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Serum fingerprinting by slippery liquid-infused
porous SERS for non-invasive lung cancer
detection†

Chenlei Cai,‡a Yujie Liu,‡b Jiayu Li,a Lei Wang*a and Kun Zhang *b

Lung cancer (LC) remains the most commonly diagnosed cancer. Timely diagnosis is crucial for improving

the clinical outcomes of LC patients. Serum molecular patterns reflect the physiological and pathological

status of individuals, and are promising as diagnostic targets for malignancies. Here, we report a spectro-

scopic method for the rapid identification of LC based on the label-free fingerprinting of clinical serum

samples with slippery liquid-infused porous surface-enhanced Raman spectroscopy (SLIPSERS). We first

demonstrate the capability of SLIPSERS for the delivery and preconcentration of serum molecules into the

SERS hot spots from an evaporating liquid droplet, enabling the acquisition of vibrational fingerprints of

serum molecules with only 1 μL of blood serum in minutes. The averaged SLIPSERS signals of the serum

sample from a cohort of 33 LC patients and 23 healthy controls reveal both metabolic and biomacromol-

cular alterations under LC conditions. By analyzing the SLIPSERS data with chemometric methods, we

further demonstrate that the SLIPSERS profiling of serum molecular patterns allows the reliable discrimi-

nation of LCs from healthy controls. Considering the ease of operation and high efficiency, our SLIPSERS-

based serum biopsy method should hold great potential for non-invasive LC diagnosis.

Introduction

Lung cancer (LC) is the leading cause of cancer mortality
worldwide, with an estimated 1.8 million deaths each year.1

Despite the availability of new treatments, about 75% of LC
cases are diagnosed at the advanced stages where treatments
are less effective, ultimately leading to poor prognosis and a
low 5-year survival rate of <20%.2–5 Early diagnosis is crucial to
improve the clinical outcomes of patients.6 Low-dose com-
puted tomography (LDCT) screening has led to a significant
decrease in LC mortality among high-risk persons.7,8 However,
LDCT has some disadvantages, including the high false-posi-
tive rate, overdiagnosis, and radiation exposure, which can
limit its application in the longitudinal monitoring of disease
and therapeutic response.9 Hence, there is an unmet need to
develop alternative non-invasive approaches to LC diagnosis.

Molecular biopsy in blood offers an attractive means of
managing LC by analysing circulating tumour biomarkers in a
less invasive and repeatable way.10–12 The targeted detection of
blood proteins and nucleic acids has been attempted and
found to be useful in LC evaluation.12–15 For example, the
quantification of exosomal PD-L1 in the blood allows LCs to
be distinguished from healthy controls and tracking of the
response to immunotherapy.16 Despite their utility, biomarker-
based targeted assays often suffer from tedious manipulations
such as sample isolation, labelling, amplification, and mul-
tiple washings, insufficient specificity to tumour heterogeneity,
and more importantly, the risk of failing to capture unknown,
potentially diagnostic markers. In this regard, direct label-free
profiling of the blood serum/plasma can provide a simpler and
more efficient access to the tumour molecular profile.17–25

Raman spectroscopy allows the extraction of molecular fin-
gerprints by measuring the inelastic scattering spectra associ-
ated with molecular vibration and rotation.26 Although the
Raman response of biomolecules is weak, surface-enhanced
Raman spectroscopy (SERS) can largely enhance the signal
intensity via excitation of the localized surface plasmon reso-
nance of metal nanostructures, thus enabling sensitive chemi-
cal and biological analysis.27,28 As a non-destructive analytical
technique, SERS has been successfully used for direct profiling
of the molecular patterns from extracellular vesicles, live cells,
biofluids, and even tissues.29–34 Han et al. reported that the
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SERS profiling of plasma-derived exosomes could be used for
the detection of osteosarcoma.29 Few studies have proved the
feasibility of direct SERS fingerprinting of patient serum for
LC diagnosis.35,36 Notably, a prerequisite for obtaining high-
quality Raman spectra of biomolecules is to place them in
SERS-active regions (the so-called electromagnetic hotspots).
The evaporation of an aqueous droplet containing analytes on
a plasmonic substrate is one of the most common approaches
used to acquire SERS fingerprints of a sample.27

Unfortunately, diffusion of molecules over the hydrophilic sub-
strate during evaporation can result in insufficient molecular
adsorption in the SERS-sensitive regions, and thereby SERS
signatures with a low signal-to-noise ratio and reproducibility.
The deployment of superhydrophobic surfaces provides an
effective way for enriching analytes at the plasmon-active
region, and hence improving the quality of SERS spectra.29,33

The rapid fabrication of superhydrophobic SERS substrates,
however, remains an experimental challenge. The current
methods require either precise micro/nano engineering or
time-cost surface fluorosilylation, which hampers rapid and
large-scale clinical testing. Slippery liquid infused porous
SERS (SLIPSERS) is a simple yet effective method for the
manipulation and SERS detection of analytes on the basis of
droplet evaporation on a slippery, omniphobic surface.37 By
biomimicking the natural pitcher plant, SLIPS provides a
nearly pinning-free substrate, enabling the simultaneous com-
plete enrichment of analytes and SERS matrices (e.g., gold
nanoparticles (Au NPs)) within an evaporating liquid droplet.
The accumulation of analytes at the tiny detection area gives
rise to a largely amplified SERS signal.37–41 Although highly
feasible for the measurement of trace molecules in standard
solutions, the SLIPSERS technique has not yet been adapted
for extracting cancer-associated molecular patterns from clini-
cal serum samples.

Here we report the first SLIPSERS analysis of a patient
serum (1 μL) for LC diagnosis (Fig. 1). The use of the slippery
substrate enables serum components to be enriched and deli-
vered into the SERS-active area, without external optical, elec-
trical, magnetic, and thermal forces. We show that the rich
electromagnetic hotspots and high local concentration of
serum components in SLIPSERS permit high-fidelity acqui-
sition of serum Raman fingerprints with abundant tumour-
specific molecular information. The multivariate analysis of
SLIPSERS spectra allows the identification of LC from healthy
controls. Our results reveal that label-free serum analysis by

SLIPSERS has great potential for the non-invasive diagnosis of
LC.

Experimental section
Chemicals

Au NPs (1 OD, 60 nm) were purchased from BBI solutions
(Cardiff, UK), which were characterized by UV-vis spectroscopy
(Nanodrop 2000) and transmission electron microscopy (TEM,
JEOL JEM-2100F) (Fig. S1 and S2†). Teflon membranes
(200 nm pore size, 75 μm thickness) were purchased from
ADVANTEC (Tokyo, Japan). The DuPont Krytox perfluoropoly-
ether GPL 103 lubricant was purchased from the Chemours
Company. Deionized water (resistivity 18.2 MΩ cm) purified on
a MilliQ (Millipore, Germany) system was used for the prepa-
ration of all aqueous solutions.

Slippery substrate preparation

Teflon membranes (diameter 3 mm) were attached on a glass
slide with double-sided adhesive tape. Dupont GPL 103 was
then pipetted onto the Teflon membranes. The lubricated
membranes were then spun at 3000g for 10 s to remove the
excess lubricating liquid.

Serum preparation

Blood samples in red-topped vacuum blood collection tubes
with a clot activator were kept upright for 0.5–1 h at room
temperature. After clotting, the samples were centrifuged at
2000g for 10 min at 4 °C. The serum in the supernatant was
collected and ultrafiltered through a 3 kDa ultrafiltration tube
(Sartorius). The deproteinized serum was aliquoted and stored
at −80 °C for further use. This study was approved by the
ethics committee of Shanghai Pulmonary Hospital affiliated to
Tongji University (L20-337-1). A written informed consent was
obtained from each participant.

SLPSERS detection

First, Au NPs were concentrated tenfold (10 OD) by centrifu-
gation at 4500 rpm for 5 min. 5 μL of Au NPs was fully mixed
with 1 μL of serum, and then loaded onto the slippery mem-
brane substrate with a pipette. The sample was kept at 60 °C to
evaporate the solvent and form a small black aggregate, which
consisted of closely packed Au NPs and the serum com-
ponents. SERS fingerprinting was conducted on this aggregate

Fig. 1 Schematic illustration of SLIPSERS fingerprinting of blood serum for the identification of lung cancer.
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using a home-built upright confocal Raman microscope
equipped with a 638 nm He–Ne laser, a 50× (NA = 0.55) objec-
tive lens, and an Andor SR500i-D2 spectrometer with a
600 grooves per mm grating. The SERS spectra were recorded
in the range of 400–1800 cm−1. At least five different spectra
were collected from each substrate and three replicates for
individual serum samples were recorded. The laser power on
the sample surface was 0.5 mW. The acquisition time for each
spectrum was 0.5 s with 20 accumulations. Prior to determi-
nation, the system was calibrated with the Raman peak of
single crystalline silicon at 520.7 cm−1.

Analysis of SLIPSERS data

Before analysis, the raw SLIPSERS spectra were subjected to
the following pre-treatments: (a) removing the cosmic rays; (b)
smoothing with the Savitzky–Golay filter (polynomial order 3
and points of window 11); and (c) baseline correction with the
asymmetric least-squares method. Multivariate statistical ana-
lysis including principal component analysis (PCA), partial
least squares discriminant analysis (PLS-DA), orthogonal pro-
jections to latent structures-discriminant analysis (OPLS-DA),
and receiver operating characteristic (ROC) curve analysis
(Tester) were performed using MetaboAnalyst 5.0 (McGill
University, Montreal, Canada, https://www.metaboanalyst.ca/).

Results and discussion
Characterization of SLIPSERS

The slippery substrate was prepared by spin coating of the per-
fluorinated lubricant (DuPont Krytox GPL 103) on a Teflon
membrane (200 nm pore size) (see details in the Experimental
section). As previously observed by Wong and others,37–41 the
low surface tension enables the perfluorinated substrate to be
immiscible for aqueous solutions, providing a quite simple yet
effective means for the delivery and enrichment of analyte
molecules within the SERS hotspots by pinning-free droplet
evaporation (Fig. 2a). To demonstrate this, we first pipetted
5 μL of Au NP solution (10 OD) containing 10−10 mole of
methylene blue onto the slippery substrate, followed by stand-
ing for 5 min at 60 °C to allow for droplet evaporation. As
demonstrated in Fig. 2b, the evaporation of the mixture solu-
tion results in clustering of the metal NPs at the membrane
surface to form a small bluish-black aggregate. We monitored
changes in the droplet size during evaporation and observed a
1.53-fold decrease in the diameter of the liquid droplet after
drying (Fig. 2c). No apparent Au particles and dye molecules
were observed outside the NP aggregate, indicating a high col-
lection efficiency of the SLIPS substrate (Fig. 2b and S3†).
Scanning electron microscopic (SEM) analysis reveals that Au
NPs are closely packed into a 3D multilayer architecture in the
aggregate (Fig. 2d), forming a large number of densely distrib-
uted plasmonic hotspots for Raman enhancement, as theoreti-
cally supported by the numerical electromagnetic simulation
(Fig. 2e). The SERS characterization further demonstrates that
the Raman signal of methylene blue is only enhanced by the

closely packed Au NPs (see peak assignments in Table S1†),
with no SERS signal in the surrounding area. These results
indicate that the SLIPSERS platform allows for the highly
efficient concentration and detection of analytes in aqueous
fluids.

SLIPSERS fingerprinting of the human serum

Having confirmed the ability of SLIPSERS with regard to the
preconcentration and detection of analytes in liquid solutions,
we investigated whether this platform could be applied to
clinical serum samples. We collected the blood serum from 33
patients pathologically diagnosed with non-small-cell lung
cancer and 23 healthy controls. 5 μL of Au NPs was mixed with
1 μL of deproteinized serum, and then subjected to SLIPSERS
analysis. An intense SERS signal was observed from the Au NP
aggregate compared to that of the PBS control (Fig. 3a). To
minimize the effect of background signals, spectral preproces-
sing, including cosmic ray removal, denoising, baseline correc-
tion, and min–max normalization, was conducted before
further data analysis (Fig. S4†). As shown in Fig. 3b, the nor-
malized SERS signatures are reproducible across different sites
of the serum containing the Au NP cluster, although a moder-

Fig. 2 SLPS characterization. (a) Scheme of SLIPSERS detection. (b)
Optical photographs of Au NPs before and after solvent evaporation on
the SLIP surface. The brightness and contrast of the photographs were
adjusted slightly for visualization. Scale bars: 5 mm. (c) Time-dependent
variation of the droplet diameter during evaporation. (d) The SEM image
of closely packed Au NPs in the 3D aggregate. Au spraying was con-
ducted to improve the sample conductivity. Scale bar: 1 μm. (e) FDTD
simulation showing spatial distribution of the electric field at Au surfaces
upon 638 nm laser excitation. (f ) SLIPSERS detection of methylene blue
(10−10 mol) from the 3D Au aggregate and the bare SLIP surface. The
spectra were vertically translated for clarity.
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ate variation in the relative intensities of some peaks can be
observed. The relative standard deviation (RSD) values of the
major band intensities vary in the range from 7.66% to 33.9%
with a median value of 18.57%. We infer that the variation is
caused by the chemical complexity of the serum, and the fact
that a few molecules located in the tiny hot spots contribute to
most of the signal response in SERS.42 To this end, multiple
spectra per sample were measured with three replicates for
each serum. Fig. 3c shows the mean serum spectra of two
healthy donors. The two spectra exhibit apparent differences
between 750–900 cm−1 and 1100–1500 cm−1, suggesting the

heterogeneity of the serum molecular pattern of individuals.
Such spectral heterogeneity is also reflected by analysing the
serum from LC patients (Fig. 3d).

Fig. 4a shows the SLIPSERS spectra of 33 LC patients and
23 healthy controls. Consistent with the above discussion, the
signal heterogeneity between individual samples is very promi-
nent. Nonetheless, we can observe some difference between
the two groups. For example, the overall intensity of bands
around 850 cm−1 in the LC group is slightly weaker than that
in the healthy control group. In contrast, for peaks near
1600 cm−1, the overall signal intensity in the patient group is
somewhat greater than that in the healthy control group. To
intuitively examine the spectral information for the two
groups, the averaged SLIPSERS spectra of all LC patients and
healthy controls are respectively plotted in Fig. 4b. As expected,
the ensemble-averaged signals of the patient and control
groups are quite similar, with abundant peaks arising from
the metabolites, nucleic acids, and proteins (see the peak posi-
tions and assignments of the vibrational modes in Table S2,
ESI†). The difference spectrum shows a signal increase in the
range of 1550–1690 cm−1 (phenylalanine, amide I), and some
degree of signal decrease at around 640 (tyrosine, lactose), 850
(tyrosine), 1050 (lipids, glycogen), and 1140 cm−1 (mannose)
for the LC group. Our result is in accordance with the previous
reports that many amino acids, saccharides, and lipids are
downregulated in LC, while the levels of phenylamine and
some proteins, such as histone H2A and thymopoietin, are
increased.43–45 It is worth noting that although we pretreated
the serum samples by ultrafiltration, some small low-abun-
dance proteins were retained, as evidenced by the BCA protein
assay result (Fig. S5†).

SLIPSERS detection of NSCLC

Inspired by the above difference in the averaged serum
SLIPSERS spectra, we performed multivariate statistical ana-
lysis to further inspect the utility of the serum SLIPSERS
data in LC detection. The 56 serum samples were randomly

Fig. 3 (a) SLIPSERS spectra of Au NP–PBS and Au NP–serum mixtures.
(b) SLIPSERS spectra of the serum collected from five different locations
of the Au NP aggregate surface. (c) Mean SLIPSERS spectra of serum
samples from two healthy controls. (d) Mean SLIPSERS spectra of serum
samples from two lung cancer patients.

Fig. 4 (a) SERS spectra of lung cancer (n = 33) and healthy control groups (n = 23). (b) Mean SERS spectra of lung cancer (n = 33) and healthy
control samples (n = 23) and their difference.
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designated as a training dataset (23 patients and 13 controls)
and a validation dataset (10 patients and 10 controls).
Table S3† shows the baseline characteristics of the patients
and controls. There is no significant difference in terms of
age and gender among groups. We first attempted to analyse
the 36 SLIPSERS spectra (the second derivative) of the train-
ing data with PCA. As shown in Fig. S6,† the SLIPSERS
signals of serum samples from LC cases cannot be well
differentiated from controls by PCA due to the high spectral
similarity. PLS-DA was then utilized to analyse SLIPSERS fin-
gerprints of the training data. PLS-DA is a supervised classi-
fication method, which combines dimensionality reduction
and discriminant analysis into one algorithm and is
especially applicable to modelling high dimensional data.46

As shown in Fig. 5a, spectral data derived from the LC
samples can be separated from those of the controls by
PLS-DA (indicated by non-overlapping 95% confidence
ellipses). In addition, discrimination of the spectral data was
further challenged by performing OPLS-DA. In comparison
with PLS-DA, OPLS-DA splits up the data variation into the
variation related to the response and an orthogonal (noise)
variation that is not related to the response, hence simplify-
ing the interpretability of the obtained model and providing
an estimation of within- and between-group variability.47

Unsurprisingly, the spectral data between NSCLC cases and
controls can also be differentiated by OPLS-DA as shown in
Fig. 5b.

There are 98 and 110 features with variable importance for
the projection (VIP) value >1.5 in PLS-DA and OPLS-DA,
respectively. Fig. S7† shows the VIP values of the top 15 fea-
tures. On the basis of these significant features, a diagnosis
model was then built with PLS-DA integrated by Metaboanalyst
for LC detection. The receiver operating characteristic (ROC)
analysis of the training data yields a high area under the curve
(AUC) value of 0.883 (P = 0.0002, sensitivity = 95.6%, specificity
= 84.6%). When applying to the validation data, the model
shows an AUC value of 0.930 (P = 0.012). The confusion matrix
in Fig. 5d indicates that all LC samples were correctly identi-
fied and two control samples were misclassified as LC cases by
the model in the validation set. The sensitivity, specificity,
accuracy, and precision for LC detection are 100%, 80%, 90%,
and 83.3% respectively. The result suggests that label-free
molecular fingerprinting of the patient serum by SLIPSERS is
a potentially promising method for the detection of LC.

Conclusions

In summary, we have demonstrated the direct fingerprinting
of 1 μL serum within minutes using SLIPSERS. We have shown
that SLIPSERS is capable of the collection and precise delivery
of analytes to dense SERS hotspots. The high local concen-
tration of analytes and low spatial variability of plasmonic hot-
spots on SLIPSERS substrates illustrate the sensitivity and
reproducibility of the approach. By combining multivariate
statistical analysis with our SLIPSERS platform, we have
demonstrated that it is possible to discriminate LC patients
from healthy controls by the label-free spectral characteriz-
ation of a clinical serum. Limitations of this work include the
relatively small sample size. In addition, improvement of the
spectral quality using engineered NPs such as core–shell or
tip-enriched NPs needs further investigation. By designing
advanced plasmonic NPs to analyse an expanded cohort of
samples at different pathological stages, we believe that the
SLIPSERS platform should shed light on the early non-invasive
detection of LC at the molecular level.
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Fig. 5 PLS-DA (a) and OPLS-DA (b) score plots of SERS data of serum
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training dataset. (c) ROC analysis with cross-validation on the training
dataset using the classification model built by PLS-DA. (d) Confusion
matrix of the classification result of the validation dataset consisting of
10 healthy controls (H) and 10 lung cancer (LC) samples.
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