Issue 28, 2025

Enhanced recyclability of methacrylic resins by copolymerization or pendant modification using trityl esters

Abstract

The conversion of pendant groups into poly(methyl methacrylate) (PMMA) to triphenylmethyl (trityl) esters facilitates thermal depolymerization, enabling the recovery of the monomer, methyl methacrylate (MMA). While PMMA offers potential for chemical recycling through depolymerization, its complete degradation necessitates extreme heating conditions exceeding 400 °C. Conversely, a copolymer consisting of MMA (95 mol%) and trityl methacrylate (TMA; 5 mol%), synthesized via free radical copolymerization, undergoes depolymerization at 270 °C, yielding pure MMA with 94.5% efficiency. Additionally, commercially available PMMA sheets and modified acrylic resins incorporating n-butyl acrylate as a comonomer were also successfully depolymerized at 270 °C through pendant conversion to trityl esters, achieving high yields of pure MMA.

Graphical abstract: Enhanced recyclability of methacrylic resins by copolymerization or pendant modification using trityl esters

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
01 Mei 2025
Accepted
09 Jun 2025
First published
10 Jun 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 12804-12811

Enhanced recyclability of methacrylic resins by copolymerization or pendant modification using trityl esters

Y. Chiba, S. Hirabayashi and Y. Kohsaka, Chem. Sci., 2025, 16, 12804 DOI: 10.1039/D5SC03190G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements