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Experimental Discovery of Novel Ammonia Synthesis Catalysts via 
Active Learning 

Rasika Jayarathna,a Thossaporn Onsree,a Samuel Drummond,a Jennifer Naglic,a and Jochen 
Lauterbach*a 

The importance of ammonia synthesis under mild conditions is increasing due to growing interest in ammonia for large-

scale applications of renewable energy storage and utilization. Being one of the most investigated reactions in 

heterogeneous catalysis, multi-dimensional literature data are available for this reaction as a base to explore new 

catalysts. Machine learning (ML) can be applied to develop models using existing literature data. However, ML models 

developed only from literature data may not be able to efficiently predict or suggest new catalyst formulations without 

additional experimental data. Herein, we present an active learning (AL) framework for accelerating the discovery of novel 

ammonia synthesis catalysts initiated by literature data to explore a pre-determined search space based on domain 

knowledge efficiently. This framework generates and selects features for the ML model to capture the effects of catalyst 

preparation variables, kinetics, thermodynamics, support, and interactions between Ru, promoter, and the support for 

data mined from literature. Experimental results showed that the AL framework could discover novel catalysts that 

exceeded the activity of many state-of-the-art catalysts. AL reduced the number of experiments necessary to reach the 

best catalyst in the search space by 50%, even when no training data related to the best catalyst exists. Furthermore, AL 

gave insight into the properties of the catalysts that contribute to higher ammonia synthesis activity. 

1 Introduction 

The traditional material discovery process relies upon humans' 

domain expertise and intuition based on existing knowledge.1,2 

Here, the potential materials that could meet the target 

properties are identified based on the analysis of the 

properties of similar materials that are published in the 

scientific literature. Then, the most potential material is 

synthesized and tested to meet the target property. Since the 

goal is often met for the first time, the material is 

characterized to identify the reasons for the failure. Based on 

this knowledge, another potential material is synthesized, 

tested, and characterized again if it fails to meet the target. 

Likewise, this process is repeated until the material with the 

target property is discovered, which is time and resource-

consuming due to the time allocated for material 

characterization and potential biases and failures in human 

intuition. Materials such as heterogeneous catalysts further 

increase the time and resources required for this process since 

the catalytic properties are governed not only by the 

elemental properties but also by the reaction conditions, 

which necessitate more extensive testing conditions and 

characterization. 

Artificial intelligence (AI) techniques, such as active 

learning (AL) (also known as sequential learning, on-the-fly 

learning, or adaptive design), can assist in material discovery 

by emulating the aforementioned traditional process but in an 

accelerated timeframe without the need for time-consuming 

characterization and analysis.1,3,4 Here, a machine learning 

(ML) model is developed from the experimental data mined 

from the literature or generated in the lab, and the next 

experiment to run is selected by the model from a pre-

determined search space. After the experiments are run, the 

model is retrained with newly obtained experimental data, and 

the next experiment to run is suggested iteratively, just as 

human researchers do until the material with the target 

property is discovered. AL using experimental data has 

significantly reduced the number of experiments required to 

meet the target properties for different types of materials.5–9 

This approach is advantageous over ML approaches utilizing 

computational data generated via density functional theory 

(DFT) which are mostly limited to experimentally not validated 

property predictions for novel materials 10 and especially for 

heterogeneous catalysts since the inherent complexities of 

real catalysts are not represented and the lack of control and 

knowledge over experimental process parameters for AL in the 

computational data.9,11  

In this context, data mined from the literature offer real-

world catalyst data and domain knowledge about the catalysts 
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that are generated over decades of time for catalyst discovery. 

This data is often high-dimensional compared to literature 

data for other materials due to the vastly different reaction 

conditions used for catalyst testing and different materials 

used for different components of the catalyst. These 

dimensions govern the surface properties of materials, such as 

activity, selectivity, and stability of the catalyst, instead of the 

bulk properties, which are interesting to researchers for most 

materials. Literature data have been used in heterogeneous 

catalysis to train ML models for novel catalyst exploration.12–14 

However, these models have added a batch of experimental 

data for the ML model trained on literature data to augment 

the predictions (since the predictions based only on literature 

data were not correct) rather than suggesting the next 

experiments to run as in AL. AL methods in experimental 

heterogeneous catalysis (also largely in experimental material 

science) have largely focused on either using only 

experimental data as the initial training dataset 6,8 or simulated 

literature data, where the next "experiments" to run are 

literature data that are not used to train the ML model.15,16 

Little work has been done where literature data is solely used 

as the initial training dataset for AL focused on truly novel 

experimental catalyst discovery that is not reported in the 

literature.  

Heterogenous catalysts for ammonia (NH3) synthesis are a 

class of catalysts where a considerable amount of literature 

data has been generated over decades in search of a catalyst 

with ever greater activity. This is because ammonia is one of 

the four most important materials in the modern world due to 

the production of fertilizers (around 80% of produced 

ammonia) and the subsequent food production for 70% of the 

world population.17–19 Recently, due to the requirement of 

energy storage technologies for renewable energy (e.g., wind, 

solar), ammonia has also been identified as the only carbon-

free strategy that is economically feasible on large scales 

(MWh to TWh) based on existing technologies.20 Here, 

ammonia is a storage material and a carrier for hydrogen (H2) 

due to advantageous characteristics of ammonia compared to 

other hydrogen storage materials, such as high energy density 

(12.8 GJ m-3), high hydrogen storage capacity (17.7 wt.%), 

existence as a liquid at 293 K and 0.8 MPa and existing 

infrastructure for distribution.21 This enables ammonia to be 

used as a next-generation fuel in novel engines or fuel cells for 

energy generation without carbon emissions.21 The well-

known Haber-Bosch (HB) process is employed in large-scale 

facilities for ammonia synthesis, operating at high pressures 

(10-25 MPa) and temperatures (723-873 K) using hydrogen 

derived predominantly from natural gas and nitrogen from the 

air with the aid of an iron (Fe) catalyst.22 However, this process 

is energy-intensive, accounting for about 2% of world energy 

consumption with a high CO2 footprint and responsible for 

1.6% of the world's anthropogenic CO2 emissions.23 This has 

spurred research and development for sustainable synthesis of 

"green" ammonia to reduce the dependence on fossil fuels 

and mitigate climate change.22,24,25 

Due to the distributed and intermittent nature of 

renewable energy, small-scale ammonia production must 

utilize hydrogen generated via water electrolysis for ammonia 

synthesis. Currently, methane is used as the hydrogen source, 

and the small-scale HB process is considered 

uneconomical.26,27 In this context, catalytic membrane reactors 

(CMR) enable modular ammonia synthesis by selectively 

separating ammonia from the reaction mixture, thereby 

removing the thermodynamic limitation, which increases the 

NH3 synthesis rate and reduces the energy of separation for 

ammonia, compared to condensation that is used in the HB 

process.27,28 In addition, this process favors relatively lower 

reaction conditions of pressures (<5 MPa) and temperatures 

(573-723 K) to overcome membrane deactivation, energy-

intensive pressure ramping, and cumbersome high-pressure 

installations for hydrogen coming from the electrolyzer.28–30 

Ruthenium (Ru), being the most active metal for ammonia 

synthesis, can catalyze the reaction under the milder 

conditions required for CMRs.31,32 Current state-of-the-art Ru-

based catalysts for this reaction, such as nitrides, hydrides, and 

electrides suffer from complex synthesis processes and higher 

sensitivity to air and moisture, prohibiting them from large-

scale usage.33 Ru nanoclusters or nanoparticles on metal oxide 

supports offer a promising alternative to those catalysts due to 

the ease of synthesis by wetness impregnation, stability, and 

durability. Moreover, these catalysts have polydisperse size 

distributions for Ru nanoparticles, which increase the NH3 

synthesis rates compared to catalysts synthesized using 

different methods with more uniform size distributions.34 

Particle size and structure control, promoter enhancement, 

alloying, and optimizing the support effects have been 

proposed as strategies to increase the activity of these types of 

catalysts.32 As one of the most investigated heterogeneous 

catalytic reactions in the literature, these strategies have been 

implemented, and various types of novel Ru catalysts 

containing different promoters and supports under 

widespread reaction conditions have been developed.32,33 

However, there is still a need to discover cost-effective Ru-

based catalysts for ammonia synthesis due to the high cost of 

Ru.35 

This work focuses on the experimental search of novel 

ammonia synthesis catalysts using AL initially based on the 

literature data, for the first time according to the best 

knowledge of the authors. Firstly, activity data for 

thermocatalytic Ru-based ammonia synthesis catalysts are 

mined from the literature. Then an ML model is developed 

from features that are engineered and selected for this 

application so that the effects of catalyst preparation 

variables, kinetics, thermodynamics, support, and interactions 

between Ru, promoters, and the support are captured. Based 

on the domain knowledge of this reaction, a search space is 

determined for a Ru-based catalyst that has not been explored 

in the literature. Then AL is used to experimentally explore the 

search space efficiently and identify what properties of the 

elements in the catalyst are affecting the model to select the 

next catalyst to run. This general framework could be 

employed for heterogeneous catalyst development for 

reactions other than ammonia synthesis from the data mined 
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from the literature, combining both domain knowledge and 

artificial intelligence. 

2 Materials and methods 

2.1 Data Mining and Selection 

The experimental data on conventional thermocatalytic 

ammonia synthesis catalysts tested on lab-scale fixed bed 

reactors were mined from existing publications found through 

online resources, such as Elsevier, Wiley, American Chemical 

Society, and Springer. Over one hundred publications between 

1972 and 2022 were reviewed, and 56 publications were 

chosen that include catalysts synthesized using wetness 

impregnation that utilizes Ru as the sole or one of the multiple 

active metals. Out of these, 24 publications were discarded 

due to incomplete data (e.g., BET support surface area, space 

velocity), inconsistencies in data reporting with missing 

parameters that prevent the data from being converted to the 

same format (e.g., space velocity, synthesis rate), and outliers 

(e.g. pretreatment processes and complex supports). Removed 

outliers included catalysts with pretreatment processes that 

use CO instead of H2 for reduction and support pretreatment 

processes that use H2 pretreatment of activated carbon 

instead of pretreatment under an inert atmosphere, which is 

predominantly used in the literature. The removed complex 

supports contained oxide mixtures, solid solutions, and oxides 

with doped elements. The feature engineering for these 

supports is too complex to be used with other supports, such 

as single metal oxides and perovskites due to non-uniformity 

and the local effects that govern the activity of the catalysts 

compared to single metal oxides and perovskites, which have a 

more uniform structure. It should also be noted that missing 

values for pretreatment temperatures and times of the oxide 

supports were imputed based on values from the literature 

since these parameters do not vary in an unpredictable wide 

range like BET support surface area and space velocity. With 

the remaining 32 publications, 936 data points were extracted 

as data for ML model development. Most ammonia synthesis 

data are in the form of images in the literature. Hence, a plot 

digitizing freeware, 'Web Plot Digitizer' 36 was used to convert 

the graphical data into numerical data. Tabular data were 

extracted manually from the publications instead of using 

natural language processing techniques. 

 

2.2 Ammonia Synthesis Dataset 

Different formats have been used for reporting the catalyst 

design variables (e.g., Ru loading, promoter loading, etc.) and 

catalyst operational variables (e.g., space velocity, 

temperature, and pressure). Hence, all those variables were 

converted to the same format to be used for AL. For instance, 

reported Ru-to-support and promoter-to-Ru molar ratios were 

converted to weight percentages (wt%), and operational 

variables were converted to the same units. The initial features 

used for data mining are presented in Table S1. As a measure 

of the activity of the catalysts, the NH3 synthesis rate was 

chosen as the target variable for ML since the majority of the 

publications have opted to use this metric. The NH3 synthesis 

rate was re-calculated using Eq. (1) for publications where the 

ammonia synthesis activity was reported in other units: 

 

𝒓 =
(𝒙𝒐𝒖𝒕 − 𝒙𝒊𝒏)

(𝟏 + 𝒙𝒐𝒖𝒕)
∙

𝑽𝟎

𝒎
∙

𝟏𝟎𝟎𝟎

𝟐𝟐. 𝟎𝟖
 (𝟏) 

 

 where r is the NH3 synthesis rate (mmol h-1 gcat
-1), xout is 

the ammonia concentration in the outlet (mol %), xin is the 

ammonia concentration in the inlet (mol %), V0 is the flow rate 

of the gas (L h-1), m is the mass of the catalyst sample (g), and 

22.08 is the molar volume of a stoichiometric mixture of the H2 

and N2 gas (L mol-1). 

The literature data are found to be imbalanced, where the 

target variable distribution is not similar to a normal 

distribution. Fig.1 (a) shows the distribution of the reported 

sythesis rates, which exhibits a highly skewed distribution with 

a long tail. The majority of ML algorithms have been developed 

for balanced or normal distributions for the target variable.37 

In other words, ML models developed from 

imbalanced/skewed data would have poor performance and 

provide misleading predictions. As a solution, the target NH3 

synthesis rate variable was transformed to a natural log scale 

before being used for ML model development.38 This natural 

Fig. 1 Data distribution of NH3 synthesis rate in (a) real and (b) natural log scales and (c) as functions of reaction 
temperature and pressure. 
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log transformation of the NH3 synthesis rate variable results in 

a near-normal distribution, as shown in Fig. 1 (b). This 

transformation would ease the application of ML models, but 

the model accuracy should be evaluated by converting the 

predicted values (ln y) to real values using inverse 

transformation (ey).  

Fig. 1 (c) shows the distribution of the natural log (ln) of 

the NH3 synthesis rate used for machine learning versus 

reaction temperature and pressure. It should be noted that 

these rates correspond to different space velocities. 

Furthermore, the vast majority of the data points in this plot 

have a stoichiometric H2/N2 ratio of 3 with no initial ammonia 

concentration. It can be seen that the synthesis rate increases 

with pressure. Considering the general trend, the increasing 

temperatures increase the synthesis rates up to 400 °C and 

then decrease with temperature. These trends conform to Le 

Chatelier's Principle. Since ammonia synthesis is a mole-

reducing reaction: 𝑁2(𝑔) + 3𝐻2(𝑔) ⇌  2𝑁𝐻3(𝑔), higher 

pressures would shift the equilibrium to the right to produce 

more ammonia. The synthesis rate increases initially with the 

temperature predominantly due to kinetics. However, when 

the rate reaches the thermodynamic limit, it is decreased since 

ammonia synthesis is an exothermic reaction. 

Fig. 2 shows the distribution of data points in terms of key 

reaction conditions, Ru loading, as well as promoters and 

supports used. The distribution of these parameters is not 

uniform and is filled with gaps in between. The data primarily 

consists of lower space velocities, pressures, and Ru loadings 

suitable for modular ammonia synthesis using CMRs. Fig. 2(e) 

illustrates that most catalysts have no promoters, and a large 

number of promoters are unexplored in the literature with 

only a very small number of doubly promoted catalysts. The 

most investigated promoters are Cs, Ba, and K used as the 

single promoter in the catalyst. The remaining promoters 

include other alkali metals (Li, Na, K, Rb), other alkaline earth 

metals (Ca, Sr), lanthanoid metals (Ce, La, Nd, Pr, Dy, Gd, Sm), 

metalloid (B) and transition metals (Co, Rh, Ir). MgO and 

graphite have the largest share of supports. It should be noted 

here that graphite is graphitized activated carbon synthesized 

by thermal treatment, which prevents the carbon 

hydrogenation to methane that occurs under ammonia 

synthesis conditions. Moreover, this process removes 

heteroatoms on the surface of the support and makes support 

surfaces more uniform for different types of activated carbon. 

The pretreatment parameters used as features in ML are 

employed to capture the changes on the surface of the 

graphite support. The remaining supports include other oxide 

supports such as CeO2, α-Al2O3, Pr2O3, and oxides with two 

metal ions such as perovskite and spinel-type oxides. The exact 

amount of data points for every promoter and support 

combination is shown in Table S2, and the dataset has 57 

unique promoter-support combinations. The lack of two-

Fig. 2 Data distribution of reaction conditions: (a) temperature, (b) pressure, and (c) space velocity, as well as 
catalysts: (d) Ru weight loading, and (e) types of promoters and (f) supports. 
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promoter combinations in the dataset shows a potential for 

novel doubly promoted catalyst exploration due to the ease of 

synthesis of catalysts with promoter variations using wetness 

impregnation. Table S2 shows that the vast majority of doubly 

promoted Ru catalysts are on carbon supports, which suggests 

those data should be used in combination with data for 

catalysts with oxide supports for doubly promoted catalyst 

exploration using ML models. 

 

2.3 Model Development 

 

2.3.1 Model Selection 

Tree ensemble methods have shown higher accuracy for 

small datasets for predicting catalyst performance.39 Random 

forest regressor (RFR), extra trees regressor (ETR), and extra 

gradient boosting (XGB) ensemble learning algorithms were 

selected for this study. The first two algorithms were 

implemented by the Python package scikit-learn (version 

1.1.2), and the third algorithm was implemented by the 

Python package XGBoost (version 1.6.2). 

RFR is an advanced algorithm made of multiple decision 

tree regressors.40 During the training process, different subsets 

(i.e., different features) of the training data are generated 

from the original training data with randomness and 

replacement, also known as bootstrapping. Then, each 

decision tree regressor is independently developed using the 

subset of the training data. The prediction of RFR is an average 

value from the predictions of all decision tree regressors. 

Compared to a single decision tree regressor, the randomness 

of RFR prevents the overfitting of the model while improving 

the accuracy of the model predictions. Therefore, the RFR is 

significantly more generalized.  

ETR is an extreme version of RFR. 41  Randomness is applied 

in one more step. ETR randomly selects a candidate feature as 

a threshold to be split at decision tree nodes, compared to 

RFR, where the threshold is optimized. Therefore, the variance 

of the ETR model can be further reduced by slightly increasing 

biases in the second randomness. In practice, variance 

reduction is necessary, leading to overall better accuracy of 

the model predictions.41 All crucial hyperparameters of ETR are 

like those of RTR. However, it is essential to note that the 

bootstrapping of ETR can be canceled. The ETR model is built 

using the whole training data, while randomness is employed 

only at the selection of splitting features. This avoids 

introducing biases from different subsets of the training data 

generated. Furthermore, as randomized splitting in decision 

tree nodes, the algorithm is not too strongly dependent on 

features or patterns in the data. In other words, an ML model 

developed by ETR could be more generalized than that by RFR. 

XGB is a gradient-boosted trees algorithm.42  It is generally 

combined with many simple, weak decision tree models. In a 

learning process, for each boosting iteration, a new decision 

tree regressor is developed from errors/residuals of previous 

decision tree regressors, and the new tree regressor is 

assembled with prior ones to make a prediction. Compared to 

RFR, where the trees are separately grown, the trees of XGB 

are done in series. Therefore, the prediction of XGB is from the 

sum of all the trees' predictions. Each tree prediction can be 

scaled by 'learning_rate', a hyperparameter, to avoid 

overfitting the model. The series of XGB ends when either no 

errors/patterns are to be learned or the trees are not deep 

enough. It is important to note that XGB optimizes an 

objective function (consisting of a differentiable convex loss 

function and a penalty term for model complexity) using 

second-order Taylor's expansion. This results in a faster 

calculation compared to other tree-based ML algorithms. 

Other hyperparameters, mainly related to decision tree 

regressors, of XGB can be found in the literature.42 

 

2.3.2 Feature Engineering 

In addition to the initial features in Table S1, additional 

features were considered. Firstly, features related to the 

thermodynamics and kinetics of the ammonia synthesis 

reaction were considered, since the reaction conditions are 

vastly different within the dataset.  

The dissociative adsorption of nitrogen is considered to be 

the rate-determining step for ammonia synthesis for Ru-based 

catalysts similar to the Fe-based catalysts.43 Catalytic kinetic 

equations based on this basis show that partial pressures of 

gases (hydrogen, nitrogen, and ammonia) in the reaction 

mixture and equilibrium constant for ammonia synthesis have 

a direct relationship with the NH3 synthesis rate.44 Hence, the 

equilibrium constant for ammonia synthesis was calculated 

according to Gillespie and Beattie.45,46 As an approximation for 

the partial pressures of gases in the reaction mixture, initial 

partial pressures of gases were calculated to be used as 

features. As a feature of reaction thermodynamics, the 

thermodynamic limit for the NH3 synthesis rate was calculated 

by plugging the maximum ammonia concentration under the 

reaction condition into Eq. 1. This concentration was 

calculated by using the equilibrium constant and fugacity 

coefficients (Newton-Cooper equations 46) .43 

The usage of elemental properties (Table S3) for the 

generation of features has enabled the ML models in 

heterogeneous catalysis to experimentally explore and 

discover novel catalyst formulations.47–49 Features have been 

generated for the active metals and promoters (for metal-

promoter interactions) as well as for the support by taking the 

weighted mean (Eq. 2) and weighted mean absolute deviation 

(Eq. 3) of elemental properties (named as elemental features 

from now on) of the elements in active metals and promoters 

or support. 

�̅� =  
∑ 𝑛𝑖𝑥𝑖

𝑁
𝑖

∑ 𝑛𝑖
𝑁
𝑖

 (2) 

�̂� =  
∑ 𝑛𝑖|𝑥𝑖 − �̅�|𝑁

𝑖

∑ 𝑛𝑖
𝑁
𝑖

 (3) 

where x̅ is the weighted mean, x̂ is the weighted mean 

absolute deviation, N is the number of elements present in the 
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metal and promoter or support, ni is the mol fraction of the 

individual element, and xi is the value of the elemental 

property for the element.  

Elemental features were generated for metal and 

promoter, support, and metallic elements in the support. 

Features for the electronic properties of the support were 

generated by features given for chemical compounds (Table 

S4) and converting the density of states sourced from the 

materials project database 50 (material ID numbers given in 

Table S5) to features using the Python package matminer 

(version 0.8.0).51,52 

In heterogeneous catalysts, the interactions between 

metals, support, and promoters also affect the catalyst's 

performance. Features describing such interactions are less 

utilized in ML models found in the literature. Promoter-

support interactions can be significant when a large amount of 

promoters are dispersed on the support surface.53–57 The 

effects of these interactions can be captured by promoter-

support elemental features. Wang et al. demonstrated 

through DFT calculations that the formation energy of the 

most thermodynamically stable metal alloy (formed by the 

metal of the nanoparticle and metal of the oxide) is a 

descriptor for strong metal support interaction (SMSI).58 

Hence, the most thermodynamically stable metal alloys 

formed at Ru-support interfaces were sourced from the 

materials project,50 and their formation energies and 

generated elemental features were used as features. 

Formation energies of the support were used as a feature for 

metal-support interactions in metal oxides, as illustrated by 

previous DFT studies.59,60 In addition, metal precursor 

components used in wetness impregnation and molar ratios 

between support, active metals, and promoters were also 

generated as features.  

 

2.3.3 Feature Selection 

The generation of hundreds of features creates a high-

dimensional dataset that includes both informative and 

redundant or non-informative features.61 These features cause 

problems in the ML model, such as overfitting, poor 

predictions, higher computational cost, and harder 

interpretability.62 Feature selection methods are used to find a 

subset of features to remove redundant or non-informative 

features. Hence, a method known as Boruta 63 implemented in 

Python package boruta_py (version 0.3) was used for feature 

selection. Here, pseudo or fake features are created based on 

the given features, and then the model is trained with both 

pseudo and given features. Then features are selected by 

removing features based on a binomial distribution where the 

probability of removed features having feature importance 

higher than any of the pseudo features is 0.5%. Although some 

ensemble learning ML models, such as RFR, ETR, and XGB, 

inherently selects a subset of features during model training, 

the Boruta method provides a cut-off value for feature 

importance based on pseudo features to ease the model 

interpretation and alleviate the other problems that comes 

with redundant or non-informative features. 

 

2.3.4 Model Evaluation 

Leave one group out cross-validation (LOGOCV) was used 

to quantify the performance of the ML model. The literature 

data were divided into groups so that each group has a unique 

catalyst composition regardless of the weight loadings of the 

components, pretreatment parameters, and reaction 

conditions, as shown in Table S2. In each iteration of the 

model evaluation, one group is used as testing data, while the 

remaining groups are used as training data. This method has 

the advantage of evaluating the true extrapolative capability of 

the ML model, since every time the developed model predicts 

the activity of a new (unseen) catalyst system,64 compared to 

traditional cross-validation methods such as k-fold cross-

validation, where the whole data is divided randomly into 

training (k-1 fold) and testing (one fold) data. When the 

dataset is randomly divided, the activity of the same catalyst 

could be in the training data and testing data at different 

reaction conditions. The model accuracy would be evaluated 

mostly based on the interpolation or extrapolation capability 

of activity based on reaction conditions by the ML model and 

not on the different types of elemental features of the 

catalyst. 

 

2.3.5 Catalyst synthesis, Experimental validation, and Active 

Learning 

Details of catalyst synthesis and catalyst testing for 

experimental validation are found in the supplementary 

information. The experimental data were used to simulate 

active learning based on the following pathways. Three 

possible pathways are used to predict the next experiment for 

AL as used by Ling et al  5 in a pre-determined search space 

based on the model predictions for every catalyst with feature 

vector X. 

  

(1) Maximum uncertainty (MU): Catalyst with the 

predicted maximum uncertainty (standard deviation: 

σ(X)) for the NH3 synthesis rate. 

 

(2) Maximum expected improvement (MEI): Catalyst with 

the predicted maximum value (mean: μ(X)) for NH3 

synthesis rate. 

 

Experiments suggested based on MU are 'exploration' of 

the search space since the model is most uncertain about 

these catalysts. MEI-based experiments are 'exploitation' since 

the model is most certain that these catalysts have the 

maximum activity. Efficient exploration requires a balance 

between 'exploration' and 'exploitation' to gather information 

about unexplored areas and test model predictions for 

maximum activity simultaneously. Since the catalysts in the 

search space are predicted to have activities with different 

means and standard deviations, the next experiment to run for 

efficient exploration is done based on the calculation of 

likelihood (L) (Eq. 4) to standardize the activity and identify the 

outliers with a higher activity that are worthy of exploration. 
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(3) Maximum likelihood improvement (MLI): Catalyst with 

the predicted maximum value for likelihood, i.e., the 

catalyst that is most likely to have a higher NH3 

synthesis rate than the best catalyst experimentally 

found in this search space in the previous iteration. 

𝐿 =   
𝜇(𝑿) − 𝑦𝑚𝑎𝑥

𝜎(𝑿)
 (4) 

The parameter, ymax, is the maximum experimental NH3 

synthesis rate in the search space. 

The means and standard deviations of the machine 

learning models were calculated by the Python package scikit- 

optimize (version 0.9.0). For instance, means and standard 

deviations for the models RFR and ETR are calculated by Eq. 5 

and Eq. 6.65 Here, the mean and standard deviation of the 

predicted NH3 synthesis rate for a single catalyst by RFR or ETR 

model with T regression trees are based on the inherent mean 

μi(X) and standard deviation σi(X) of every regression tree. 

𝜇(𝑿) =
1

𝑇
 ∙  ∑ 𝜇𝑖(𝑿)

𝑇

𝑖=1

 (5) 

𝜎2(𝑿) =
1

𝑇
 ∙ (∑ 𝜇𝑖

2(𝑿)

𝑇

𝑖=1

+ 𝜎𝑖
2(𝑿)) −  𝜇2(𝑿) (6) 

3 Results and Discussion 

3.1 Model Accuracy and Selection 

The three ML models, RFR, ETR, and XGB were evaluated 

using LOGOCV after feature selection by Boruta. The 

hyperparameters of the ML models were tuned using grid 

search and the results are shown in Table S6. Parity plots for 

the models are shown in Fig. 3. Here, the predicted NH3 

synthesis rates are the predictions of each testing dataset/ 

group in Table S2 used during LOGOCV.  The evaluation 

metrics R2, mean absolute error (MAE) and root mean squared 

error (RMSE) were calculated for both in natural log and real 

scale and are shown in Table 1.  

The ETR model (Table 1) had the best R2 (0.81), RMSE 

(32.3), and MAE (11.3) in real scale compared to the RFR and 

XGB models, where their R2 and MAE values were less than 

0.70 and higher than 12, respectively. From the literature, the 

ETR algorithm has been reported to perform well in similar 

applications. For example, Mine et al. developed ML models 

for predicting the yield of C2 products for oxidative coupling of 

methane utilizing heterogeneous catalyst data mined from 

literature, and the ETR model had the highest accuracy (R2 = 

0.736)15. Therefore, this model is further used for 

interpretation and novel catalysts predictions. 

 

3.2 Feature Importance and Interpretation 

Boruta method selected 160 features out of 536 generated 

features, as shown in Table S7. The selection of over 100 

features is not surprising since the dataset contains catalysts 

with many element combinations over a wide range of 

reaction conditions, and many features are needed to model 

their behavior. The feature importance for the top 20 selected 

features is plotted in Fig. 4, along with summations of feature 

importance for categorized features in the doughnut chart. 

Feature importance suggests that reaction conditions have the 

most significant effect on the NH3 synthesis rate, accounting 

for around 75% of the total feature importance. This can be 

explained by the different reaction conditions in the dataset 

that are spread across a wide range. The remaining features 

related to the catalyst account for around 25% of the total 

feature importance. They are categorized according to their 

roles, also shown in Table S7. The selected features include 

catalyst pretreatment parameters that affect the performance 

of any heterogeneous catalyst. The selected features for 

catalyst preparation included the mols of carbon, CO ligands, 

NOX, and chlorine in catalyst precursors, which are consistent 

with the effects reported in the literature. It is reported that 

chlorine precursors negatively affect the NH3 synthesis rate by 

withdrawing electrons 66,67 and sometimes positively.68 The Ru 

precursors with CO ligands (e.g., Ruthenium carbonyl) and 

carbon groups (e.g., Ruthenium acetylacetonate) affect the 

formation of nanoparticles due to the ease of decomposition 

and the subsequent higher dispersion of the nanoparticles.69 

Anionic oxygen in precursors in alkali and alkaline earth 

promoters determine the decomposition temperatures 

affecting its behavior.27 Pretreatment parameters for the 

support were selected as expected since those would describe 

the properties of the support especially graphitized carbon as 

explained earlier. 

 

Table 1 Model evaluation results for the selected ML 

models (mean and standard deviation of R2, MAE, and RMSE). 

 
ML 

model 
RFR ETR 

 

XGB 

Natural 

log 

scale 

R2 
0.8503 

(0.0029) 

0.8632 

(0.0017) 

0.8182 

(0.0818) 

MAE 
0.6971 

(0.0084) 

0.6731 

(0.0045) 

0.7437 

(0.0744) 

 RMSE 
1.0496 

(0.0236) 

0.8691 

(0.0055) 

1.2407 

(0.0154) 

Real 

scale 

R2 
0.6160 

(0.0165) 

0.8125 

(0.0036) 

0.6702 

(0.0670) 

MAE 
14.85 

(0.22) 

11.30 

(0.08) 

12.96 

(0.13) 

 RMSE 
43.67 

(2.17) 

32.32 

(0.31) 

53.32 

(0.37) 
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The NH3 synthesis rate of the catalyst is enhanced by the 

transfer of electron density to the antibonding π-orbitals of 

adsorbed N2 on Ru, and the subsequent weakening of the 

nitrogen triple bond (945 kJ mol-1) and dissociation of N2.33 The 

electronic properties of the promoters and support in the 

catalyst play a key role in determining the ammonia synthesis 

activity by either facilitating the transfer or donating extra 

electron density. Electronic properties, such as 1st ionization 

energy, 2nd ionization energy, electrical conductivity, and 

polarizability have been selected as elemental features for 

metal-promoter interactions. The transfer of electron density 

from the promoters dispersed on the support to Ru is 

determined by those electronic properties. Moreover, the 

molar ratios of promoters (alkali metals and alkaline earth 

metals) to Ru determine the coverage of Ru nanoparticles by 

promoters which affect the catalyst activity.67  

Features selected for the support also include elemental 

properties related to the electronic properties, such as the 

ones selected from the density of states, band center, HOMO 

energy, 1st ionization energy, electronegativity, valence orbital 

energy, and the number of valence electrons. The higher NH3 

synthesis rates obtained by using basic supports (e.g., Pr2O3) 

over acidic supports (e.g., γ-Al2O3) have been attributed to the 

higher electron density in basic supports.70 Reducible supports, 

such as CeO2, BaCeO3, and BaTiO3 could further increase the 

NH3 synthesis rate by donating further electrons.70–72 These 

electronic properties and all the other elemental features of 

the support were used by Karakaya et al. to develop an ML 

model for the experimental discovery of a novel mixed oxide 

support for a Ru-based ammonia synthesis catalyst using only 

experimental data.49 Features related to metal-support 

interaction can be justified by the enhanced NH3 synthesis 

rates reported due to enhanced electron transfer from support 

to the Ru by strong metal-support interactions.70 

Fig. 3 Predicted versus measured synthesis rates (natural log scale) at pressures and temperatures for (a) RFR, (b) ETR, and (c) 
XGB models. 

Fig. 4 Top 20-feature importance of the ETR model (bar chart) and the summation feature 
importance of all features categorized according to their function (doughnut chart). 
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Most of the selected features are related to promoter-

support interactions. It has been experimentally demonstrated 

that promoters interact with the support, and the dispersion 

of the promoter is primarily impacted by the properties of the 

support.67,73 Sometimes, the promoter reacts with the support 

and forms compounds on the support surface. For instance, 

the basicity of the support influences how the alkaline 

promoter is spread on the catalyst surface.67,73 A basic oxide 

does not react with the alkali metal promoters and remains 

adjacent to the Ru nanoparticle, whereas it reacts with acid 

sites on an acidic oxide, causing inefficient utilization of the 

alkali metal promoters.67,73 The large number of features 

selected for the promoter-support interaction and their 

summation of feature importance suggests the higher impact 

of the promoter and support on the NH3 synthesis rate of the 

catalyst.  

 

3.3 Novel Catalyst Discovery via Active Learning 

3.3.1 ETR Model Developed from Literature Data 

 

Based on the current domain knowledge of Ru-based 

ammonia synthesis catalysts, a search space was chosen for 

exploration using AL. The goal was to increase the activity by 

promoter enhancement for a Ru-based catalyst on a fixed 

oxide support due to the long experimental time for a variety 

of supports. Praseodymium oxide (Pr2O3) was selected as a 

support for the Ru based on the high NH3 synthesis rates 

reported in the literature.74,75 This is due to the alleviation of 

hydrogen poisoning and results in higher NH3 synthesis rates 

at higher pressures.75 Further increases in activity by the 

utilization of promoters for Pr2O3 are barely investigated in the 

literature. Moreover, adding multiple promoters and 

implementing the synergistic effect of promoters is an 

effective way to achieve a catalyst with far better performance 

than using just one promoter.57 The synergistic effect of two 

promoters across a wide range of elements has not been 

investigated for Ru-based and Pr2O3 supported ammonia 

synthesis catalysts. Hence, a doubly promoted catalyst was 

designed by fixing Cs as the primary promoter and 43 other 

elements were selected to be used as the secondary promoter. 

Here, Cs was selected as the primary promoter since it is found 

to be the best electron-donating alkali-metal promoter for 

supported Ru in ammonia synthesis catalysts.27,76 The 

secondary promoters were selected so that they are non-

radioactive and not costly (such as Pt, Rh, Pd), with their metal 

precursors being non-chlorine based (due to the poisoning 

effect of chlorine) and water-soluble, as shown in Fig. S1. The 

selected secondary promoters (M) were namely, Li, Na, K, Rb, 

Mg, Ca, Sr, Ba, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, Y, Zr, Ag, 

Cd, In, Sn, Hf, Re, Ir, Pb, Bi, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, 

Er, Tm, Yb, and Lu. The weight loadings of the catalysts were 

fixed so that the final formulation can be written as Ru (1 

wt%), Cs (2 wt%), M (2 wt%) / Pr2O3. Here, the Ru loading was 

fixed to 1 wt% regarding the high cost of Ru for large-scale 

applications. 

The activity of these catalyst formulations was predicted by 

the ML model trained only on literature data at 673 K, 3 MPa, 

36000 mL h-1 gcat
-1 at a H2-to-N2 ratio of 1:1. The predicted 

activities of these catalysts are illustrated in Fig. 5 (a) as a violin 

plot. According to the predictions, the formulation with Zn 

should have the highest activity in the search space, with Li, V, 

Cr, and Mg as the next best promoters in descending order. To 

validate the predictions, these catalysts were synthesized 

using wetness impregnation and tested in a reactor system. 

The measured synthesis rates of the top 5 predicted catalysts 

(Fig. 5(b)) illustrate that the predictions of the ETR ML model 

developed from literature data are inaccurate. The catalyst 

with the Zn promoter had no measurable activity even though 

it was predicted to have the highest activity out of all the 

promoters. Only the catalyst with Mg as the promoter was 

predicted with reasonable accuracy. This behavior of predicted 

Fig. 5 (a) Model predictions based only on literature data and (b) experimental validation. 
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catalyst performance, not in agreement with experimental 

catalyst performance, has been reported before for ML models 

trained using only literature data.12,14 The ML model trained by 

the literature data often does not have any training data in the 

search space that the model is attempting to predict. This 

model did not include any training data with promoted Ru 

supported on Pr2O3 due to the lack of data in the literature. 

The reasons for the lack of the model's ability to predict 

novel catalysts can also be seen in the principal component 

analysis (PCA) of the data, as depicted in Fig. 6. In general, PCA 

is used to dimensionally reduce the feature space to an 

information space in dimensions known as 'principal 

components' so that the maximum amount of information is 

preserved. The direction with the most variance can be 

regarded as the 1st principal component. The direction that has 

the second most variation can be regarded as the 2nd principal 

component. From Fig. 6 (a), it can be seen that 1st and 2nd 

principal components contain 92.7 and 6.2% of the variation, 

respectively. In other words, 98.9% of the variation is 

contained in just the first two principal components alone. For 

descriptive purposes, the 1st and 2nd principal components can 

be used if 80% of the variance can be explained from both.77 

As a result, the literature data and the catalyst search space 

can be plotted using the first two principal components. Four 

major clusters of literature data points can be seen in the 

information space, and it is apparent that there is a largely 

unexplored area of catalysts in between. It has also been 

mentioned that the predictions are much more reliable in 

spaces where the data points are dense and less reliable in 

spaces where the data points are sparse.78 Compared to the 

current literature data, the catalyst search space spreads in 

empty areas between clusters, implying that this search space 

has not been explored. Consequently, the predictions of the 

ETR ML model developed from only the literature data were 

unreliable and had low accuracy for new catalysts, as depicted 

in Fig. 5 (b).  

 

3.3.2 Active Learning-assisted Prediction of Novel Catalysts 

To find the best catalyst in the search space, more 

experimental data is required to integrate into the ML model 

trained on literature data incrementally using AL. Many AL 

methods in the literature rely on Bayesian methods, such as 

Bayesian optimization for material discovery.5 Here, Bayesian 

statistics are used to calculate a posteriori joint probability 

distribution for the model parameters for the ML model 

named Gaussian process regressor (GPR) using the model 

features. The uncertainty estimates inherently given by the 

GPR model are used to evaluate a function named 'acquisition 

function' to predict the next experiment to run. The often-

used acquisition function named 'Expected Improvement' is 

designed to efficiently explore the search space. However, 

Bayesian methods are not recommended for search spaces 

with more than 20 dimensions, since they often struggle in 

high-dimensional space in determining the joint probability 

distribution for the model parameters due to the curse of 

dimensionality.79,80 Considering the ML model developed for 

our application, 53 out of the 160 features/dimensions are 

related to the variation of the promoter (Table S7), which 

makes the use of Bayesian methods not suitable for this 

application. Prediction of the next experiments using 

uncertainty estimates calculated for ensemble tree methods, 

such as RFR and ETR, have often outperformed Bayesian 

methods.5,15 

The pathways MU and MEI can be followed based on the 

calculated model predictions. However, for the calculation of 

MLI to suggest the first experiment to run, ymax needs to be 

selected as the maximum rate in the literature data used to 

train the ML model. The maximum NH3 synthesis rate in the 

literature dataset is 760 mmol h-1 gcat
-1 obtained using a 22 

wt% Ru catalyst.57 The initial setting of ymax to this value is not 

reasonable since the search space is only comprised of 

catalysts with 1 wt% Ru. Furthermore, since the literature 

 Fig. 6 (a) Percentage variation of the principal components and (b) PCA projection of the literature data and search space. 
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dataset spans over a wide range of reaction conditions, a 

catalyst with a lower NH3 synthesis rate at a different reaction 

condition has the potential to exceed a catalyst with a higher 

NH3 synthesis rate at a different condition. The goal of this 

search space is to optimize the promoters instead of the 

reaction conditions, and as an instance, ymax was chosen as the 

maximum NH3 synthesis rate in the literature training data set 

for Ru loadings less than or equal to 1 wt%. This value was 24.7 

mmol h-1 gcat
-1, obtained using a 0.7 wt% Ru catalyst supported 

on graphitized carbon and promoted by Ba and Cs at 673 K, 6.3 

MPa, 8.5 vol % initial NH3 concentration, and over 487000 mL 

h-1 gcat
-1 space velocity 57. The next experiments predicted in 

the MLI pathway will not change the ymax unless a higher value 

is experimentally found in the search space.  

The AL simulations for three experimental pathways of 

MEI, MLI, and MU (with Ba-promoted catalyst data from the 

literature) are shown in Fig. 7(a) and (b) with the total 

experimental dataset shown in Table S8. The pathways are 

plotted as the best experimental NH3 synthesis rate found at 

each iteration versus the number of experiments/iterations. 

The MEI and MLI pathways were more efficient than MU to 

reach the best catalyst in the search space. This catalyst 

contained Ba as a promoter with an activity of 48.8 mmol h-1 

gcat
-1, substantially exceeding the best NH3 synthesis rate in the 

literature training dataset for Ru loadings less than or equal to 

1 wt% (24.7 mmol h-1 gcat
-1). The MU pathway started with 

higher experimental rates but could not improve significantly 

compared to the MLI and MEI pathways and was able to reach 

the best catalyst after 27 experiments. The MEI pathway 

outperformed the MLI, reaching the best catalyst in 10 

experiments, compared to the 43 experiments that need to be 

done to confirm that Ba promoted catalyst is the best catalyst 

in the search space. Hence, AL using the MEI pathway cut 

down the number of experiments necessary to reach the best 

catalyst by nearly 75%, reducing the time and resources 

required. The MEI pathway being better than the MLI pathway 

(with Ba-containing data) could be due to the inclusion of 

initial training data from the literature with Ba-containing and 

doubly promoted (Ba, Cs) catalyst activity data on a different 

support. Since the model is already trained on this Ba-

containing catalyst data, the exploitation pathway (MEI) works 

better than the exploration (MLI) pathway to reach Ba as the 

catalyst with the best secondary promoter. 

Fig. 7 (a) Active learning pathways by ETR model. Each pathway represents the average over 10 simulations and (b) 
the number of experiments needed to reach the best catalyst.  
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However, it can be argued that this efficiency came from 

the initial training data with Ba-promoted catalysts, as shown 

in Fig. 2(e). Hence, the capability of this framework was 

reevaluated by removing all the literature data where Ba was 

used as a promoter and supports that include Ba (BaCeO3, 

BaTiO3, and BaZrO3). As shown in Fig. 7(a) and (b), the MEI and 

MLI pathways still outperformed the MU pathway, but it 

nearly doubled the experiments needed to reach the best 

catalyst by twice for MEI. Now, the MLI pathway outperforms 

the MEI pathway by requiring 22 experiments to reach the 

best catalyst and reducing the number of experiments by 

nearly 50% in the search space. Since the model does not have 

initial training data for the Ba-containing catalyst, the AL needs 

to efficiently explore the search space, resulting in the 

exploration pathway (MLI) working better than the 

exploitation pathway (MEI).  

This framework led to the discovery of two novel catalyst 

formulations (Ru, Ba, Cs/Pr2O3; Ru, Dy, Cs/Pr2O3) with high 

activities. To the best of our knowledge, these combinations 

are not yet reported in the literature. The activity of these two 

catalysts outperformed many state-of-the-art thermocatalytic 

ammonia synthesis catalysts reported in the literature when 

compared on grams of Ru basis (mmol h-1 gRu
-1), as shown in 

Table S9. Further, the combination of Dy and Cs is not 

reported in the literature. However, the higher activity of Ba 

and Cs-promoted Ru-based catalysts has been reported in the 

literature for NH3 synthesis on different types of graphitic 

carbon supports.57,81–83 These studies used large amounts of 

Ba and Cs to reduce the effect of electron-withdrawing and 

strongly bound oxygen complexes on the carbon support 

surface.57 Ba-promoted catalysts increased the thermal 

stability of the catalyst by diminishing the methanation of the 

carbon support.83 The high activity resulting from the synergy 

of Ba and Cs was ascribed to different roles of the promoters. 

As explained earlier, the primary role of Cs is attributed to the 

electronic promotion of Ru to lower the barrier of dissociative 

adsorption of N2. Ba is supposed to act as an electronic 

promoter 84,85 as well as a structural promoter to modify the 

number 86 and stability 87,88 of the surface sites of Ru. These 

effects depend on the support. A change of the support varies 

morphology, dispersion, and electronic structure of the Ru 

nanoparticles, and the dispersion of the promoters used.67,88,89 

These changes are combined with the change of promoters, 

which vary the electronic and structural promotional effects 

for Ru. It appears that the AL framework was able to 'learn' the 

changes of the complex interactions using the features and the 

initial set of experimental data integrated into the ML model.  

To investigate what the model is 'actively learning' and 

based on what information the catalyst exploration is done as 

the experimental data are being added, the variation of 

feature values related to features of the promoter were 

plotted for the MEI pathway (with Ba containing data) vs the 

Fig. 8 The variation of selected feature values vs number of experiments during AL for MEI pathway with Ba containing 
catalyst data. 
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number of experiments. The features with discernible patterns 

are shown in Fig. 8. The feature values for weighted mean or 

mean absolute deviation of metal-promoter interactions, such 

as electrical conductivity, thermal conductivity, 1st ionization 

energy, and covalent radius show notable variations with the 

number of experiments. These features are calculated as the 

weighted mean or mean absolute deviation for Ru, Cs, and 

secondary promoter by Eq. (2) and (3). Since only the 

secondary promoter is varied, changes in the features of 

metal-promoter interactions are driven mainly by the 

secondary promoter. 

When the number of experiments is in the range of 5-15 

(Fig. 7) the AL was finding the catalysts with the highest 

activity. According to Fig. 8(c), there is a notable decrease in 

first ionization energy, which suggests an electron donation 

from the secondary promoter leading to the higher activity of 

the catalysts. However, the electrical conductivity (Fig. 8(a)) 

decreases significantly at the same time. This implies that the 

secondary promoter should not interfere with the electrical 

conductivity of Ru since it has a higher electrical conductivity 

(0.137✕106 Ω-1cm-1) compared to Cs (0.0489✕106 Ω-1cm-1).90 

The metal covalent radius (Fig. 8(d)) appears to go through an 

optimum for promoters with higher ammonia synthesis 

activity. This could be due to the size of the secondary 

promoter atoms necessary to have a certain size for 

adsorption and surface reconstruction on the facets of Ru 

nanoparticles. In fact, promoters such as Li and Na are known 

to block stepped sites of Ru due to their smaller atomic radii.91 

Moreover, there is a significant drop in the bulk thermal 

conductivity (Fig. 8(b)) of the secondary promoter when the 

catalyst activity is the highest. Thermal conductivity at 

nanoscale are much lower compared to the bulk which is 

correlated to the sintering of the metal nanoparticles.92 Based 

on these observations, it seems that the best-performing 

promoters Ba and Dy have both electronic and structural 

promotion for Ru/Pr2O3. The elemental features for promoter-

support interaction, such as mean absolute deviations of 

electrical conductivity and work function (Fig. 8(e) and (f)) 

suggest that the deviation driven by the secondary promoter 

should be minimal. These trends suggest that the secondary 

promoter should not alter the electronic properties of Pr2O3 so 

that it could electronically interact with Ru for higher activity. 

It can be hypothesized that these minimal electronic 

interactions with the support are obtained by the secondary 

promoter being primarily associated with the Ru instead of the 

support. 

 

4 Conclusions 
 

Data for the activity of Ru-based catalysts for 

thermocatalytic NH3 synthesis were mined from the published 

literature. After data cleaning, 936 data points were selected, 

and features for the data points were engineered to capture 

the effects of parameters in a supported catalyst used for 

ammonia synthesis. Selected features using the Boruta 

method included the electronic properties of the elements and 

interactions between elements, conforming to the domain 

knowledge of the heterogenous catalysts for ammonia 

synthesis. Out of all ensemble learning algorithms considered, 

the ETR model resulted in the highest accuracy (R2 = 0.86).  

A search space was selected based on the domain 

knowledge where the secondary promoter was varied in a 

doubly promoted Ru catalyst supported on Pr2O3. However, 

with experimental validation, the predictions of the ETR ML 

model developed only on the literature data proved 

inaccurate. Integration of more experimental data using AL 

pathways reduced the experimental data needed to reach the 

best catalyst by nearly 50% when Ba-containing catalyst data 

was excluded from the literature training data. The MLI 

pathway, which balances the exploration and exploitation of 

the search space outperformed the pathways MU and MEI, 

which are based on pure exploration and exploitation, 

respectively.  

The discovered formulations Ru, Ba, Cs and Ru, Dy, Cs 

supported on Pr2O3 were not reported in the literature, and 

their activity exceeded that of most state-of-the-art catalysts 

reported in the literature. Hence, AL initially based on 

literature data has a great potential to discover novel catalysts, 

as we showed in this study. Investigation of feature variation 

of the experimental pathways given by AL suggested that 

catalysts with higher activities in the search space have 

secondary promoters that act both as electronic and structural 

promoters, and do not alter the electronic properties of the 

Pr2O3.  

This work suggests that although the literature data for 

heterogeneous catalysts are high-dimensional, inconsistent, 

and filled with missing data, careful data selection and pre-

processing can make it a great source for AL. Proper feature 

engineering and selection are still necessary for each 

application to deliver the most optimal results and gain 

insights since each catalytic system can have its own processes 

governing the catalyst's activity, selectivity, and stability. The 

authors contributed to this work hope that the framework 

presented in this paper would encourage researchers to utilize 

literature data to discover novel catalysts experimentally using 

AL to save time and resources in the future. 
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