Green chemical precipitation of manganese, cobalt, and nickel from acid mine drainage using ozone: mechanism and chemical kinetics

Abstract

Manganese (Mn), cobalt (Co), and nickel (Ni) are designated as critical elements by the U.S. Department of the Interior. Acid mine drainage (AMD) is a viable secondary source for these metals. Conventional AMD treatment processes necessitate high pH levels (∼pH 9) or costly oxidants to recover these elements. Building upon prior work, this study utilizes an ozone oxidative precipitation method, currently patent-pending, to reduce chemical use and recover Mn, Co, and Ni from AMD. Saturation index calculations and Pourbaix diagram analyses demonstrated that ozone could recover these elements across a broad pH range (2–8). The effects of process parameters, particularly gas flow rate, stirring rate, and temperature, on the precipitation of these elements from AMD were investigated. It was found that the recovery of Mn–Co–Ni is enhanced when there is an increase in these parameters to a certain level, below which no statistically significant differences were observed. Additionally, a kinetic study on the oxidative precipitation of Mn–Co–Ni was conducted employing the pseudo-homogeneous model, and the activation energies were calculated. The effect of the process parameters, along with the calculated activation energy values (Ea(Mn) = −13.9 kJ mol−1; Ea(Co) = 16.3 kJ mol−1; Ea(Ni) = 14.5 kJ mol−1), collectively suggests that the ozone oxidative precipitation process of Mn–Co–Ni is diffusion-controlled.

Graphical abstract: Green chemical precipitation of manganese, cobalt, and nickel from acid mine drainage using ozone: mechanism and chemical kinetics

Article information

Article type
Paper
Submitted
17 Mei 2025
Accepted
27 Jun 2025
First published
01 Jul 2025
This article is Open Access
Creative Commons BY-NC license

React. Chem. Eng., 2025, Advance Article

Green chemical precipitation of manganese, cobalt, and nickel from acid mine drainage using ozone: mechanism and chemical kinetics

Y. Shekarian, M. Rezaee and S. Pisupati, React. Chem. Eng., 2025, Advance Article , DOI: 10.1039/D5RE00222B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements