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Connecting chemical exposures over a lifetime to complex chronic diseases withmultifactorial causes such

as neurodegenerative diseases is an immense challenge requiring a long-term, interdisciplinary approach.

Rapid developments in analytical and data technologies, such as non-target high resolution mass

spectrometry (NT-HR-MS), have opened up new possibilities to accomplish this, inconceivable 20 years

ago. While NT-HR-MS is being applied to increasingly complex research questions, there are still many

unidentified chemicals and uncertainties in linking exposures to human health outcomes and

environmental impacts. In this perspective, we explore the possibilities and challenges involved in using

cheminformatics and NT-HR-MS to answer complex questions that cross many scientific disciplines,

taking the identification of potential (small molecule) neurotoxicants in environmental or biological

matrices as a case study. We explore capturing literature knowledge and patient exposure information in

a form amenable to high-throughput data mining, and the related cheminformatic challenges. We then

briefly cover which sample matrices are available, which method(s) could potentially be used to detect

these chemicals in various matrices and what remains beyond the reach of NT-HR-MS. We touch on the

potential for biological validation systems to contribute to mechanistic understanding of observations

and explore which sampling and data archiving strategies may be required to form an accurate,

sustained picture of small molecule signatures on extensive cohorts of patients with chronic

neurodegenerative disorders. Finally, we reflect on how NT-HR-MS can support unravelling the

contribution of the environment to complex diseases.
Environmental signicance

Non-target high resolution mass spectrometry has attracted immense interest regarding the potential for increased characterisation of chemicals and exposures
in environmental studies. However, high quality studies remain difficult to perform and oen yield fewer successful identications than desired. We present our
multi-disciplinary perspective on tackling potential causes for this discrepancy and the complexity involved in capturing the knowledge needed to investigate the
impact of chemicals on human health in the context of long-term diseases. We look at how to mine patient and expert knowledge to nd, measure and validate
potential neurotoxicants and explore the potential for NT-HR-MS to provide small molecule data signatures in cohorts and build the knowledge required for
greater future understanding of environmental impacts on complex diseases.
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Introduction
Rapid developments in analytical techniques over the last
decades have opened up new opportunities such as non-target
high resolution mass spectrometry (NT-HR-MS) to explore the
impact of humans on the environment,1 as well as the effect of
environmental contamination on humans2,3 and other organ-
isms.4,5 With growing accessibility and maturity in NT-HR-MS
analytical methods, these are being applied to increasingly
Top: E. L. Schymanski, N. C. Baker, A. J. Williams,
R. R. Singh Middle: J.-P. Trezzi, P. Wilmes, P. L. Kolber,
R. Krüger Bottom: N. Paczia, C. L. Linster, R. Balling

Associate Professor Emma Schymanski is a Luxembourg National
Research Fund (FNR) ATTRACT Fellow and head of the Environ-
mental Cheminformatics group at the Luxembourg Centre for
Systems Biomedicine (LSCB), University of Luxembourg. Dr Ran-
dolph Singh is a postdoctoral fellow in the same group. Dr Nancy
Baker is a consultant at Leidos, Research Triangle Park, USA. Dr
Antony Williams is a Computational Chemist, National Center of
Computational Toxicology, US EPA. Dr Jean-Pierre Trezzi is post-
doctoral fellow affiliated with the Integrated Biobank of Lux-
embourg, Luxembourg Institute of Health as well as the Eco-
Systems Biology group at LCSB, which is headed by Associate
Professor Paul Wilmes. Dr med. Pierre Kolber, MD is a member of
Neurology department at the Centre Hospitalier de Luxembourg
and the Clinical and Experimental Neuroscience Group at LCSB,
which is headed by Professor Dr med. Rejko Krüger, also an FNR
PEARL Fellow and Director of Transversal Translational Medicine
at the Luxembourg Institute of Health. Dr Nicole Paczia, former
joint-manager of the Metabolomics Platform at LCSB, now heads
the Metabolomics Core facility at the Max Planck Institute in
Marburg. Dr Carole Linster is head of the Enzymology and
Metabolism Group, LCSB. Professor Rudi Balling is Director of the
LCSB.

This journal is © The Royal Society of Chemistry 2019
complex research questions and hypotheses.6–8 In this
perspective article, we take a close look at the challenges in
identifying “neurotoxicants” in the context of chronic neuro-
degenerative diseases and use this case study to explore the
potential and limitations of NT-HR-MS to support answering
these questions. Ultimately, solving complex challenges such as
these will need a systems approach,9,10 requiring knowledge that
crosses many disciplines. While the main focus of this article,
determining which (relevant) chemicals are present in envi-
ronmental or biological samples (let alone their mode of
action), is already a daunting task, it is a necessary foundation
to enable the elucidation of functional effects and generation of
hypotheses for a greater understanding of the causes of complex
diseases and environmental impacts.

NT-HR-MS, typically coupled with separation techniques
such as liquid or gas chromatography, is becoming an
increasingly popular approach for the broad screening of
complex environmental samples.1 NT-HR-MS can be performed
on low sample amounts and reach ppb (or lower) detection
limits in many cases, with data acquisition now oen able to
capture both known and unknown chemicals in a single
measurement.11 Ideally in NT-HR-MS, post-acquisition data
processing is used to identify (1) the known chemicals, i.e. the
“targets” or also “biomarkers” in the context of metabolomics
and disease; (2) potential chemicals of interest based on prior
knowledge, i.e. lists of chemicals (“suspects”) and (3) the rele-
vant “unknowns” or “non-targets” using some form of prioriti-
sation.1 Data generated in NT-HR-MS can be archived for later
use and exploration (also termed retrospective screening).12

While NT-HR-MS has been declared “ready to go”,1 in this
article we explore how to gather the knowledge required to take
NT-HR-MS to the next level of helping unravel the cause and
mechanisms of environmental exposure in the context of late-
developing complex diseases, where a lifetime of exposure to
thousands of chemicals may potentially impact disease
progression. Forming epidemiological connections, however,
does not just involve the detection of chemicals of interest, but
also gathering information on qualitative aspects and charac-
teristics of potential neurotoxicants, as well as time and dura-
tion of exposure.

To date, NT-HR-MS of environmental samples has been
commonly directed by substance classes. Several examples
include using suspect screening approaches to investigate
classes such as pharmaceuticals,13,14 pesticides15,16 or antibi-
otics.17,18 Further studies are now using publicly-available
suspect lists in their screening efforts.19,20 Other early efforts
include comprehensive, exploratory characterisation efforts of
wastewater that went beyond compound classes.21,22 As NT-HR-
MS matures, effect-directed analysis (EDA) studies are begin-
ning to show some level of success with established bioassay
endpoints such as mutagenicity.23 The growing popularity of
“big data” techniques has seen the expansion into more data
exploration-based methods such as virtual EDA, clustering,
trend analysis and ngerprinting, summarized elsewhere,1

inspired partially by metabolomics efforts. From a metab-
olomics perspective, great investments have been made into the
detection of biomarkers for certain diseases (discussed further
Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445 | 1427
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View Article Online
below) and the trend is now towards using these approaches for
a more mechanistic understanding of the biology behind the
biomarkers,24 primarily using targeted analysis techniques. Yet
the conundrum remains: there are orders of magnitude more
“unknowns” than “knowns” in both biological and environ-
mental samples,25 despite compound databases now containing
over 100 million chemicals and impressive improvements to
computational mass spectrometry workows.26 Additionally,
despite greater identication efforts, toxic effects observed in
the environment (e.g. in EDA studies) also remain unexplained
more oen than not,27 indicating that a greater understanding
of the entire environmental system is still required.

Currently, the key to successful NT-HR-MS is nding “known
unknown” chemicals13 (chemicals documented to exist but
unknown upfront to the investigator) of high relevance to the
study question in an efficient manner (i.e. via prioritisation).1

The full identication of unknowns is still extremely time
consuming and, while it is easy nowadays to get tentative
candidates for many detected masses in NT-HR-MS,28,29 candi-
date selection and validation remains challenging and suspect
list/compound database choice has a dramatic inuence in the
outcome of identication efforts.30 A well-designed suspect
screening approach, i.e. searching for a discrete list of chem-
icals potentially relevant to the study question, is an ideal way to
nd masses and thus candidates of particular interest quickly.
However, there is a delicate balance in suspect screening. Small,
carefully validated lists containing tens to a few hundred entries
result in few suspect hits ever being found, but if found, are
likely highly relevant.15 On the other hand, suspect screening
using large databases (containing tens of thousands to millions
of entries) for all matching candidates rapidly turns into a non-
target identication challenge with multiple matching candi-
dates per mass.28 The current trend in NT-HR-MS is towards
compiling very large lists (in the order of tens of thousands of
entries) to enable better coverage which is, in effect, closing the
gap between suspect screening and typical non-target or
unknown identication approaches. A variety of statistical
approaches, such as replicates and multiple correction testing,
can be used to recognise and reduce the resulting false posi-
tives, summarized elsewhere.1 As validation of any exact mass
hit (irrespective of the size of the suspect list) in NT-HR-MS is
essential,31 additional informationmust also be used to support
the candidate structure. This includes orthogonal analytical
evidence (e.g. chromatographic retention behaviour, fragmen-
tation information) as well as so-called metadata, i.e. additional
information that may indicate that this chemical is relevant to
the study question.7,32 For many years, literature references have
been used to prioritise highly interesting candidates33 and these
have now been built into many identication approaches.30,34–36

In an environmental context, specialised resources such as the
CompTox Chemicals Dashboard,37 the Human Metabolome
Database38 (and related resources such as DrugBank39 and
T3DB40), and datasets on the NORMAN Suspect List
Exchange41,42 offer metadata categories relevant for environ-
mental screening, such as exposure data, activity in in vitro
screening bioassays, predictive toxicity values (quantitative
structure activity relationships, QSARs), literature counts and
1428 | Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445
occurrence in various matrices of interest. Connecting the
metadata associated with mixtures to their individual constit-
uents via the so-called “MS-ready” form now allows screening of
mixtures in HR-MS.43,44

While connecting masses detected in environmental
samples to “known unknowns” and related metadata is now
achievable with NT-HR-MS, connecting chemical exposure to
diseases opens up many more challenges. The concept of the
“exposome” was rst introduced in 2005 by Wild45 with the
statement “at its most complete, the exposome encompasses
life-course environmental exposures (including lifestyle
factors), from the prenatal period onwards”.45 This denition
comes with numerous challenges, not least the time frame of
the life-course, which are not the focus of this current article.
Other articles, including (but not limited to) those cited here,
contain further discussions and renements to the concept.46,47

The “meet-in-the-middle” approach has been introduced “to
address the challenge of identifying causal relationships that
link exposures and disease outcomes”,48 indicating the need for
the connection of exposomics to other “omics” levels such as
epigenomics, metabolomics and transcriptomics.48 While
biomarkers have resulted in many impressive epidemiological
studies, the vast majority of these are based on targeted studies
of well-known pollutants; the eld is at the cusp of being able to
take full advantage of NT-HR-MS and these are the views we
wish to present in this perspective.

In the following sections, we explore how to capture more
topic-specic metadata and maintain links back to the associ-
ated literature and patient knowledge using the chosen case
study of neurotoxicants in the context of chronic neurodegen-
erative diseases. We will then look at what analytical
approaches may be needed to capture broad concepts such as
“potential neurotoxicants” and explore what may be missing
and remain unseen, before moving onto the challenges asso-
ciated with relating this information back to the study question
(e.g. conrming whether potential candidates are responsible
for neurotoxicity and the nal disease state). Finally, we reect
on how advances in analytical and data technologies could be
leveraged and built into long term cohort studies to build
a greater understanding of the environmental inuences on
complex disease states.
Cheminformatics to capture the
chemical space of “neurotoxicants”

As mentioned above, the key to successful NT-HR-MS is nding
chemicals of high relevance to the study question in an efficient
manner (prioritisation). A well-designed suspect screening, i.e.
searching for a discrete list of chemicals relevant to the study
question, is an ideal way to quickly ndmasses (features) and thus
candidates of particular interest. A number of lists of neuro-
toxicants were compiled for the purposes of this perspective,
summarized in Table 1 and described further in the ESI.† These
include small, carefully validated lists explained extensively in the
source publications (DNTEFFECTS49 (https://comptox.epa.gov/
dashboard/chemical_lists/dnteffects), DNTINVIVO50 (https://
This journal is © The Royal Society of Chemistry 2019
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comptox.epa.gov/dashboard/chemical_lists/dntinvivo) and
HUMANNEUROTOX51 (https://comptox.epa.gov/dashboard/
chemical_lists/humanneurotox)), where few suspect hits will ever
be found in environmental samples. The DNTPOTNEG50 (https://
comptox.epa.gov/dashboard/chemical_lists/dntpotneg) list
contains potential negative controls for neurotoxicity which, if
found, should not be associated with neurotoxic effects, enabling
a second layer of data quality verication of neurotoxicant nd-
ings. Two larger lists (NEUROTOXINS52 (https://comptox.epa.gov/
dashboard/chemical_lists/neurotoxins) and LITMINEDNEURO53,54

(https://comptox.epa.gov/dashboard/chemical_lists/
litminedneuro)) have also been compiled for this perspective. The
NEUROTOXINS list was compiled from public resources including
ChEBI,55,56 Wikipedia,57,58 T3DB,40 with further details given in the
ESI.†

LITMINEDNEURO contains chemicals associated with neuro-
toxicity compiled through systematic literature mining of
PubMed59 using Medical Subject Heading (MeSH) terms60 and
associating these with single chemical substances (where possible)
using previously published methods.61 Articles were identied in
which a nervous system disease was annotated with the MeSH
node C10 through the MeSH tree with disease subheading
“chemically induced” and subheading “toxicity”, “poisoning”, or
“adverse effects”. Nerve diseases caused by trauma and manually
identied “common English terms” that could not be associated
with any specic chemicals (e.g. “particulate matter”, “contrast
media”) were omitted. In total 4528 chemicals were identied; all
chemicals with 5 or more literature references were registered in
the Dashboard and included in the nal list. The output of this
processing was exported to Microso® Excel and is included as
ESI† and available on FigShare.53 The CASRN and the CompTox
Chemicals Dashboard substance identier (DTXSID) were
included in the spreadsheet for chemicals for which this rela-
tionship was captured and associated with MeSH identiers. The
Table 1 A range of lists for performing suspect screening of neurotoxican
collection on Zenodo62

List code Entries and referen

DNTEFFECTS (https://comptox.epa.gov/dashboard/
chemical_lists/dnteffects)

96 (ref. 49 and 63)

DNTINVIVO (https://comptox.epa.gov/dashboard/
chemical_lists/dntinvivo)

33 (ref. 50 and 64)

DNTPOTNEG (https://comptox.epa.gov/dashboard/
chemical_lists/dntpotneg)

41 (ref. 50 and 65)

HUMANNEUROTOX (https://comptox.epa.gov/
dashboard/chemical_lists/humanneurotox)

190 (ref. 51, 66 and

NEUROTOXINS (https://comptox.epa.gov/
dashboard/chemical_lists/neurotoxins)

511 (ref. 52, 62 and

LITMINEDNEURO (https://comptox.epa.gov/
dashboard/chemical_lists/litminedneuro)

1243 (ref. 53, 54 and

This journal is © The Royal Society of Chemistry 2019
overview tab of this workbook contains 1250 chemicals (1243
unique DTXSIDs) and the co-annotations with 554 nervous system
diseases in over 53 000 chemical-disease pairs (“Detail” tab). These
relationships were described in 38 192 articles. A batch search of
the Dashboard by DTXSID will return all related chemical infor-
mation needed for generating suspect lists with subject-specic
reference scores for disease or effect subsets of this list.

Automated text-mining techniques such as those described
here have the advantage of being easy to run. Since they
encompass the large and fast-growing PubMed corpus (28
million citations as of October 2018), the approach can identify
chemicals that may cause disease and which may not have yet
achieved visibility through other means. On the other hand,
data extracted through automated text-mining has also not
passed through rigorous manual vetting and is likely to contain
various types of errors. For instance, some articles discuss more
than one chemical and more than one disease, while the algo-
rithms that associate each disease with each chemical may not
construct valid pairs. Typing errors and ambiguous synonyms
in the original literature may confuse proper mapping of the
chemical identities. Additionally, the MeSH annotations do not
capture negative results (a chemical not causing a particular
neurotoxic effect) and therefore it can be difficult to disambig-
uate positive from negative reports. For instance, caffeine
(https://comptox.epa.gov/dashboard/dsstoxdb/results?
search¼DTXSID0020232&abbreviation¼DNTEFFECTS) is
documented with data demonstrating effects on neuro-
development, yet potentially neuroprotective in the context of
Parkinson's disease (PD);70–72 this can be traced via the Excel
macro provided in the ESI† in the entry for caffeine. Likewise
nicotine is documented in all the neurotoxicant lists in Table 1
(except the negative control list DNTPOTNEG (https://
comptox.epa.gov/dashboard/chemical_lists/dntpotneg)), yet
smoking may be protective in some cases in the context of
ts, compiled for this perspective. These lists are also available as a single

ces Description

Chemicals with data demonstrating effects on
neurodevelopment
A (non-exhaustive) list of compounds documented to
trigger developmental neurotoxicity (DNT) in at least two
different laboratories
Suggested potential negative controls for developmental
neurotoxicity (DNT) assays. Statins can also be used, see
https://comptox.epa.gov/dashboard/chemical_lists/statins

67) A set of chemicals identied as potential neurotoxicants by
the authors using literature searching, not necessarily
active neurotoxicants

68) A list of chemicals reported as neurotoxicants, compiled
from public resources (source le with details on
Zenodo62)

69) Chemicals associated with neurotoxicity compiled
through automated literature mining of PubMed using
MeSH terms (node C10, subheadings “chemically
induced”, “toxicity”, “poisoning”, or “adverse effects”) and
associating these with single chemical substances

Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445 | 1429
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Parkinson's disease. For example, non-smoking carriers of the
LRRK2 Gly2385Arg gene have increased risk of developing PD;73

while another study (published in German) discusses the
balance between neurotoxic and neuroprotective effects of
nicotine and smoking.74 Understanding of the context is critical
and the interface through the Excel le provided as ESI† is one
method to follow-up the literature references for specic
chemicals and understand the relevance of the suspect for their
particular study question (see examples for nicotine and
caffeine above).
Related structures: mapping “chemicals” and “substances”

Reviewing some of the lists in Table 1 via the Dashboard reveals
several interesting cases where new cheminformatics
approaches are needed and already under development to
Fig. 1 Top: Nicotine (red box) (https://comptox.epa.gov
mixtures, salts and components. Middle: Diazinon (red
search¼DTXSID9020407&abbreviation¼HUMANNEUROTOX#related
Bottom row: The PCB class (red box) (https://comptox.epa.gov/da
selected mapped individual PCB compounds. While the generic PC
enumeration of all members of the PCB class via the ChemAxon Ma
label) – an important consideration for upscaling these cheminforma
assays (active/total) in TOXCAST75 (https://comptox.epa.gov/dashbo

1430 | Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445
capture less well-dened substance information in the form of
discrete chemical structures suitable for NT-HR-MS screening
studies. Several examples are given in Fig. 1 and more extensive
details given in the ESI.†

One of the most interesting challenges associated with
capturing chemical information for NT-HR-MS related to
neurotoxicity (or any potential health impact) is relating what
we as humans consume relative to discrete chemical compo-
nents. For instance, while toxicity testing is most commonly
performed on a chemical such as caffeine, patients will instead
report coffee (or tea or energy drink) consumption. Coffee, for
instance, is documented to contain over 1000 chemical
constituents,76 which require a variety of analytical techniques
for detection.77 Nicotine is another common example where the
chemical tested is oen nicotine (or an associated salt or
mixture), but patients will instead report e.g. smoking habits. It
/dashboard/dsstoxdb/mixture_search?cid¼930) and selected
box) (https://comptox.epa.gov/dashboard/dsstoxdb/results?

-substances) and selected mapped transformation products.
shboard/dsstoxdb/results?search¼PCBs#related-substances) and
B representation is suboptimal visually, it allows a full, automated
rkush Enumeration module to create “Markush child” entries (see
tics efforts. All chemicals display the structure, DTXSID, number of
ard/chemical_lists/toxcast) and the data sources.

This journal is © The Royal Society of Chemistry 2019
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is well known that nicotine is not the only chemical in cigarettes
that may cause detrimental health effects. Several thousand
chemicals have been identied in cigarettes78,79 with 599
chemicals listed as additives.80 Capturing such knowledge (e.g.
via cross-mapping and adding as lists or related substances in
databases) will be increasingly important to help reconcile NT-
HR-MS results in the future, yet expand suspect lists even
further. The connection of individual chemical structures to
mixtures43 and the associated metadata can enable high
throughput screening of NT-HR-MS data, including e.g. toxicity
and product information,81 which are oen associated with
mixtures. It also enables better data interpretation downstream.
Furthermore, the collection of chemicals into lists combined
with well-selected metadata can ensure rapid prioritization by
score and can help rapidly pinpoint highly promising candi-
dates amongst hundreds to thousands of possible masses and
chemical structures, as demonstrated in Fig. 2. More specic
details about how such information can be included in NT-HR-
MS studies are given in the ESI.†
Capturing patient and medical
knowledge

While the preceding sections discuss capturing and exploring
the documented chemical and medical knowledge in the
context of neurotoxicity and using this during identication in
NT-HR-MS, capturing the patient knowledge is an incredibly
important part of connecting chemicals to disease. For
instance, neurodegeneration in chronic diseases such as Par-
kinson's disease takes place for many years before the rst
motor manifestations appear that dene the clinical diagnosis
of this movement disorder.83 The time span between the diag-
nosis of PD and the appearance of the initial non-motor
symptoms such as depression, REM sleep behavior disorder,
hyposmia or chronic constipation (dening the prodromal
phase of PD), can range from approximately 5 up to 30 years.
Even before this prodromal phase of the disease, neuronal
dysfunction and neuronal cell death are already ongoing and
might precede the prodromal phase by many years or even
Fig. 2 An example of how metadata can help candidate selection in hig
details in the ESI.†

This journal is © The Royal Society of Chemistry 2019
decades.84 Thus, in order to analyze the potential neuro-
toxicants and environmental factors that might lead to neuro-
degenerative diseases, one has to retrace the exposure of
patients long before the diagnosis of the disease, better still
before the rst neuronal dysfunctions appear. Furthermore, as
discussed below, there may no longer be any traces of the
chemical to which the patient was exposed in cohort samples
and thus the patient's memory of their chemical exposures may
be the only documentation that could provide clues to potential
causative agents. In the few longitudinal PD patient cohorts that
exist, such as the Luxembourg Parkinson's study,85 the rst step
in analyzing the environmental risk factors leading to neuro-
degeneration is by using detailed validated patient question-
naires retrospectively trying to trace the patient's professional
or leisure activities throughout their entire life (see Fig. 3 for
a screenshot from the REDCap86 system (https://www.project-
redcap.org/)).

These classical epidemiological strategies apply self-
reporting questionnaires that are not without aws, as there
is a non-negligible recall bias, especially considering the fact
that patients with neurodegenerative diseases are mainly
elderly people and to some degree affected by more or less
pronounced cognitive defects. Additional confusion can occur
due to misunderstanding of the terminology, for instance weed
killers approved for household use are not always understood as
a herbicide by patients and thus pesticide/herbicide exposure
might be neglected by patients in some questionnaires. Never-
theless, these questionnaires can provide rst hints towards
potential environmental risk factors using the knowledge of the
patients themselves. Anecdotal cases such as the one
mentioned above are highly subjective and difficult to avoid
with a generic survey form as in Fig. 3. However, the association
of chemicals with products (e.g. via synonym linking such as
aspirin/acetylsalicylic acid (https://comptox.epa.gov/dashboard/
dsstoxdb/results?search¼aspirin), plus ingredients listing such
as the cigarette example above) and products with exposure
scores, such as CPDat,81 may help connect what patients report
and the information required for chemical analysis. Obtaining
chemical and approved product information from authorities
and linking this to e.g. agricultural land use can support
h throughput NT-HR-MS studies, using nicotine in MetFrag.82 Further
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epidemiological studies87,88 as well as ecological assessments.89

Product information from authorities, while oen kept con-
dential, is essential for improved connections between NT-HR-
MS and epidemiology. As such, greater efforts to share this
information in the public domain are desperately needed and
several authorities are now supportive of information sharing –

as evidenced for example by the many lists now available on the
CompTox Chemicals Dashboard90 and the NORMAN Suspect
Exchange.41,42

Using current knowledge, one can hypothesise that neuro-
toxicant exposure might precede neurodegenerative diseases
such as PD by many decades, potentially during young adult-
hood or childhood (or even in utero), launching a cascade of
malfunctions progressively leading to apoptosis of dopami-
nergic neurons. This makes nding a representative sample
from patients very challenging, as ideally the sample used
should contain the neurotoxicants from that initial exposure
period, which will also potentially transform over time. See
discussion in the next section. Considering PD specically, the
risk for PD due to the usage of hydrocarbon-based compounds
such as pesticides, herbicides or fungicides is quite estab-
lished by now, especially professional pesticide usage.91,92
1432 | Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445
However, metal-based compounds are also suspected to
contribute to an increased risk for PD or atypical parkinsonian
syndromes (aPS), such as progressive supranuclear palsy (PSP)
– a rapidly progressive aPS with prominent falls and gaze palsy
as major clinical hallmarks. Some studies hypothesise a role of
toxic metals and metalloids (such as arsenic) in the patho-
genesis of PSP.93 Exposure to heavy metals (such as lead) is
suggested to be associated with an increased risk for PD.
However, difficulties in making differential diagnoses between
these disorders can confound these conclusions. A further
factor to consider is epigenetics, where epigenetic imprints
may reect exposure in the preceding generation and could
add some prior knowledge with respect to the effects observed,
if not the actual chemical exposure itself.94 Thus, while surveys
can help capture patient knowledge, in the days of “big data”
and with the trend towards personalised medicine, it is
important to consider how “on the spot” analysis and digital
archiving of small molecule data during cohort sample
collection may enable a long term generation of a baseline
dataset for greater understanding of disease progression and
diagnosis in the future.
This journal is © The Royal Society of Chemistry 2019
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Available sample matrices

When studying disease-related neurotoxicant exposure,
human-derived samples are of primary interest as these depict
the pathological changes and can be monitored over time.
However, not all of these matrices can be obtained easily and
depending on the matrix used, the results can vary signi-
cantly. For instance, traces of many compounds are very short-
lived in complex matrices like blood, as they are quickly
metabolised and excreted by the kidneys. If one analyzes the
urine, the window of detection can be delayed (the time for the
compound to be ltered out from the blood by the kidneys),
but is equally short-lived in the context of long-term diseases.
The individual's kidney function, hydration status and
metabolism complicate this aspect, as the amount of urine
and the frequency of the mictions vary hugely between each
individual patient. Not only does the time window of detection
vary, but also the concentration of the compound detected in
the matrix can vary hugely from one time period to another
and if the peak of concentration is missed, the results can
become insignicant. Additionally, if one analyzes, for
example, the total 24 h diuresis in an attempt not to miss the
detection window, the compound can become so diluted that
it can falsely render the exposure as insignicant. Further-
more, for those substances where the metabolites are not
known or documented, the analyst will have to use additional
experiments and data processing approaches to identify
potentially relevant metabolites. An impressive recent effort
shows the possibility for NT-HR-MS and advanced data pro-
cessing to provide much broader coverage than the typical
targeted urine analysis.95 Yet another very recent effort reports
initial developments towards non-invasive drug monitoring
via NT-HR-MS analysis of skin.96 However, the transient nature
of some compounds and matrices has to be kept in mind while
analysing potential neurotoxicants in human samples.
Samples containing the compounds for a longer period of time
seem to be, in this regard, more valuable. Bone is an inter-
esting matrix for metals exposure and, for example, lead
concentration can be measured with 109Cd-excited K-shell X-
ray uorescence, representing a biomarker of cumulative
lead exposure.97 Teeth have also been used to estimate long-
term exposure to metals and selected organic compounds,
with especially recent studies drawing conclusions for various
aspects of neurotoxicity.98–101 Hair sampling is a relatively non-
invasive longer-term sample, due to the continual release of
fat-soluble contaminants that have been proven to provide
biomarkers for monitoring human exposures to environ-
mental chemicals such as pesticides and metals.102 In addi-
tion, information obtained from hair analysis is more
representative of an individual's level of exposure than other
matrices such as urine and blood.103 As many (easily available)
biological matrices are so transient, linking chemical exposure
to affected pathways with e.g. metabolomics approaches will
be increasingly relevant.2,3 As recent research has indicated
a potential connection between the gut microbiome and
disease progression (see text below), there is also increasing
This journal is © The Royal Society of Chemistry 2019
interest in faecal samples and the biological, as well as
chemical, information contained within.

Apart from human-derived samples, environmental samples
can also be studied for the presence of neurotoxicants as
surrogates for human samples, knowing that biological
matrices can be challenging to access. Wastewater samples, for
example, may reveal group exposure to specic contaminants as
this matrix is a collection from a population and presents an
idea of what the bulk population of a specic area is currently
(or was) exposed to.11 As wastewater is released back into the
environment aer treatment, studying local sh, crustacea or
even resting eggs104 may show which specic neurotoxicants
have been present over a longer time frame and have bio-
accumulative potential. Sediments and soil cores, on the other
hand, may give an idea of historical exposure that may have
happened over the last few years or decades,105 although
degradation and transformation must be taken into account.
Even groundwater transects can provide interesting historical
trends.7 Such samples will generally reveal only population
trends. Dust samples are typically more representative of indi-
vidual indoor exposure, with many targeted studies now
showing health-related conclusions.106 Increasing numbers of
non-target studies are being published, including several
collaborative and ring trials,29,107 showing this to be a matrix of
great interest for future efforts, although high quality data
processing is still challenging for routine use.

The quality of the samples of interest, and thus downstream
chemical and data analysis, is highly impacted by pre-analytical
variations. Ideally, according to biobank protocols, tissue
samples should be snap-frozen in liquid nitrogen immediately
aer sampling. However, for logistical reasons, it is oen not
feasible to respect these recommendations. Thereby, it is
crucial to monitor the pre-analytical variations that can occur
aer sampling, such as the time between the sampling and the
processing of the sample, temperature, pH among others.
Especially for biomarker discovery/validation studies, it is
crucial to monitor these changes. In this regard, biobanks have
established a standard pre-analytical coding for biospecimens
to enable standardised documentation of the sample collection
and processing to limit pre-analytical variations.108 This
becomes crucial in multi-center collection studies. In general,
biobanks have stringent protocols for sample preservation and
storage, together with strict quality controls. Biobanks typically
store biospecimens derived from human individuals, such as
blood derivatives (plasma, serum), cerebrospinal uid, urine,
saliva, stool and cells,108 and are all potential matrices for
neurotoxicant analyses depending on the study interest.
Together with the samples, metadata on medical variables,
dietary information, as well as environmental data are collected
and made available for research. In terms of creating a digital
“snapshot” of small molecule conditions, analysis as close to
time of receipt will be a distinct advantage to prevent sample
degradation, with the downside of creating large variabilities
and batch effects in downstream data analysis. However, with
sufficient quality controls and strategies to best capture batch
effects to allow correction (standard measurements, internal
Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445 | 1433
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standards, pooled samples), sophisticated data processing
techniques are now available to perform such corrections.
Analysing the chemical space of
neurotoxicants
Chemical properties and analytical methods

Not all analytical methods are equally efficient and, as evi-
denced by the variety in the physico-chemical properties of
potential neurotoxicants (see Fig. 4), it is not realistic to expect
a “one size ts all” analytical method to perform a full screen of
all potential neurotoxicants in a given matrix. A detailed
description of the list and the corresponding diversity in
physico-chemical properties can be found in the ESI.† Already
the choice of solvents during extraction will have an impact on
the chemical nature of the analytes to be found in the data
acquisition. Multiple extractions as well as measurement
protocols have to be applied to enable a comprehensive picture
of the possible neurotoxicant composition of the matrix of
interest, especially in NT-HR-MS. To create long term records,
a minimum of analytical measurements capturing the
maximum amount of information possible within the
compromise of time, cost and effort will be needed to provide
enough information to direct future, more sophisticated anal-
ysis on the frozen and archived (physically and digitally)
samples. In the next section we explore some of the analytical
options available to cover this extraordinarily broad range of
Fig. 4 Box plots showing the wide range of physicochemical prop-
erties of the NEUROTOXINS list (https://comptox.epa.gov/dashboard/
chemical_lists/neurotoxins),52 according to the OPERA predictions57

and intrinsic properties from the Dashboard. (a) log values of the
biodegradation constant (log BD), octanol–water coefficient (log Kow),
water solubility in mol L�1 (log Sol), vapour pressure in mmHg (log VP)
and bioconcentration factor (log BCF) plus (b) boiling point (�C) and
monoisotopic mass (Da). The monoisotopic mass was cut-off at
1000 Da for display purposes; 11 entries had a mass between 1000 and
5040 Da.

1434 | Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445
contaminants within the category “potential neurotoxicants”.
As there are many excellent reviews on analysis,11 including one
specically on PD,109 the text below covers major analytical
aspects and decisions that we consider most likely to affect the
quality of NT-HR-MS data processing that can be performed,
while the ESI† contains some additional discussion.

When performing potentially long term studies of complex
samples, careful sample pre-processing steps are required for
the analysis, such as the removal of highly abundant matrix
components such as lipids and/or pigments that could interfere
with the analysis. However, the use of any sample clean-up
technique, as well as the choice of the extraction method,
carries the risk of eliminating the actual compounds of interest.
Furthermore, careful but simple sample preparation and pre-
treatment is required that will enable minimum interferences
and appropriate normalisation of samples for data processing
and subsequent identication efforts over years of data collec-
tion. This is especially challenging for unknowns, as the usual
techniques applied to targeted compounds (internal standard,
recovery and matrix correction) cannot be applied; furthermore
as the structure is not known it is challenging to select closely-
matching substances. Comparing potential neurotoxicants in
samples (especially e.g. faecal matter110 or house dust) from
different groups in cohort studies requires the normalisation of
the qualitative or quantitative signal. For instance, the
concentration measured in an extract of stool is affected by the
properties of the sample (water content, percentage of undi-
gested matter, etc.) beyond even the complexity of wastewater
samples, which have been “averaged” in a way throughout the
journey to the treatment plant. In the metabolomics context,
the retrospective normalisation of the measurement signal to
the overall metabolite content (total ion chromatogram or TIC
normalisation) or the dry weight of the sample are most
common. While the TIC normalisation works only under the
(theoretical) assumption that the overall metabolic prole is
constant and comparable in all samples of the sequence, the
retrospective normalisation to the sample dry weight makes it
impossible to adjust sample preparation steps, like the amount
of extraction uid, to achieve best comparability between
samples. Such issues make high quality non-targeted data
processing and the generation of robust statistics extremely
challenging, and will require some dedicated efforts in the
coming years, as it is easy for such issues to be inadvertently
disregarded, especially in automated workows.
Measuring the chemical diversity of potential neurotoxicants

In terms of measurement, a large percentage of the neuro-
toxicants have polarities and ionizable groups that make these
molecules amenable to analysis by liquid chromatography
high resolution mass spectrometry (LC-HRMS). API tech-
niques like electrospray ionisation (ESI) and atmospheric
chemical ionisation (APCI) has dramatically improved
compound discovery because of enhanced ionisation effi-
ciency, as well as preventing the need for derivatisation (oen
the case with GC-MS) that may complicate data interpretation.
Analytes that easily lose protons, mainly due to their gas phase
This journal is © The Royal Society of Chemistry 2019
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acidity, can be analyzed by negative ESI, while strongly basic
compounds in the gas phase are ionised with ease in positive
mode.111,112 Weaker bases, on the other hand, are better
detected with APCI ionisation.113 Some potential neuro-
toxicants that can be analyzed by APCI are hexamethylmel-
amine (https://comptox.epa.gov/dashboard/dsstoxdb/results?
search¼DTXSID4022579), almitrine (https://comptox.epa.gov/
dashboard/dsstoxdb/results?search¼DTXSID4057899), and
diphenylhydantoin (https://comptox.epa.gov/dashboard/
dsstoxdb/results?search¼DTXSID8020541), which have func-
tional groups that are known to ionise better using APCI
(triazine for the rst two and phenylurea for the last). Endo-
sulfan (https://comptox.epa.gov/dashboard/dsstoxdb/results?
search¼DTXSID1020560) has also been shown to be APCI
amenable, which provides better precursor ion information
compared to EI analysis.114 Another technique that may nd
more utility in the future is atmospheric pressure photo-
ionisation (APPI) for the analysis of compounds that ionise
poorly using the ionisation techniques mentioned thus far.115

Another lesson learned from the neurotoxicant mapping is
that many of these compounds are very polar and thus tend to
elute at void volume when using reversed phase LC. Because
unretained matrix components like macromolecules and salts
also come out at or near the void time, hydrophilic molecules
tend to suffer from ionisation suppression. Some specic exam-
ples include amygdalin (https://comptox.epa.gov/dashboard/
dsstoxdb/results?search¼DTXSID00897159), stavudine
(https://comptox.epa.gov/dashboard/dsstoxdb/results?
search¼DTXSID1023819), udarabine (https://comptox.epa.gov/
dashboard/dsstoxdb/results?search¼DTXSID4039657) and allo-
purinol (https://comptox.epa.gov/dashboard/dsstoxdb/results?
search¼DTXSID4022573). Hydrophilic interaction liquid chro-
matography (HILIC) is oen able to retain these compounds
better, thus providing better analyte signal integrity. HILIC would
potentially open up unique chemical space that has received very
little attention in environmental analysis up until recent years.1

Enabling a better separation of compounds of interest will be
critical to obtaining sufficient and clean fragmentation infor-
mation to assist in identication and conrmation, but requires
the addition of yet another method to the NT-HR-MS toolbox.

While derivatisation in LC-MS may sometimes be necessary
to improve the analytical signal116 and can be used to identify
compounds with certain toxicophores,23 complicated data
interpretation oen ensues. Measurements made with and
without derivatisation, followed by customised data processing,
may ease this process in the coming years. Another group of
neurotoxicants that require special attention are the toxicants
with masses above 1000 Da. For these molecules, multiple
charging can be expected in NT-HR-MS and care must be taken
when doing data analysis. While multiple charges can be
detected inmany non-target workows, these are not commonly
investigated in great detail and more work needs to be done in
the mass spectrometric analysis of these analytes (see also
discussion below).

Further inspection of the neurotoxicant list reveals that
many entries are either heavy metals or contain heavy metals.
Metals like chromium, lead, mercury, nickel, silver, and
This journal is © The Royal Society of Chemistry 2019
thallium, organometallics like dimethyl and ethyl mercury, and
the metalloid arsenic have all been reported to have neurotoxic
effects. However, many of these compounds are neither LC nor
GC amenable. For these compounds one needs to perform
a spectrophotometric analysis or use an inductively coupled
plasma to convert these analytes to the gas phase. Preliminary
results in the context of the ENTACT project revealed that some
arsenic-containing organometallic compounds can indeed be
detected by LC-NT-HR-MS with very informative fragmentation
patterns, showing that these should certainly be considered in
the interpretation of NT-HR-MS data, although not currently
covered by many workows – this integration will be critical in
future years.
Looking beyond small molecules (toxic proteins)

Apart from small molecules, exposure to toxic bio-
macromolecules (>1000 Da) may also be highly relevant in the
context of neurotoxicity. In this context, neurotoxic as well as
amyloidogenic (https://en.wikipedia.org/wiki/Amyloid) proteins
are of particular relevance as they have been implicated as
causal factors in Alzheimer's and Parkinson's diseases.117 In
particular, prions (misfolded proteins with infectious proper-
ties) have been implicated in triggering amyloid-beta, alpha-
synuclein and tau misfolding. Once the misfolding of endoge-
nous proteins occurs, propagation of misfolding may occur
through mechanisms similar to those that underlie prion
pathogenesis.118,119 Importantly, the causal agent for the initial
misfolding may be distant from the brain regions that are
ultimately affected by the diseases.120,121 In this context, the
enteric nervous system has been implicated.122 Based on these
observations, it has been postulated that molecules produced
by the gut microbiota may trigger a slowly ascending patho-
logical process.123,124 For instance, the gut microbiota of newly
diagnosed Parkinson's disease patients is enriched in known
mucus-foraging bacteria.125 Furthermore, apart from other
bacterial toxins,126 proteins have been posited to trigger the
misfolding of proteins in enteric neurons.127 Thus, a combina-
tion of mucus erosion and a resulting exposure to higher levels
of microbial amyloidogenic proteins might at least play a role in
Parkinson's disease. To obtain pointers to causal mechanisms,
it is therefore essential to not only consider small molecules as
potential causal agents but also proteins. This means that
integrated multi-omic analyses will be highly relevant for
resolving potential combinatorial mechanisms involved in
neurotoxicity.

As mentioned above, it is possible that protein and peptide
signals may be observed in small molecule measurements. This
is a challenge that computational workows will have to tackle
increasingly in the future, with respect to the multiple charge
states, large masses and also dealing with this information in
compatible ways. While multi-omic integration is becoming
a common buzzword, the reality is that workows and formats
are still largely incompatible. For instance, the protein struc-
tures for download in the Database of Bacterial ExoToxins for
Human128 (DBETH, http://www.hpppi.iicb.res.in/btox/) are not
in a format compatible with compound databases for small
Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445 | 1435
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molecules such as the CompTox Chemicals Dashboard or any
common small molecule cheminformatics formats. Thus, even
obtaining chemical information such as masses and formulas
needed for typical suspect or non-target screening workows is
already a challenge with this style of database and better inte-
gration will be needed in the future.
Relating chemical analytical results
from NT-HR-MS to biology
Biological conrmation of neurotoxic effects

While a critical part of NT-HR-MS is identication and analyt-
ical conrmation of suspected chemicals with reference stan-
dards (where possible), the results must be related back to the
original study question. In environmental studies this is quite
oen performed using bioassays, as in effect-directed analysis.
A recent article contains extensive material discussing
approaches for screening neurotoxicity from an ecological
standpoint (“econeurotoxicity”) and we refer readers to Legradi
et al.129 rather than reproducing a summarised form of this
discussion here. The material below provides additional
perspectives.

Specic features that distinguish the central nervous system
(CNS) from other organs need to be considered when choosing
the biological systems, read-outs and methods to test the
potential neurotoxic effects of environmental chemicals. These
features include the presence of the blood–brain barrier, the
high lipid content of the nervous tissue, the high energy
requirement of neurons, the particular intercellular signaling
system (synaptic transmission), the neural cell structure (long
axonal projections), the presence of specic reactive endoge-
nous molecules (e.g. dopamine) and the post-mitotic nature of
neuronal cells (making them more sensitive to age-related
accumulation of cellular damage130). In addition, the heteroge-
neity of the brain tissue and the sometimes highly selective
susceptibility of certain neuronal cell types to only one or
another neurotoxic substance calls for the use of more than one
test system to maximise the chances of identifying hazardous
effects of a potentially new neurotoxic compound.

A current tendency in the eld of (neuro)toxicity testing is to
transition from more observational projects using rodents to
more mechanistic studies involving the use of in vitro (cellular)
test systems.131 The latter include primary neural cells,
immortalised neural cell lines and stem cells of non-human or
human origin. Given species-specic responses to neurotoxic
substances, even between rodents and humans, working with
human derived cells (as opposed to cells from non-human
origin) maximises the chances for making predictions on
neurotoxicity relevant to the human nervous system. However,
access to human primary cells is limited, given that they are
derived from aborted foetuses or from brain surgery resections.
Although less limited, isolation of primary cells from rodents is
laborious and requires animal sacrices for each new experi-
ment. This explains the widespread use of rodent or human cell
lines for neurotoxicity testing, even though the physiological
relevance of the results generated in these systems are more
1436 | Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445
questionable due to their tumorigenic origin or the immortal-
isation process applied (e.g. overexpression of oncogenes or
telomerase). A very dynamic and expanding eld is the use of
mouse or human derived embryonic stem cells (ESCs) and of
human induced pluripotent stem cells (iPSCs), which have been
derived more recently by reprogramming of human somatic
cells.132,133 A panoply of protocols have been developed to
differentiate iPSCs into different neural cell types.134 Exposing
these cells to potential neurotoxicants during the differentia-
tion process allows testing more specically for developmental
neurotoxicity. Finally, rapid progress is ongoing in the devel-
opment of 3D organoid models of the brain, which are also
derived from iPSCs.135–137 Here the aim is to better mimic the
complexity of the human brain, or certain parts of it (e.g.
midbrain, relevant for Parkinson's disease research), by
creating in vitro tissue structures including several cell types in
a spatial organisation that reects closely the physiological
situation, but that offer easy access for experimental
manipulations.

Common endpoints for in vitro neurotoxicity testing and the
analytical approaches used for measuring those endpoints have
been reviewed in Schmidt et al.131with a focus on thosemethods
that allow for high-throughput screening. Briey, the endpoints
can be grouped into viability, morphological and functional
read-outs. Viability assays allow testing for neurotoxicity by
determining whether one or several types of neural cells are
more sensitive to compounds of interest than other cell types. At
sub-cytotoxic concentrations, compounds can be further tested
for their impact on neural cell morphology or function with
endpoints including the monitoring of neurite outgrowth,
spontaneous electrical activity of neuronal networks, receptor
signaling and cell communication, reactive oxygen species
formation, cell migration, mitochondrial transport, calcium
storage and release, cell membrane potential, gliosis (i.e.
proliferation of glial cells), myelination, network formation,
and synaptogenesis. A number of these endpoints, as well as
cell viability, can be measured by high-throughput screens
based on absorbance, uorescence or luminescence measure-
ments in multi-well plates. An interesting, more recent devel-
opment are microelectrode arrays (MEA) that allow for the
measurement of extracellular electrical elds of neurons that
grow on them. The mean ring rate has been proposed to be the
most sensitive parameter for neurotoxicity screening via this
method, which allows measurement of the spontaneous elec-
trical activity arising in neural networks at relatively high
throughput (24-well MEA plates).138 High-content imaging, i.e.
automated uorescent imaging of xed or live cells in a high-
throughput manner, is a technique that continues to undergo
important developments, but has already become a central part
of neuroscience and related compound screens.139 Tran-
scriptomics, miRNA proling and metabolomics are used as
analytical tools to characterise molecular changes that occur in
response to neurotoxicant exposure. These techniques hold
promise for dening molecular signatures that are specic for
certain chemicals, providing a read-out that can be more
sensitive than morphological changes.140,141
This journal is © The Royal Society of Chemistry 2019
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Susceptibility to (neuro)toxicants is dened to a certain
extent by the genetic background of each individual. Large
cohorts of exposed versus non-exposed individuals are necessary
to link genes and pathways with neurotoxicants of interest via
genome-wide association studies. A way to circumvent this
limitation is to work with model organisms in the lab that are
easy to manipulate genetically. Budding yeast can be used for
toxicogenomic screens in a highly time and cost-efficient way,
given the existence of barcoded genome-wide gene deletion
collections.142 Candidate susceptibility genes identied in this
simple eukaryotic model organism can subsequently be vali-
dated in human cell culture models, if human homologs of the
yeast genes exist. Humanised yeast models relevant for Par-
kinson's disease research have been created through over-
expression in the yeast model of the human protein alpha-
synuclein143 and have already successfully been used for high-
throughput genetic144 and drug screens.145 Similarly, these
models could be used to implement neurotoxicity screens and
identify compounds that may trigger or advance the onset of
PD. Roundworm (Caenorhabditis elegans) and zebrash (Danio
rerio) have emerged as simplied multicellular (non-
mammalian) model organisms to be used in gene–environ-
ment interaction studies.146 Both organisms have well-
characterised nervous systems; additionally, neuro-
developmental processes can be visualised conveniently in vivo
given the transparency of C. elegans and zebrash larvae.
Neurotoxicity can also be probed in these animals via behav-
ioural studies using computerised tracking systems, which
enable high-throughput screens. Candidate susceptibility genes
and/or pathways emerging from studies on these simpler model
organisms have to be validated in more focused studies in
human cell culture systems such as the ones described above.
The challenges faced in the toxicogenomics and toxicogenetics
elds are similar in many ways to the pharmacogenomics and
pharmacogenetics elds and closer cooperation and collabo-
ration between the elds would be benecial; especially the
environmental and toxicological elds could benet from
greater mathematical modelling and prediction such as the
virtual physiological human147 and the Avicenna Alliance
(Association for Predictive Medicine).148
Relating chemicals/environment to disease

While the rst instance for conrming potential neurotoxic
effects is a biological conrmation with relatively simple
models such as those described above, the ultimate aim will be
to relate the chemical exposure to the disease state in humans.
As mentioned above, complex, long-term neurodegenerative
disorders can involve a lifetime of exposure and yield multiple
symptoms that may arise from vastly different causes, whereas
the same causes may yield different symptoms in patients.
Thus, it remains to be determined how compounds detected
with NT-HR-MS can be integrated into the pathomechanism of
the disease. For instance, rotenone (https://comptox.epa.gov/
dashboard/dsstoxdb/results?search¼DTXSID6021248) (a
broad-spectrum insecticide) and paraquat (https://
comptox.epa.gov/dashboard/dsstoxdb/results?
This journal is © The Royal Society of Chemistry 2019
search¼DTXSID3034799) (a widely used herbicide) are shown to
induce oxidative stress and cytotoxicity via the activation of
microglia NOX2, thus leading to cell death of dopaminergic
neurons.149 In other cases, there is clear evidence indicating
gene–environment interactions. In one case study, a two-fold
difference in PD risk was observed for polymorphic forms of
CYP2D6, i.e. the combination of a genetic inuence and pesti-
cide exposure was needed for increased risk of developing PD.150

However, for many compounds the biomechanistic role in the
disease process is not clear. The world-wide import and export
of food, for example, has implications in exposure (and thus
source attribution and suspect screening efforts) as the food we
consume is no longer typically produced in the local area, but
rather internationally in regions with completely different
pesticide use and regulations (e.g. 75–95% of pesticide and
veterinary antibiotic use associated with food products in Swe-
den are estimated to occur outside Sweden due to food
imports).151,152 An additional challenge is the promiscuity or
lack of specicity of many small molecules,153 which may bind
to many different proteins with many different affinities,
rendering establishing clean cause–effect relationships chal-
lenging. As it may also be difficult to predict toxicity for some
small molecules, it will be important to discover the relevant
effects to warn of certain substances and substance classes. All
these factors must be considered in screening studies, requiring
worldwide data exchange and a far greater (potential) substance
coverage than offered by limited targeted chemical analysis.

It is clear that NT-HR-MS has a lot of potential to provide
comprehensive information about potential environmental
contaminants and metabolite signatures that may inuence
disease states. Samples taken and measured now can be
archived (both digitally and physically) and screened retro-
spectively such that chemicals identied in the future could be
traced back to determine whether these have, in fact, been
present in samples for many years, similar to the NORMAN
Early Warning System (NormaNEWS)12 or the daily monitoring
of the Rhine river.1 However, to do this for long term diseases
such as PD will require an incredible investment into high
quality patient cohorts, biobanking of the samples, appropriate
analytical measurements, state-of-the-art data analysis,
carefully-designed biological validation and cross-disciplinary
interpretation of the myriad of ensuing results. Such research
extends far beyond a single few-year research project or a single
research group, or even a dedicated institution such as the
Luxembourg Centre for Systems Biomedicine, but requires
international collaboration and support for the open exchange
of information (within legal frameworks such as data protection
and respecting patient condentiality etc.).

Conclusions/perspectives

With this perspective we have started a conversation amongst
several research groups at one institute and close collaborators
to scope the breadth of experience needed to begin to perform
a prospective, high quality, comprehensive assessment of
potential small molecule neurotoxicants in environmental and
biological samples using cheminformatics and non-target high
Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445 | 1437
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resolution mass spectrometry, and what would be required to
link this back to the disease state. Screening the thousands of
chemicals potentially involved is a huge task that can be eased
signicantly by using some carefully-considered chem-
informatics, literature-based and data processing methods and
we hope users nd the resources prepared in this article a useful
way to start to explore different approaches for data processing.
While we have prepared and described the methods using
resources we use and develop, the data les and concepts are
transferable to the many excellent workows and approaches
already available. Realistically, non-target MS-based analysis
will have to evolve towards a few harmonised methods to ensure
sufficient coverage of substances of interest in different
contexts. However, compounds not covered by small molecule
HR-MS analysis also play a dening role in diseases, such as
larger molecules (requiring multi-omics approaches) or metals
in salt forms (requiring alternative analysis) and these also need
consideration in the bigger picture. Despite the compilation of
many chemical lists, it is also clear that these chemicals
transform and, although not covered in detail here, the candi-
date space for NT-HR-MS can and should be extended to screen
for predicted transformation products and metabolites of
potential neurotoxicants. Another area to explore in future work
is a better connection to the concept of disease maps, such as
the Parkinson's disease map,154 which can be queried compu-
tationally – and thus potentially integrated into mass spectral
workows – via interfaces such as MINERVA.155

While hypothesis generation can begin already from data
snapshots on patients and controls at certain time points, in
reality the prioritisation and discovery of “driving” neuro-
toxicants will depend on forming high quality, long term data-
sets involving cohorts where participants are recruited even
before any symptoms are displayed, so that long term trends
become clear. Ideally, this would be extended across multiple
cohorts to allow hypothesis development in one cohort and
replication in another based on chemical-environmental strat-
ication. Alternatively, the increasing development of sensors
and portable devices that can be given to patients and the
general population open up new opportunities for citizen
science, crowd sourcing of data and greater collaborative efforts
to form detailed sampling campaigns that would provide
complementary information to cohort data. The increasing
willingness to share data in open resources such as the Global
Natural Products Social Molecular Networking (GNPS)156

repository will open up many new opportunities in the coming
years. This includes greater availability of larger public datasets
on which to develop machine learning and articial intelligence
approaches to improve identication and classication of
relevant chemicals and exposures.157 High resolution mass
spectrometry of small molecules is certainly a well-placed
technique to start building the knowledge to help answer
these extremely complicated questions, assuming the long term
support is available to create and maintain such extremely
valuable datasets. In the end, however, this will provide only
a starting point for further investigations. In addition to hands
on biological experiments to elucidate possible exposure routes
or gene–environment interactions, additional efforts in
1438 | Environ. Sci.: Processes Impacts, 2019, 21, 1426–1445
computational modeling and simulation using mathematical
and mechanistic models will be needed to turn identied
chemicals into a greater understanding of an extremely complex
system and potential environmental causes of chronic diseases.
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K. J. Helmcke, D. S. Avila, D. Sledge, R. H. Ali,
L. Upchurch and S. Donerly, Gene–environment
interactions: neurodegeneration in non-mammals and
mammals, NeuroToxicology, 2010, 31, 582–588.

147 Virtual Physiological Human Institute, Virtual Physiological
Human Institute Website, http://www.vph-institute.org/,
accessed 20 November 2018.

148 Avicenna Alliance, Avicenna Alliance, https://avicenna-
alliance.com/, accessed 20 November 2018.

149 Z. Nayernia, V. Jaquet and K.-H. Krause, New Insights on
NOX Enzymes in the Central Nervous System, Antioxid.
Redox Signaling, 2014, 20, 2815–2837.

150 A. Elbaz, C. Levecque, J. Clavel, J.-S. Vidal, F. Richard,
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