be noted that, 

457 due to their lower concentration, these oxides contents are more challenging to quantify using ICP—their 

458 measurements are expected to be noisier than the oxides that exhibit higher concentrations. Nevertheless, 

459 we observe that the standard deviations associated with each target are consistently smaller when 

460 compared with the equal-weight model, which suggests that the weight-optimized model is intrinsically 

461 more stable. Overall, these results suggest that tuning the weight associated with each input feature can 

462 effectively increase the robustness of the multi-task model.
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463  

464 Figure 2: Comparison of the prediction accuracy of the different models. Illustration of the 
465 architecture of (A) the single-task neural network, and (B) the multi-task neural network, wherein both 
466 models contain the same structure of two hidden layers, while the output layer of the multi-task model 
467 simultaneously predicts the contents of 16 individual REEs and the total REE content (see Sec. 2.4 for 
468 details). Predicted versus measured total REE content, as obtained by (C) the multivariate linear 
469 regression model, and (D) the single-task neural network model, wherein the y = x dashed line 
470 indicates the perfect agreement. (E) Comparison of the test accuracy between the two multi-task neural 
471 network models. Overall comparison of the test accuracy of the four major models in predicting the 
472 total REE content in coal ash, based on (F) coefficient of determination, R2, and (G) mean absolute 
473 percentage error, MAPE. For (E) to (G), the results are averaged over the 30 model repetitions of 
474 training.
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475 The results above suggest that, by leveraging the information from multiple prediction targets, the 
476 multi-task model exhibits not only higher accuracy but also less variation than the single-task model in 
477 predicting the total REE content. A follow-up investigation is carried out to assess the sensitivity of the 
478 multi-task model to the noise from the model input. This is pertinent to the high-throughput screening 
479 of coal ashes, as XRF measurements are usually subject to variations (e.g. relative standard deviations of 
480 1 to 5% for major elements in coal ashes) (73, 74). Here, we introduce 2% and 4% Gaussian noise into each 
481 of the model inputs (see details in Sec. 2.5). The variations of the total REE prediction are shown in Fig. 
482 3. While the variations of the model prediction are normally distributed, the multi-task model yields 
483 notably higher peaks and narrower spreads of the prediction variations at both the noise levels. These 
484 results demonstrate that the multi-task model does exhibit improved resistance to the input noise. 
485 Further discussion about this improvement is provided in Sec. 4.1.

486

487 Figure 3: Comparison of sensitivity to input noise between single- and multi-task neural networks 
488 for predicting the total REE content under different levels of noise. Input noise levels are set at (A) 
489 2%, and (B) 4%. The curves represent the normal distributions that are fitted based on the prediction 
490 variation caused by jittering all the samples in each of the 30 model repetitions.

491 3.3 Model interpretation

492 Finally, we focus on interpreting the optimal model (i.e., the weight-optimized multi-task neural 

493 network), which allows us to better understand the nature of the relationship between the total REE 

494 content (i.e., output of the model) and the contents of the six selected major oxides (i.e., Al2O3, Fe2O3, CaO, 

495 P2O5, TiO2, and MgO). To this end, we conduct SHAP analysis (see details in Sec. 2.6), which is designed 

496 to interpret the latent data patterns learned by a “black box” machine learning model (75, 76). In brief, 

497 the SHAP analysis quantifies the marginal contribution of the individual input features to the prediction 

498 target (based on the actual samples in the dataset), so as to capture the importance of each input.

499 Figure 4a displays a summary of the SHAP analysis for each input oxide in predicting the total REE 

500 content (ranked in terms of descending influence from top to bottom). Here, a positive marginal 
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501 contribution corresponds to an increase in the total REE content, and vice versa. The horizontal 

502 dispersion associated with each input in Fig. 4a captures the range of the marginal contribution values, 

503 their vertical width reflects the distribution of each feature in the coal ash dataset, and their colors 

504 indicate the normalized value of each input feature (increasing from blue to red). Based on this summary 

505 plot, we further extract the relative importance of each oxide in predicting the total REE content, as shown 

506 in Fig. 4b. In detail, the importance of each feature here is calculated by summing the marginal 

507 contribution of each oxide (over all the samples) and then normalizing the absolute value of the results 

508 so that the most important feature has an importance of 1. Overall, we find that Al2O3 is the most 

509 important feature and exhibits a positive influence on the total REE content. In contrast, the SHAP 

510 analysis highlights that CaO shows a negative influence on the total REE content. Although the other 

511 four oxides all exhibit some positive influences, they are notably less influential than the first two oxides.

512 To further interpret our multi-task neural network, we track the one-dimensional effect of each of the 

513 input oxides on the predicted total REE content. To this end, one at a time, we jitter the value of each input 

514 feature within its 20th-to-80th percentile in the coal ash dataset while fixing the other features to their 

515 median values (see further details in Sec. 2.6). This allows us to evaluate how the variation of each feature 

516 alters the model prediction. Based on the 30 repetitions, the results of the feature effect analysis are 

517 collectively displayed in Fig. 4c.

518 Here, we first observe that Al2O3 shows a strong quasi-linear positive contribution to the total REE 

519 content. This observation echoes the correlation analyses (see Figs. 1a and S2a) and the SHAP analysis (see 

520 Fig. 4a). This linear mapping also partially explains why the linear regression model considered herein (see 

521 Fig. 2c) is capable of achieving a decent prediction accuracy. In agreement with the SHAP analysis, a 

522 consistent negative correlation is observed between CaO and the total REE contents. Interestingly, we 

523 observe the existence of a discrepancy between the SHAP and feature effect analyses in the case of Fe2O3, 

524 wherein SHAP suggests a positive influence, but its feature effect curve has a negative slope. This may arise 

525 from the fact that, in contrast to SHAP, the outcome of the present one-dimensional feature effect analysis 

526 depends on the choice of the reference ash composition and does not capture potential coupling effects 

527 between the input features—so that Fe2O3 may exhibit either a positive or negative influence based on the 

528 specific ash that is considered.
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529

530 Figure 4: Model interpretations. (A) SHAP summary plot showing the marginal contribution of the 
531 input features (i.e., contents of the six major oxides) to the output (i.e., total REE content) for each 
532 sample in the coal ash dataset. (B) Normalized importance of the individual oxides based on the SHAP 
533 analysis. (C) Feature effect analysis, wherein each curve represents the mean prediction of the model 
534 after varying each oxide within its 20th-to-80th percentile in the coal ash dataset, and the shadowed 
535 region corresponds to the standard deviation (based on 30 repetitions of the model training).

536 4. Discussion

537 4.1 Improvement of the model prediction associated with the multi-task learning

538 We first discuss the origin of the boost in model performance associated with the multi-task 

539 approach. As compared to a conventional single-task paradigm that requires training 17 individual 

540 single-task models, our multi-task approach allows us to predict the 17 REE targets within a single model, 

541 which significantly reduces the time and effort for the model training. The results presented in Sec. 3.2 

542 have important implications for both the effectiveness of the adopted dataset in training models and the 

543 improvement of model performance for high-throughput REE screening. Despite the limited size of the 

544 training data and the sole input of six oxides, our different models demonstrate comparably good testing 

545 accuracy, suggesting that the adopted dataset is sufficiently large for training decent models for high-

546 throughput REE screening. The multi-task modeling approach directly increases the number of data 

547 points utilized during model training, thereby alleviating the overall level of scarcity. This increase in 

548 training data further contributes to enhanced model accuracy and suppressed noise sensitivity of the 

549 multi-task model. This can be attributed to the unique advantage of multi-task models, wherein sharing 

550 of artificial neurons in the hidden layers enables refining the noise sensitivity of a prediction task with 

551 the other prediction tasks that are less noise sensitive. Consequently, the multi-task model effectively 

552 achieves more reliable and accurate predictions.
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553 Based on the correlation analysis (see Fig. 1a), we observe strong correlations among the contents of 

554 the individual REEs. This echoes the fact that different REE-bearing minerals are often embedded within 

555 the same glassy phase in coal ashes (56). This observation provides a theoretical basis for using a machine 

556 learning analysis to explore the prediction of REE contents—the individual REE contents lie within a 

557 well-defined low-dimensional manifold within the high-dimensional compositional space. (81). In 

558 comparison with knowledge-based approaches, machine learning models can exhibit superior 

559 performance in uncovering such low-dimensional folds and, therefore, can offer accurate predictions by 

560 only considering a small set of input features. This is generally a consequence of the fact that machine 

561 learning models excel at unveiling subtle patterns within datasets, that are otherwise invisible to humans. 

562 The above observation also indicates that the task of learning the mapping between the input primary 

563 oxide concentrations and the content of an individual REE can facilitate the task of predicting the content 

564 of another individual REE—which echoes the core concept of multi-task learning. In addition, we note 

565 that each REE comes with its noise, which can result in overfitting when a model is independently trained 

566 to predict the content of each REE. However, since the noise patterns associated with each REE are 

567 independent from each other, simultaneously predicting all the REE contents makes it possible for the 

568 multi-task model to filter out these individual noise contributions—since each REE output offers a 

569 baseline that presents the model from overfitting the noise associated with the other REEs.

570 Overall, the advantages of the multi-task approach can be summarized as follows (57): (i) implicit 

571 data augmentation: the multi-task model is trained with more samples, associated with diverse noise 

572 patterns; (ii) attention focusing: this approach helps the neural network to mitigate the influence 

573 associated with the limited size of the coal ash dataset and its high dimensionality of the input features; 

574 (iii) eavesdropping: some useful features for predicting the total REE content may be difficult to extract 

575 by the single-task model but easily uncovered from predicting the individual REE targets; (iv) 

576 regularization: the additional noise introduced by the 17 targets reduces the proclivity of overfitting for 

577 the neural network model, as some noise patterns are more detectable. These observations echo many 

578 material-related problems, wherein material properties often exhibit some partial level of correlation, but 

579 are associated with distinct noise (due to different measurements and test protocols, as well as 

580 randomness).

581 4.2 Correlation between bulk XRF oxides and the presence of REEs
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582 The model interrogations reveal that data patterns learned by our model echo related knowledge 

583 established from previous research, which supports that the characteristic patterns learned by our model 

584 are indicative of coal ashes bearing elevated REE contents for the potential application of high-

585 throughput screening. Recently, Chatterjee et al. also identified influential features to predict the total 

586 REE content in raw coals (53). Despite the differences in the target material (raw coal vs. coal ash here) 

587 and the selection of input features (here, we focus on the oxides that can be measured by XRF), we note 

588 that Al2O3 and Fe2O3 were also selected as being influential in that study. This suggests that those two 

589 oxides can indeed be influential in predicting the REE content in coal-related materials. Comparing those 

590 two oxides, Chatterjee et al. also observed that Al2O3 shows a larger influence than Fe2O3, which is in line 

591 with our findings from the SHAP analysis (see Fig. 4b).  

592 Regarding feature-property mapping, our model reveals insightful patterns regarding the nature of 

593 the correlation between bulk XRF oxides and REEs. Previous studies suggested the existence of three 

594 sources of REEs in coal, namely, pyroclastic minerals, diagenetic minerals, and organics (18). Based on 

595 the model interpretation in Sec. 3.3, we find that Al2O3 features a positive influence on the total REE 

596 content in coal ashes. This observation echoes the findings from several previous studies suggesting that 

597 the presence of REEs is related to that of aluminous phases in coal ash (13, 28, 38, 39), as well as in coal 

598 materials (53, 82). Similarly, Querol et al. found that REEs are only present in the glassy aluminosilicate 

599 areas of the coal ash samples (83). Our model also indicates a positive correlation with P2O5, which is 

600 consistent with previous studies reporting that elevated concentrations of REEs may be linked to 

601 phosphates in coal ashes (18, 24). In addition, the SHAP-based model interpretation also indicates a 

602 positive influence of Fe2O3 on the REE concentration. This is supported by previous observations 

603 showing that REEs tend to reside in Fe-rich aluminosilicates, Fe-rich multi-element eutectic, and Fe-

604 oxides (13–15, 84). Furthermore, we observe that CaO exhibits a strong negative correlation to the 

605 presence of REEs. This might be related to the origin of the coal, wherein lignite coals tend to contain 

606 more calcite than bituminous coals (85). In comparison, bituminous coal is a higher-rank coal with a 

607 higher carbon content, which is associated with the presence of REEs (86). Additionally, it is noteworthy 

608 that both CaO and Al2O3 are prominent components in coal ashes. A higher CaO content may indirectly 

609 imply a lower Al2O3 content, signifying a reduced presence of aluminous phases that typically contain 

610 REEs. The higher REE concentration in low-CaO coal ashes may take practical implications for recovering 

611 REEs from coal ashes—the remarkable concurrence between the low CaO and the high REE contents 

612 suggests that the CaO-poor legacy coal ashes (which have otherwise often been simply deposited in 

613 impoundments or landfills) may be a promising venue for REE extraction. This could facilitate the 
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614 recycling of out-of-specification coal ashes that cannot be used to replace cement, which, in turn, could 

615 induce a paradigm shift in waste-to-resource management and circular economy.

616 4.3 Potential for screening of high REE-bearing coal ashes

617 In evaluating the applicability of our proposed approach for high-throughput screening of REE-

618 bearing coal ashes, we discuss the robustness of our multi-task neural network models in distinguishing 

619 between ashes with low and high total REE contents. This distinction is crucial for the practical viability 

620 of the screening application. While different studies have varying definitions of high REE-bearing ashes, 

621 here we categorize the coal ash samples into two classes based on the median value of the total REE 

622 content of the dataset, set at 157 ppm (see Table 1). As a demonstration, the effectiveness of the two multi-

623 task models presented in Sec. 3.2 in distinguishing these classes is evaluated using the intersection over 

624 union (IoU) metric, and the results are summarized in Table 3.

625 In comparison, the IoU accuracy of the weight-optimized model surpasses that of its equal-weight 

626 counterpart on both training and test sets. In terms of identifying high-REE samples in the test set, the 

627 IoU increases from 64% to 70% when switching from the equal-weight model to the weight-optimized 

628 model. Notably, the weight-optimized model demonstrates a precision of 77.7% and a recall of 87.5%, 

629 which again underscores its capability in discriminating between low and high REE-bearing coal ashes. 

630 Given the significance of precision for the efficiency of REE recovery (e.g., cost and time) and that of recall 

631 for reliability capturing recovery opportunities, the relatively high precision and recall of this model hold 

632 promise for real-world applications in screening high-REE-bearing coal ashes.

633
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634 Table 3: Confusion matrix and intersection over union (IoU) classification accuracy for the multi-task 
635 neural-network-based classification. The threshold distinguishing low and high REE contents (i.e., 157 
636 ppm) is determined based on the dataset's median total REE content. 
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637 4.4 Model transferability to other coal ash samples

638 While our proposed multi-task modeling approach exhibits good generalizability, a crucial concern 

639 for its real-world application in screening REE in coal ashes lies in its transferability and scalability across 

640 diverse origins, encompassing geological location, coal type, and processing protocols. Ideally, with 

641 sufficient data from a new operation, retraining the model from scratch would be straightforward. 

642 However, this is often unattainable due to the prohibitive cost and time required for measuring REE 

643 content. In that regard, a promising solution is implementing transfer learning (87). Given a sparse 

644 dataset, transfer learning involves retraining only a subset of the artificial neurons in the pretrained 

645 model, such that the transferred model can achieve desirable accuracy. For testing, we additionally 

646 curated a separate REE dataset using the raw data reported by Franus et al., which correspond to 12 coal 

647 ashes from 10 power plants in Poland (88). This separate dataset can be found in Supplementary 

648 Materials (Table S2). 

649 Using the separate REE dataset, we compare the performance of three models. First, we assess our 

650 weight-optimized multi-task neural network (i.e., present model) based on all samples in this dataset. 

651 Second, we train a new multi-task neural network from scratch, while keeping the same architecture (i.e., 

652 non-transferred model). Third, we implement transfer learning by only further training the neurons in 

653 the output layer of the present model while keeping all others frozen (i.e., transferred model). For both 
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654 non-transferred and transferred models, we randomly selected 6 samples (50% of the separate dataset) 

655 for model training, following the pipeline detailed in Sec. 2.3. As a reference, all three models presented 

656 in Fig. 5 are accessible on GitHub (see Sec. S5).

657 As illustrated in Fig. 5a, our present model exhibits a consistent deviation in predicting the total 

658 REE content for the new samples, expected due to differences in the origins of the coal ash samples. 

659 Nevertheless, the highly linear distribution of the scatters in this plot indicates that this model still 

660 captures the overall trend of the total REE content of the separate dataset. The performance of the non-

661 transferred and transferred models is compared in Figs. 5b and 5c, respectively. The non-transferred 

662 model essentially fails to generalize to the test samples—with only 6 samples available for training, 

663 preventing overfitting in the non-transferred model proved extremely challenging. In contrast, the 

664 transferred model exhibits good accuracy for samples in both the training and test sets, achieving an R2 

665 test accuracy of 0.86. Furthermore, we note that the transferred model corrects the systematic deviation 

666 associated with the present model (Fig. 5a). More importantly, the fact that the two clusters of samples 

667 between 100 and 200 ppm in Fig. 5a are all distributed along the line of equality in Fig. 5c, signifying that 

668 the transferred model effectively improves the predictions for individual samples, far surpassing the 

669 capabilities of a linear correction.

670

671 Figure 5: Transfer-learning-based refinement of the present model for a fully separated REE dataset 
672 (88). Prediction accuracy of (A) the optimized multi-task neural network trained in this study (see Sec. 
673 3.2), without any additional change; (B) the model with the same architecture but trained from scratch, 
674 with a random train-test split allocating half of the separate dataset for training; (C) the model with the 
675 same architecture but further trained using transfer learning, with the same train-test split. The y = x 
676 dashed line indicates the perfect agreement.
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677 As an additional validation of the transfer learning approach, we further delve into tuning the 

678 classification accuracy of the transferred model. Specifically, we penalize false positives and false 

679 negatives in predicting high-REE samples (≥ 157 ppm, see Sec. 4.3) in the separate dataset, wherein 

680 training and test set samples are not differentiated. To prove the concept, we adopt a straightforward 

681 approach by altering the loss function used for model training—by amplifying the original loss (with its 

682 squared value) when the predicted total REE content is either higher (i.e., penalize false positive) or lower 

683 (i.e., penalize false negative) than the true value. As shown in Table 4, we compare the classification 

684 performance between (i) the baseline transferred model shown in Fig. 5c and two additional transferred 

685 models trained penalizing (ii) false positive and (iii) false negative predictions. It can be seen that the 

686 second model reduces false positive predictions from 4 to 3, while the third model eliminates false 

687 negative predictions from 1 to 0. 

688 These findings underscore the potential of transfer learning to enhance the adaptability of our multi-

689 task modeling approach across diverse coal ash samples. Depending on the priority of classification 

690 emphasis, the transferred model can be finely tuned to enhance either the efficiency or reliability of REE 

691 recovery. Hence, our proposed approach provides a promising solution for coal-ash-based REE recovery.

692 Table 4: Confusion matrix for three transferred models tuned for different targets in identifying high 
693 REE-bearing ashes in the separate dataset. The threshold distinguishing low and high REE contents (i.e., 
694 157 ppm) is kept the same as that from Table 3.

True total REE content

[ppm, by molar]
Confusion matrix

< 157 ≥ 157

< 157 4 1
Baseline

≥ 157 4 3

< 157 5 3
Penalize false positive
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< 157 1 0
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695 4.5 Further improvements of the modeling work

696 Despite the encouraging results obtained herein, our proposed model can be further enhanced in 

697 the following aspects. First of all, although the dataset is curated to represent the general compositional 
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698 variation of coal ashes within the U.S., it may not capture further varieties of ashes that are associated 

699 with other coal sources, types, and locations, which may exhibit systematic differences from those 

700 considered in this study (see Fig. 5a) (18). At this point, it is unclear whether coal ash samples from 

701 various locations (e.g., worldwide) can be modeled by a single model; however, it is clear that developing 

702 large, systematic, and reliable coal ash datasets is key for addressing the scarcity of REEs via high-

703 throughput screening of coal ashes. It should be noted that the size of the dataset can also affect the level 

704 of confidence in our model. Previous studies have reported other uncertainties in predicting the REE 

705 content in coal ash (e.g., due to the coal origin, aging, interactions between individual REEs and different 

706 mineral phases, etc.) (16, 17, 88). Despite the efforts taken to enhance the data variety for training our 

707 models, the model may not always generalize outside the domain of the present dataset, even with the 

708 transfer learning approach discussed in Sec. 4.4. Therefore, increasing the size and scope of the dataset 

709 would be needed to further validate the developed model. 

710 Improvements can be also implemented in terms of the choice of input features. Instead of using the 

711 oxide contents of coal ashes after calcination as model inputs, it would be more practical to use the oxide 

712 contents of raw coal ashes for large-scale screening in production. In that regard, our recent study 

713 reported that the coal ash content can be accurately predicted by combining XRF and machine learning 

714 methods (89). Such an approach could be considered to enable a direct prediction of REE concentrations 

715 based on the XRF measurement from the raw material, but would require additional data. In addition, 

716 we note that the REE contents may also be altered by other factors such as the type of coal combustion, 

717 unburnt residues, and processing condition of coal ashes. Hence, considering those non-chemical factors 

718 as input features is likely to further increase the robustness of the model. 

719 Finally, to improve the transferability and scalability of the multi-task modeling to other material 

720 datasets, it is worth exploring algorithms for automating the determination of optimal weight 

721 distribution on different targets. In that regard, inspiration may be sought from the recent advances in 

722 the broad fields of computer vision and data informatics.

723 5. Conclusions

724 Overall, our study validates the feasibility of using a multi-task neural network model to fulfill 

725 accurate, real-time, and high-throughput screening of REE-rich coal ashes, based on the sole knowledge 

726 of the bulk composition. Our major findings are summarized below.
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727  The stratified sampling and recursive feature elimination techniques are demonstrated to be effective 
728 for enhancing the accuracy of machine learning models trained based on small and sparse datasets, 
729 as commonly encountered in materials science and engineering.
730  The multi-task neural network models introduced herein exhibit consistently higher prediction 
731 accuracy and robustness than conventional single-task machine learning models. The multi-task 
732 models take advantage of the similarities between each of the individual input-output mappings to 
733 filter out noise associated with the individual REE measurement. Consequently, the prediction of the 
734 individual REEs synergically reinforces the prediction of the total REE content.
735  Model interrogations reveal that Al2O3 and CaO contents have a positive and negative influence on 
736 the total REE content in coal ashes, respectively. This highlights the potential of extracting REEs from 
737 CaO-poor coal ashes, which are otherwise often simply deposited in impoundments due to their 
738 limited ability to replace cement in concrete.
739  Transfer learning presents a promising solution for overcoming the often-limited data availability of 
740 REE measurement across different operations.
741  Given the good transferability of machine learning approaches in material research, we envision that 
742 our proposed multi-task approach can be broadly applied to many other types of materials with 
743 sparse testing data ranging over multiple properties.
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