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Designing de novo proteins beyond those found in nature holds significant promise for advancements in

both scientific and engineering applications. Current methodologies for protein design often rely on AI-

based models, such as surrogate models that address end-to-end problems by linking protein structure

to material properties or vice versa. However, these models frequently focus on specific material

objectives or structural properties, limiting their flexibility when incorporating out-of-domain

knowledge into the design process or comprehensive data analysis is required. In this study, we

introduce ProtAgents, a platform for de novo protein design based on Large Language Models (LLMs),

where multiple AI agents with distinct capabilities collaboratively address complex tasks within

a dynamic environment. The versatility in agent development allows for expertise in diverse domains,

including knowledge retrieval, protein structure analysis, physics-based simulations, and results

analysis. The dynamic collaboration between agents, empowered by LLMs, provides a versatile

approach to tackling protein design and analysis problems, as demonstrated through diverse

examples in this study. The problems of interest encompass designing new proteins, analyzing protein

structures and obtaining new first-principles data – natural vibrational frequencies – via physics

simulations. The concerted effort of the system allows for powerful automated and synergistic design

of de novo proteins with targeted mechanical properties. The flexibility in designing the agents, on

one hand, and their capacity in autonomous collaboration through the dynamic LLM-based multi-

agent environment on the other hand, unleashes great potentials of LLMs in addressing multi-

objective materials problems and opens up new avenues for autonomous materials discovery and

design.
1 Introduction

Proteins, the building blocks of life, serve as the fundamental
elements of many biological materials emerging from natural
evolution over the span of 300 million years. Protein-base
biomaterials like silk, collagen and tissue assemblies such as
skin exhibit diverse structural features and showcase unique
combinations of material properties. The underlying
sequences of amino acids (AAs) in a protein determines its
unique there-dimensional structure, which, in turn, dictates
its specic biological activity and associated outstanding
properties. This inherent relationship has inspired scientists
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the Royal Society of Chemistry
in the eld of materials design and optimization to draw
valuable insights from nature for creating novel protein-based
materials. The diversity in protein design is immense, with
over 20100 possible AA sequences for just a relatively small 100-
residue protein. However, the natural evolutionary process has
sampled only a fraction of this vast sequence space. This leaves
a substantial portion uncharted, presenting a signicant
opportunity for the de novo design of proteins with potentially
remarkable properties.1 Despite this potential, the extensive
design space, coupled with the costs associated with experi-
mental testing, poses formidable challenges in de novo protein
design. Navigating this intricate landscape necessitates the
development of a diverse set of effective tools enabling the
targeted design of de novo proteins with specic structural
features or properties.

Over the past years, in the eld of de novo protein design,
data-driven and machine learning methods have emerged as
powerful tools, offering valuable insights and accelerating the
discovery of novel proteins with desired properties.2–15 These
methods have opened great avenues for predicting structure,
properties, and functions of proteins solely based on their
Digital Discovery, 2024, 3, 1389–1409 | 1389
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underlying AA sequence. For instance, the development of
deep learning (DL)-based AlphaFold 2 marked a signicant
breakthrough in the eld of 3D folding protein prediction with
a level of accuracy that in some cases rivaled expensive and
time-consuming experimental techniques.16 Moreover, deep
learning-based models have been developed to explore struc-
ture–property relationships in the analysis and design of
proteins. These models encompass a broad spectrum of
structural and mechanical properties, serving either as
constraints or target values. For example, various DL-models
developed predict the secondary structure of proteins from
their primary sequences. Prediction of mechanical properties
of spider silk protein sequences have been enabled by DL
models.17–22 Moreover, DL-based models such as graph neural
networks23 and transformer-based language models24 show
enhanced accuracy in predicting the protein natural frequen-
cies compared to physics-based all-atom molecular simula-
tions. The development of such DL models signicantly
reduces the cost of screening the vast sequence space to target
proteins with improved or optimized mechanical
performance.

A frontier, however, that still exists is how we can create
intelligent tools that can solve complex tasks and draw upon
a diverse set of knowledge, tools and abilities. Another critical
issue is that the combination of purely data-driven tools with
physics-based modeling is important for accurate predic-
tions. Moreover, such tools should ideally also be able to
retrieve knowledge from, for instance, the literature or the
internet. All these aspects must be combined in a nonlinear
manner where multiple dependent steps in the iteration
towards and answer are necessary to ultimately provide the
solution to a task. As we will discuss in this study, such an
integration of tools, methods, logic, reasoning and iterative
solution can be implemented through the deployment of
a multi-agent system driven by sophisticated Large Language
Models (LLMs).

LLMs25,26 have represented a paradigm shi in modeling
problems across a spectrum of scientic and engineering
domains.8,27–41 Such models, built upon attention mechanism
and transformer architectures,42 have emerged as powerful
tools recently in the eld of materials science and related
areas, contributing to various aspects ranging from knowledge
retrieval to modeling, design, and analysis. For example,
models such as ChatGPT and the underlying GPT-4 architec-
ture,43 part of the Generative Pretrained Transformer (GPT)
class, demonstrate exceptional prociency in mastering
human language, coding,44 logic and reasoning.45 Recent
studies highlight their ability to prociently program numer-
ical algorithms and troubleshoot code errors across several
programming languages like Python, MATLAB, Julia, C, and
C++.46 The GPT class of LLMs has also represented a new
paradigm in simulating and predicting the materials behavior
under different conditions,28 a eld of materials science oen
reserved for conventional deep learning frameworks47 such as
Convolutional Neural Networks,48,49 Generative Adversarial
Networks,50–52 Recurrent Neural Networks22,54,55 (ref. 20, 53
and 54), and Graph Neural Networks.23,55–58 Moreover, due to
1390 | Digital Discovery, 2024, 3, 1389–1409
their prociency in processing and comprehending vast
amount of different types of multimodal data, LLMs show
promising capabilities in materials analysis and prediction
application including key knowledge retrieval,35 general
language tasks, hypothesis generation,29 and structure-to-
property mapping.28,59

At the same time, LLMs are typically not best equipped to
solve specic physics-based forward and inverse design tasks,
and are oen focused on leveraging their conversational capa-
bilities. Here, LLMs have been instrumental in powering
conversable AI agents, facilitating the transition from AI–
human conversations to AI–AI or AI–tools interactions for
increased autonomy.31,35,60–62 This capability represents a signif-
icant advancement, enabling intelligent mediation, fostering
interdisciplinary collaboration, and driving innovation across
disparate domains, including materials analysis, design, and
manufacturing. The overall process could be deemed as
adapting a problem-solving strategy dictated and directed by
the AI system comprised of different agents. Thereby, the entire
process can be AI automated with reduced or little human
intervention. Depending on the complexity of the problem,
using the idea of labor division, the agents have the capability to
break the overall task into subtasks for which different agents or
tools are used consecutively to iteratively solve the problem
until all subtasks have accomplished and the solution has
achieved. There is no intrinsic limitation in dening the type of
tools, making the multi-agent model a versatile approach in
addressing problems across scales and disciplines. The tools
could range from a simple linear mathematical function to
sophisticated deep neural network architectures. The use of
llm-based multi-agent strategies for discovering new materials
and automating scientic research has been examined in
previous studies, with applications spanning mechanics,31

chemistry,63,64 and materials science.35 The comprehensive
analysis by65 specically addresses the implementation of
multi-agent strategy in enhancing biomedical research and
scientic discovery, underscoring their potential to transform
the eld.

In this paper, we propose a multi-agent strategy to the protein
design problems by introducing ProtAgents, a multi-agent
modeling framework to solve protein-related analysis and design
problems by leveraging customized functions across domains and
disciplines. The core underpinning concept of the multi-agent
systems is the state-of-the-art LLMs combined with a series of
other tools. The LLM backbone demonstrates exceptional abilities
in analysis, rational thinking, and strategic planning, essential for
complex problem-solving. Leveraged by these capabilities, the
proposed model aims to reduce the need for human intervention
and intelligence at different stages of protein design. The agent
model consists a suite of AI and physics-based components such as:

� Physics simulators: obtain new physical data from simu-
lations, specically normal modes and vibrational properties by
solving partial differential equations (PDEs).

� Generative AI model: conditional/unconditional de novo
protein design, based on a denoising diffusion model.

� Fine-tuned transformer model: predict mechanical prop-
erties of proteins from their sequence.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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� Retrieval agent: retrieve new data from a knowledge data-
base of scientic literature.

Themain contribution of our work is summarized as follows.
� We propose ProtAgents, a pioneering multi-agent

modeling framework that combines state-of-the-art LLMs with
diverse tools to tackle protein design and analysis problems.

� Our model harnesses the collective capabilities of agents
with specialized expertise that interact autonomously and
nonlinearly to solve the protein-related task.

� Equipped with various tools and functions, the model
demonstrates an advanced ability to integrate new physical data
from different disciplines, surpassing conventional deep
learning models in versatility and problem-solving capacity in
protein science.

� Our model signicantly minimizes the need for human
interference throughout different stages of the problem-solving
process.

� ProtAgents operates on textual input, thereby enabling
non-expert researchers to effectively address and analyze chal-
lenges within the realm of protein design.

The versatility of the approach in solving complex tasks is
exhibited by providing a series of experiments in the context of
proteins design, modeling, and data analysis.

The plan of this paper is as follows. In Section 2, we present
an overview of the multi-agent framework developed to tackle
multi-objective complex tasks. Subsequently, we delve into
a series of experiments where each task is initially introduced,
followed by a detailed examination of various aspects
throughout the problem-solving process by the multi-agent
teamwork. A comprehensive discussion regarding the multi-
agent framework and future prospects is provided in Section 3.

2 Results and discussion

We present a series of computational experiments aimed at
evaluating the effectiveness and potential of a multi-agent
modeling framework for various challenges within the domain
of protein modeling, design, and analysis. The multi-agent
framework consists of a team of agents, each powered by
a state-of-the-art general purpose large language model, GPT-4,43

accessed via the OpenAI API66 and characterized by a unique
prole that details its role, and communication protocols, such
as sharing information and engaging with humans via language
as shown in Fig. 1a. Furthermore, agents are given access to a set
of tools with various functionalities across domains. As shown in
Fig. 1b each function is characterized by a descriptive prole and
input parameters. The outline of the proposed multi-agent
framework is shown in Fig. 1c, illustrating the collaborative
efforts of a team of agents with the following entities.

� “User”: human that poses the question.
� “Planner”: develops a plan to solve the task. Also suggests

the functions to be executed.
� “Assistant”: who has access to all the customized functions,

methods, and APIs and executes them to nd or compute the
relevant data necessary to solve the task.

� “Critic”: responsible for providing feedback about the plan
developed by “planner” as well as analyzing the results and
© 2024 The Author(s). Published by the Royal Society of Chemistry
handling the possible mistakes and providing the output to the
user.

The agents are organized into a team structure, overseen by
a manager who coordinates overall communication among the
agents. Table 1 lists the full prole for the agents recruited in
our multi-agent framework. Moreover, a generic structure
showing the dynamic collaboration between the team of agents
proposed in the current study is depicted in Fig. 2. Further
details can be found in the Materials and methods section 4.

It is noteworthy that critical issues in the realm of protein
design surpass the capabilities of mere Python code writing and
execution. Instead, addressing these challenges necessitates the
utilization of external tools specically tailored for protein
design and analysis, and the writing, adaptation, correction and
execution of code depends nonlinearly on the progression of the
solution strategy that is developed by the system.

The tools are incorporated into the model via the assistant
agent who oversees executing the tools. To assess the perfor-
mance of the multi-agent framework in handling complex inter-
disciplinary tasks, we have dened a rich library of functions each
with special powers in solving the protein problems. Each func-
tion has a distinct prole that describes its role and requires one
ormore entities as inputs, each of which is also proled to specify
its identity and type such as string or integer. This helps the
agents not only understand which function to choose but also
how to provide the input parameters in the correct format. The
functions provide the ability to, for instance, retrieve knowledge,
perform protein folding, analyze the secondary structure, and
predict some parameters through a pre-trained autoregressive
language model. Additionally, a function can carry out simula-
tions to compute the protein natural frequencies, thus allowing
the model to integrate the new physics-based data. A full list of
functions implemented in the current study is provided in Table
S1 in the ESI.† It is worth mentioning that all the tools imple-
mented in ourmulti-agent system arexed, predened functions,
and the agents have not been given the ability to modify them.

Given the complexities residing in the protein design prob-
lems, the primary contribution of ourmulti-agent framework lies
in assessing whether the team of agents can discern the requisite
tools for a given query and evaluating the framework's capability
to initiate the execution of these tools, along with providing the
necessary inputs. The designated tasks are intentionally
designed to be sufficiently complex, involving multiple subtasks
where, for some cases, the execution of each depends on the
successful completion of the preceding ones. This design
showcases the model's capacity for the automated handling of
intricate tasks, eliminating or substantially reducing the need for
human intervention. Although the multi-agent framework allows
for the human intervention at different stages, we skip that to
further examine the team's capability in handling different
possible situations, for instance in case of a failure.
2.1 Experiment I: knowledge retrieval, computations, and
analysis

As the rst example, we pose a task which involves a multi-step
knowledge retrieval, analysis, and computations for a set of
Digital Discovery, 2024, 3, 1389–1409 | 1391
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Fig. 1 Multi-agent AI framework for automating protein discovery and analysis. (a) A genetic agent structure in a multi-agent modeling envi-
ronment that can communicate via language, has a focus defined by a profile, and has access to custom functions. (b) A function is customized
by a profile and a set of parameters. (c) The structure of a team of agents, each with special expertise, that communicate to each other and allow
for mutual correction and a division of labor. Given different profiles for each agent, agents are designed that are expert on describing the
problem (user_proxy), plan making (planner), function executing (assistant), and result evaluation (critic). The whole process is automated via
a dynamic group chat under the leading chat manager, offering a versatile approach in solving challenging tasks in the context of protein design
and analysis without human intervention.
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protein PDB identiers. We start the rst round of conversation
by posing the following question:

The planer then correctly suggests the function “retrieve_-
content” to be executed with the argument “examples of protein
names whose mechanical properties have been studied through
experiments”. Upon execution of the function, the assistant
provides us with a list of protein names. Upon inspection, we
nd that the agent has successfully identied experimentally
studied proteins, despite an abundance of information on
proteins studied theoretically, for instance, through coarse-grain
simulations. Since we are interested in the PDB ids, we continue
the chat by a follow-up question “Can you provide me with the
PDB ids for these proteins?” when “user_proxy” is being asked to
provide feedback to chat manager. Again, the planner suggests
“retrieve_content” function with the following message.
1392 | Digital Discovery, 2024, 3, 1389–1409
The “Assistant” agent then calls the function and gives the
following output:

Upon careful examination of the results, we observe that,
despite all the PDB ids exist in the source database, the PDB ids
do not quite match with the protein names except for a few
cases (1ubq, 1ten). Nevertheless, note that the error is caused by
the poor performance of the “retrieve_content” function, which
implements Llama index, and the team of agents cannot miti-
gate that as they have no access to the knowledge database. In
fact, the entire retrieval augmented generation process is solely
performed by Llama index and the agents merely contribute to
this process by providing the query, calling the “retrieve_-
content” function, and returning the results. As such, we
continue to test the agent-team capability in more challenging
queries centered around computational tasks and physics-
based simulations by assigning the following task in the next
round of conversation.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The profiles of the agents implemented in the current study to solve multi-objective tasks in the context of protein design and analysis

Agent# Agent role Agent prole

1 user_proxy user_proxy. Plan execution needs to be approved by user_proxy
2 Planner Planner. You develop a plan. Begin by explaining the plan. Revise the plan based on feedback from the

critic and user_proxy, until user_proxy approval. The plan may involve calling custom function for
retrieving knowledge, designing proteins, and computing and analyzing protein properties. You include
the function names in the plan and the necessary parameters. If the plan involves retrieving knowledge,
retain all the key points of the query asked by the user for the input message

3 Assistant Assistant. You have access to all the custom functions. You focus on executing the functions suggested
by the planner or the critic. You also have the ability to prepare the required input parameters for the
functions

4 Critic user_proxy. You double-check the plan, especially the functions and function parameters. Check
whether the plan included all the necessary parameters for the suggested function. You provide
feedback

5 Group chat manager You repeat the following steps: dynamically selecting a speaker, collecting responses, and broadcasting
the message to the group

Fig. 2 A generic flowchart showing the dynamic interaction between
the multi-agent team members organized by the group chat manager
to solve protein design and analysis problems. Themanager selects the
working agents to collaborate in the team work based on the current
context of the chat, thus forming close interactions and enabling
mutual corrections.
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The above is a complex multi-step analysis and computa-
tion task encompasses aspects such as secondary structures
analysis, natural frequency calculations, and structure classi-
cation. Additionally, the task is subject to an initial condition
that must be satised before proceeding through the next
sequence of steps, adding an extra layer of complexity. In
response, the planner comes up with a detailed plan which
consists of all the actions that need to be taken to complete
the task. Moreover, the plan mentions all the corresponding
functions that need to be executed to accomplish the task.
More importantly, the “planner” perfectly realizes to fetch the
protein structures rst before starting to analyze the
secondary structure, although it was not explicitly mentioned
in the task query.
© 2024 The Author(s). Published by the Royal Society of Chemistry
The teamwork proceeds by a follow-up feedback provided by
the “critic” agent about all the plan steps and functions which is
concluded by the following statement.

Therefore, the positive feedback from the “critic” further
supports the good performance of the planner in addressing all
the critical steps required to accomplish the tasks.

The “assistant” agent then follows the plan by calling and
executing the corresponding functions, starting with AA length
calculation, until all the steps have been undertaken. The
results show that all the inputs to the functions are properly
identied and provided and the functions are executed without
any error. The conditional statement included in the tasks is
also correctly satised for each protein, that is the computa-
tions are conducted only if the sequence length is less than 128
and are emitted otherwise. For instance, for the protein with
PDB id “1hz6” the AA length is returned as 216 by the “assistant”
which is then followed by the following message from the
“critic”

Aer completion of all the tasks, the assistant returns
a summary of all the results for each protein as representatively
shown below for PDB id “1wit”:
Digital Discovery, 2024, 3, 1389–1409 | 1393
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The results suggest that the framework effectively retains all
outputs, demonstrating its strong memory even in the face of
diverse and extended results. As the last round of conversation,
we ask to save all the results which allows us to load them at
later time for other purposes:

In response, the planner suggests to call the python function
“save_to_csv_le”. The main task here is to generate the
dictionary of results in JSON and with appropriate structure as
instructed by the user. However, we see that upon generating
the JSON data and inputting it into the function by the “assis-
tant” agent, the following error occurs:

Without any human intervention, the agent team is able to
resolve the issue by mutual correction. In particular, the “critic”
identies the cause of error by writing.

Guided by the feedback from the critic, the “assistant” then

reconstructs the JSON le from the output results and is able to
successfully execute the function and thus save the results in
a csv le as shown in Table 2. The complete group chat records
can be found in Table S2 of the ESI.†

The main outcomes of this experiment are as follows.
� This experiment exemplies how multi-agent strategy

enables us to go beyond the knowledge of pre-trained LLMs by
retrieving new knowledge from external sources.
1394 | Digital Discovery, 2024, 3, 1389–1409
� This experiment shows an instructive collaboration
between the AI–AI agents in problem-solving as well as error
handling.

� Multi-agent systems enable us to provide feedback at
various stages and pose follow-up questions throughout the
process.

� The experiment highlights the failure of the model in
extracting correct knowledge from external sources.As dis-
cussed above, the last point directly stems from the failure of
the function responsible for knowledge retrieval. To circum-
vent this, two main strategies can be adopted: (a) we can guide
the agents to provide feedback on the reliability of the
generated content, although this may be limited by the
constraints of the pre-trained language models' knowledge;
(b) we can implement more advanced Retrieval-Augmented
Generation (RAG) models. Since knowledge retrieval is not
the main focus of this paper, we will leave this aspect for
future work.
2.2 Experiment II: de novo protein design using chroma

An important characteristic of the multi-agent model is its
capability in handling very complex tasks in the context of
protein design and analysis. This partly stems from the possi-
bility of incorporating customized functions in the model for
various purposes from knowledge retrieval to performing
physics-based simulations. In this example, we explore the
model's performance in using the state-of-the art models in de
novo protein design, Chroma,15 and protein folding, Omega-
Fold.4 Chroma offers a unied approach for protein design that
can directly sample novel protein structures and sequences with
the possibility to direct the generative design towards the
desired functions and properties by appropriate conditioning.
OmegaFold is a state-of-the-art folding method without the
need of using multiple sequence alignments (MSA) to predict
the three-dimensional folded protein structure given its AA
sequence.

In this experiment, we formulate a complex multi-step task
with the objective of comparing the two models based on
various structural and physical features derived from the folded
structures obtained through Chroma and OmegaFold2. We
pose the following task through the “user_proxy” agent:

The “planner” then suggests the following plan.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The results generated by the group chat in the form of a CSV file, without human intervention, for the Experiment I, Section 2.1

Protein ID#
Amino acid
length Secondary structure First 13 frequencies CATH classication

1wit 93 [‘H’: 0.0, ‘B’: 3.23, ‘E’: 51.61,
‘G’: 3.23, ‘I’: 0.0, ‘T’: 13.98,
‘S’: 5.38, ‘P’: 0.0, ‘—‘: 22.58]

[4.3755, 5.0866, 5.5052,
6.7967, 7.908, 8.1947,
9.0166, 9.8528, 11.0632,
11.3968, 11.7355, 12.1279,
12.3498]

2.60.40.10

1ubq 76 [‘H’: 15.79, ‘B’: 2.63, ‘E’:
31.58, ‘G’: 7.89, ‘I’: 0.0, ‘T’:
15.79, ‘S’: 5.26, ‘P’: 5.26, ‘—‘:
15.79]

[0.7722, 1.0376, 1.5225,
1.6534, 2.5441, 2.9513,
3.2873, 3.7214, 4.1792,
4.3437, 4.3908, 4.6551,
5.1631]

3.10.20.90

1nct 106 [‘H’: 0.0, ‘B’: 4.08, ‘E’: 35.71,
‘G’: 0.0, ‘I’: 0.0, ‘T’: 2.04, ‘S’:
21.43, ‘P’: 0.0, ‘—‘: 36.73]

[3.6644, 4.425, 6.5351,
6.7432, 7.1409, 7.1986,
9.0207, 9.2223, 10.3163,
10.7313, 11.5299, 11.6373,
12.5606]

2.60.40.10

1tit 98 [‘H’: 0.0, ‘B’: 1.12, ‘E’: 35.96,
‘G’: 0.0, ‘I’: 0.0, ‘T’: 6.74, ‘S’:
17.98, ‘P’: 0.0, ‘—‘: 38.2]

[5.5288, 5.9092, 8.2775,
8.6267, 9.3391, 9.8783,
10.1607, 11.451, 11.5896,
11.7052, 12.1498, 12.6082,
13.8622]

2.60.40.10

1qjo 80 [‘H’: 0.0, ‘B’: 2.5, ‘E’: 40.0, ‘G’:
0.0, ‘I’: 0.0, ‘T’: 8.75, ‘S’:
13.75, ‘P’: 0.0, ‘—‘: 35.0]

[3.8578, 4.4398, 5.4886,
5.7815, 6.6332, 6.9269,
7.2329, 7.6453, 8.2545,
8.3076, 8.6118, 8.7135,
8.8546]

2.40.50.100

2ptl 78 [‘H’: 15.38, ‘B’: 1.28, ‘E’:
30.77, ‘G’: 0.0, ‘I’: 0.0, ‘T’:
7.69, ‘S’: 19.23, ‘P’: 0.0, ‘—‘:
25.64]

[0.0386, 0.1161, 0.2502,
0.5921, 1.1515, 1.5257,
2.0924, 2.6793, 3.4292,
3.9289, 4.2172, 4.6878,
4.8022]

3.10.20.10

© 2024 The Author(s). Published by the Royal Society of Chemistry
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At rst glance, the plan seems to cover all the details
necessary to accomplish the tasks included in the problem
statement. However, the “critic” agent who is responsible for
giving feedback about the plan spots a minuscule error in the
saving part of the plan as follows:
Digital Discovery, 2024, 3, 1389–1409 | 1395
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Fig. 3 Overview of the multi-agent work to solve the complex task posed in Experiment II, Section 2.2. First the multi-agent uses Chroma to
generate de novo protein sequences and then computes natural frequencies and secondary structures content for the generated structures.
Next, from de novo AA sequences, the model finds the 3D folded structures using OmegaFold and finally computes the frequencies and
secondary structure content for the protein structures. Finally, the results are saved in a csv file as shown in Table 3. The numbers represent the
sequence in which the functions are executed within the workflow.
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The correction made by the “critic”concerning the sequence
length underscores its notable prociency in comprehending
how diverse functions and parameters inuence various aspects
within the realm of protein design.

The “user_proxy” agent is then asked to conrm the plan.
The “assistant” then takes the stage and starts following the
plan by calling and executing the functions until all the steps
have been undertaken. An overview of the work performed by
the “assistant” is depicted in Fig. 3. At the end of the compu-
tations, the results are formatted into a JSON dictionary to fed
into the “save_to_csv_le” function. However, an error related
to the JSON dictionary format occurs when executing the
function as follows:

The “critic” then steps in by making the following comment
and suggesting a plan to x the error as follows:
1396 | Digital Discovery, 2024, 3, 1389–1409
The critic makes the necessary corrections and suggest the cor-
rected JSON dictionary for the “assistant” to execute the “save_-
to_csv_le” function. This time, the function is successfully
executed and the results are saved into a csvle as shown inTable 3.
At last, the “critic” gives an evolution about the whole process:
The main ndings of this experiment are summarized as
follows:

� This experiment showcases a good example of multi-agent
power in developing workows to autonomously solve complex
tasks in the context of de novo protein design and analysis.

� This experiment demonstrates how new physics can be
retrieved from physics simulators and integrated into the model.

� The experiment shows the great capability of the “critic”
agent in providing valuable feedback to other working agents at
different stages of the problem-solving endeavor, further
assisting the team of agents in handling possible errors without
the need for human involvement.

The plots of the generated results in this experiment
including the 3D folded structures are shown in Fig. 4. The full
conversations can be found in Table S3 in the ESI.†
2.3 Experiment III: de novo protein design conditioned on
the protein CATH class

CATH is a hierarchical classication system for protein structures
that consists of four main levels. The highest level in this hier-
archy is the “Class” which primarily characterizes the secondary
structure content of the protein. For example, C1, C2, and C3

correspond to proteins predominantly composed of a-helix,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The results generated by the multi-agent collaboration for the Experiment II, Section 2.2. The first and second columns depict the 3D folded
structures of proteins generated by Chroma and OmegaFold2, respectively, while the third and fourth columns represent the fractional content of the
secondary structures, and the first ten natural frequencies for the generated proteins. The results are shown for the (a) first, (b) second, and (c) third proteins.
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mainly b-sheet, and a combination of a and b secondary struc-
tures. Consequently, designing proteins based on the CATH class
number, i.e. C1, C2, C3, can be understood as creating proteins
with a specic fractional content of the secondary structure.
Previous studies have demonstrated the importance of the protein
secondary structures content, specially a-helix/b-sheet ratio, on
the mechanical properties of the protein materials.67,68 For
instance, a-helix-rich proteins tend to yield stretchy materials,69

while b-sheet-rich ones produce rigid materials.70–72 Chroma has
the potential to conditionally generate proteins with specied
folds according to CATH class annotations at three levels.15

In this example, we task the multi-agent team with generating
proteins based on their fractional content of the secondary
structure and subsequently performing computational and struc-
tural analysis tasks. Specically, in addition to secondary structure
1398 | Digital Discovery, 2024, 3, 1389–1409
analysis and natural frequency calculations, as covered in previous
examples, we instruct the team to compute the maximum
unfolding force (maximum force in the unfolding force–separa-
tion curve) and unfolding energy (the area under the unfolding
force–separation curve) for each generated protein. To accomplish
the latter, we have equipped the multi-agent team with a custom
function that utilizes a trained autoregressive transformer gener-
ative AImodel, ForceGPT. In addition tomaximumunfolding force
and energy, the trained generative model is able to predict the
entire unfolding force–separation curve based solely on the
protein amino acid sequence. Furthermore, the model has the
capability to perform inverse design tasks by generating protein
AA sequences that yield desired unfolding behavior. Detailed
information about the training of the model can be found in
Materials and methods section4. The task given is:
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Note that, as before, we do not specify any particular func-
tion or offer hints for selecting the appropriate function to
accomplish the tasks. Instead, we empower the agents to
formulate a plan, wherein they decide which functions to select
and determine the input parameters. The planner outlines the
following plan for the given task:

It can be seen that the planner demonstrates good perfor-
mance in breaking the task into sub-tasks to be accomplished
step by step. Moreover, it has identied and suggested the
correct functions and corresponding input parameters for each
sub-task. The plan is further supported by the “critic” who
provides positive feedback as follows:
The multi-agent team then proceeds to execute the different
steps outlined in the plan by calling and executing the
© 2024 The Author(s). Published by the Royal Society of Chemistry
functions. Specically, the function ‘design_-
protein_from_CATH’ is executed with the appropriate
‘CATH_ANNOTATION’ for a specic protein structure design, as
outlined in the plan. Following the generation of all proteins,
the executions are followed by structural analysis and force and
energy computations. It's noteworthy that the model exhibits
good performance in restoring and memorizing the sequences
of the generated proteins, which are essential for the force and
energy calculations. Finally, the team successfully completes
the task by computing the rst 10 frequencies for each protein.
An overview of the computations performed by the team of
agents for this experiment is shown in Fig. 5.

Given the complexity of the problem involving numerous
computational tasks, a decent number of results have been
generated in the rst round of the conversation. In the next
round, to evaluate the team's ability to memorize and restore
the results, we present the following task:
In this task, we not only request the team to save the data but
also require them to adhere to a customized format when
storing the results. The model is procient in creating a JSON
dictionary that satises the specied format and saving the
results to a CSV le, as illustrated in Table 4.

The plots of the obtained results are shown in Fig. 6. The
results indicate that Chroma has done a poor performance in
creating b-rich protein named mainly_beta_protein_2 which
its structure is dominant in a-helix. As an attempt to test the
capability of the multi-agent model in analyzing the results, in
the last round of the conversation, we ask the model to assess
Chroma's performance in generating the proteins condi-
tioned on the secondary structure by posing the following
question:

The “critic” agent conducts a thorough evaluation of Chroma's
performance in generating proteins with targeted secondary
structure content. Through a detailed analysis of each CATH
structure, it reveals the inherent strengths and weaknesses in
Chroma's capabilities. Specically, addressing the limitations of
Chroma's performance, the critic's evaluation provides the
following observations for the mainly beta proteins:
Digital Discovery, 2024, 3, 1389–1409 | 1399
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Fig. 5 Overview of the multi-agent work to solve the complex task posed in Experiment III, Section 2.3. First the multi-agent uses Chroma to
generate de novo protein sequences and structures conditioned on the input CATH class. Then using the generated protein structures, the
natural frequencies and secondary structures content are computed. Next, the force (maximum force along the unfolding force-extension
curve) and energy (the area under the force-extension curve) are computed from de novo AA sequences using ProteinForceGPT. Finally, the
results are saved in a csv file as shown in Table 4. The numbers represent the sequence in which the functions are executed within the workflow.
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The main ndings of this experiment are as follows.
� This experiment showcases another successful application

of multi-agent collaboration in designing proteins that can
possess targeted secondary structure.

� This experiment underscores the power of the multi-agent
system in retrieving new physics from pre-trained sophisticated
transformer-based models.

� This illustration not only highlights the multi-agent
model's prociency in performing computational tasks but
also underscores its intelligence in handling intricate data
analyses—an aspect traditionally reserved for human.

� The experiment highlights a potential problem with
multi-agent systems: the generation of undesired content, in
this case, proteins that do not possess the intended secondary
structures.

In the next experiment, we will propose a strategy to effectively
circumvent the issue pertaining undesired data generation.

The full conversations for this experiment can be found in
Table S4 of the ESI.†
2.4 Experiment IV: secondary structure effect on mechanical
properties

Our previous experiments have shown that multi-agent
modeling can simplify complex tasks in protein science into
manageable sub-tasks. This involves the careful selection of
1400 | Digital Discovery, 2024, 3, 1389–1409
suitable functions, the precise construction of input parame-
ters, the execution of the functions, and returning the results to
the user. In this study, we expand the capabilities of the multi-
agent system beyond mere planning and function execution by
introducing a task aimed at advancing scientic discovery. The
possibility of developing an AI scientist that could make
substantial contributions to protein science presents an
exciting opportunity for further investigation.65 Future research
should concentrate on improving the multi-agent's capacity to
autonomously generate hypotheses and design simulations to
test and rene these hypotheses. It should be noted that this
experiment does not seek to make real scientic discoveries but
rather demonstrates the potential of the multi-agent system in
this domain.

Before proceeding to the results, we should mention that we
have slightly modied the prole of the planner to mitigate the
approximations involved in generating CATH-conditioned
proteins as observed in Experiment III. In more detail, we have
added the following instruction to the planner's prole to ensure
the generated proteins possess the targeted secondary structures:

If the plan involves using “design_protein_from_CATH”

function, if the secondary structure does not meet expectation,
you should re-design.

We pose the following task via user_proxy agent.

The planner then proposes the following plan and asks the
Critic to approve the plan.

The above plan includes key features, indicating that the system
has grasped two main aspects of the solution to the problem: (a)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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without explicit instructions, the planner decides to design three
proteins with varying secondary structures using the ‘design_-
protein_from_CATH’ function; (b) unlike in previous experiments,
the planner now takes an additional step to ensure that the
secondary structures of the proteins meet the expectations.

Upon receiving approval from the Critic, the implementation
of the plan commences, with functions being executed
sequentially. Initially, two proteins with CATH_ANNOTATION
values of 1 and 2 are generated, and their secondary structures
are analyzed, revealing a high percentage of alpha-helix and
beta-sheet, respectively. However, an unexpected error related
to memory occurred during the execution of the third protein,
which has a CATH_ANNOTATION of 3 (mixed protein):
In response, the Planner suggests retrying the function. However,
the memory issue persists, and the Planner returns the following:
1402 | Digital Discovery, 2024, 3, 1389–1409
Since the problem persists, the Planner smartly revises the
initial plan and proposes an alternative that omits the generation
of the mixed protein, effectively bypassing the memory issue.

The plan implementation proceeds by calling “calcu-
late_force_energy_from_seq” function and using the sequences
of the previously designed proteins as the input. The function
returns the force and energy values and the results are then
saved into a csv le using the function “save_to_csv_le” which
is executed successfully. Lastly, the “Planner” concludes the
process by summarizing the results, reporting the main nd-
ings, and reminding the problem in designing the protein with
mixed structure due to technical issues.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The results generated by the multi-agent collaboration for the Experiment III, Section 2.3. The first and second columns depict the 3d
folded structures and the last column represents the fractional content of secondary structures for the two proteins generated by Chroma
conditioned on the CATH class of (a) 1: mainly alpha protein, (b) 2: mainly beta protein, and (c) 3: alpha beta protein.
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The main conclusions of this experiment are summarized as
follows:

� The experiment highlights the capability of multi-agent
modeling to create workows that develop and execute
research in protein science, potentially offering new scientic
revelations.

� By issuing suitable directions, the model can be prompted
to deliver more trustworthy outputs. This strategy is effective
not only in decreasing the uncertainty in generative designs, as
demonstrated here, but also in sidestepping errors due to
hallucinations, a frequent issue in large language models.73,74
© 2024 The Author(s). Published by the Royal Society of Chemistry
� LLM-based agents excel in responding to unexpected
circumstances and devising alternative solutions, thus avoiding
unforeseen errors.
3 Conclusions

Large Language Models (LLMs) have made remarkable strides,
revealing their immense potential to potentially replicate
human-like intelligence across diverse domains andmodalities,
demonstrating prociency in comprehending extensive collec-
tive knowledge and proving adept at effectively applying this
Digital Discovery, 2024, 3, 1389–1409 | 1403
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information. However, to reach intelligent problem-solving
systems, these types of models are not yet sufficient and
require integration with other methods. In this study we
explored the capability of AI agents to solve protein design
problems in an autonomous manner without the need for
human intervention. The agents have been powered by
a general purpose LLM model, GPT-4, which allows them to
communicate via conversation. It should be noted that the
general capabilities of the AI agents powered by the LLM plays
an important role at different stages of the problem solving. In
our case, GPT-4-powered agents showed excellent prociency
specially in problem understanding, strategy development, and
criticizing the outcomes. Such an AI system is not limited to
mere linguistic interactions between agents; they have the
capacity to incorporate a variety of special-purpose modeling
and simulation tools, human input, tools for knowledge
retrieval, and even deep learning-based surrogate models to
solve particular tasks. Furthermore, additional tools can be
integrated into the multi-agent system with popular external
APIs and up-to-date knowledge about special topics can be
retrieved by searching and browsing the web through special-
ized API interfaces. By harnessing the collective abilities of
agents, including reasoning, tool usage, criticism, mutual
correction, adaptation to new observations, and communica-
tion this framework has proven highly effective in navigating
intricate challenges including protein design.

To achieve this goal we constructed a group of agents, each
assigned a unique prole through initial prompts, to dynami-
cally interact in a group chat via conversations and make deci-
sions and take actions based on their observations. The agents
prole outlines their attributes, roles, and functionalities
within the system and describe communication protocols to
exchange information with other agents in the system. Our
team of agents include a user_proxy to pose the query, a planner
to formulate a plan, an function-backed assistant to execute the
functions, and a critic to evaluate the outcome and criticizing
the performance. We also use a chat manager to lead the group
chat by dynamically choosing the working agent based on the
current outcome and the agents' roles. Through a series of
experiments, we unleashed the power of agents in not only
conducting the roles they were assigned to, but to autono-
mously collaborate by discussion powered by the all-purpose
LLM. For example, the agent playing the role of a planner
successfully identied all the tasks in the query and suggested
a details plan including the necessary functions to accomplish
them. Furthermore, the agent assigned the critic role, is able to
give constructive feedback about the plan or provide sugges-
tions in case of failure, to correct errors that may emerge. Our
experiments have showcased the great potential of the multi-
agent modeling framework in tackling complex tasks as well
as integrating AI-agents into physics-based modeling.

It is worth mentioning there are similarities between llm-
based multi-agent systems as employed here to non-llm-based
autonomous multi-agent systems.75–78 These agents operate
with signicant autonomy, drawing on previous experiences
1404 | Digital Discovery, 2024, 3, 1389–1409
and data-driven insights to navigate complex, high-dimensional
decision spaces. Whether orchestrating materials discovery
workows or engaging in multi-agent interactions, these
systems exemplify how intelligent agents can reduce the need
for direct human oversight and enhance efficiency in diverse
elds such as materials science and virtual simulations.
Furthermore, an intriguing aspect of multi-agent modeling is
its compatibility with the concept of federated learning,79,80

forming a robust framework for managing distributed data and
learning tasks. This integration enables the use of distinct
agents embedded in different systems, which may be located in
physically distinct locales and possess varying levels of data
access. This setup not only enhances data privacy and security
but also improves the system's adaptability and responsiveness
to changing environmental conditions.

Multi-agent modeling is a powerful technique that offers
enhanced problem-solving capacity as shown here in various
computational experiments in the realm of protein design,
physics modeling, and analysis. Given a complex query
comprising multi-objective tasks, using the idea of division of
labor, the model excels at developing a strategy to break the task
into sub-tasks and then, recruiting a set of agents to effectively
engage in problem solving tasks in an autonomous fashion.
Tool-backed agents have the capacity to execute tools via func-
tion execution. We equipped an agent with a rich library of tools
that span a broad spectrum of functionalities including de novo
protein design, protein folding, and protein secondary structure
analysis among others. The fact that there is no intrinsic limi-
tation in customizing the functions, allows us to integrate
knowledge across different disciplines into our model and
analysis, for instance by integrating knowledge retrieval
systems or retrieving physical data via simulations. For
instance, here we utilized coarse grained simulations to obtain
natural frequencies of proteins but the model offers a high
exibility in dening functions that focus on other particular
area simulation (e.g. an expert in performing Density Functional
Theory, Molecular Dynamics, or even physics-inspired neural
network solvers37,81,82). Multi-agent framework can also accel-
erate the discovery of de novo proteins with targeted mechanical
properties by embracing the power of robust end-to-end deep
models solving forward and inverse protein design
problems17,24,59,83–86

Developing these models that connect some structural
protein features, such as secondary structure, to a material
property, such as toughness or strength have gained a lot of
attention recently. Here, we used a pre-trained autoregressive
transformer model to predict the maximum force and energy of
protein unfolding, but other end-to-end models could also be
utilized. In the context of inverse protein design problems,
a team of two agents, one expert in the forward tasks and the
other in the inverse task, can be collaborated to assist the cycle
check wherein the de novo proteins certainly meet the specied
property criteria. Along the same line, one could benet from
the multi-agent collaboration in evaluating the accuracy of
generative models in conditional designing of proteins or
© 2024 The Author(s). Published by the Royal Society of Chemistry
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compare the created 3D structures with the state-of-the-art
folding tools.16,87,88 For example, through an automated
process of protein generation and structure analysis, our Prot-
Agents framework revealed the shortcomings of Chroma in
designing b-sheet-rich proteins. In another example, the folded
3D structures of Chroma were compared with those obtained by
OmegaFold2. All these examples, demonstrate the capacity of
multi-agent framework in a wide range of applications in the
context of protein design and analysis. Lastly, the model
enables integrating various information across scales, whether
new protein sequences or physics simulations output in form of
rich data structures, for inclusion in easily readable le formats
(like JSON) to be used by other agents or to be stored for future
analysis.

Designing de novo proteins that meet special objectives in
term of mechanical or structural properties present unique
challenges calling for new strategies. The prevailing strategies
oen rely on developing data-driven end-to-end deep learning
models to nd the complex mapping from protein constitutive
structure to property or vice versa. However, these models oen
focus on specic properties, limiting their functionality in
multi-objective design purposes where several criteria needs to
be met. To overcome these challenges and propel the eld
forward, future research endeavors could revolve around the
development of an integrated system of agents designed to
automate the entire lifecycle of training deep neural networks
for protein design. Each agent within this system could be
assigned specic responsibilities, such as data generation
through simulations, data curation for ensuring quality and
relevance, and the execution of the code required for model
training. Additionally, a critic agent could monitor and critique
the training process, making decisions like early stopping or
tuning hyperparameters to enhance the model's accuracy. This
collaborative and automated approach would not only stream-
line the design process but also contribute to achieving higher
or desired levels of accuracy in the generated models. Further-
more, this agent-based strategy can extend to on-the-y active
learning, where agents dynamically adapt the model based on
real-time feedback, improving its performance iteratively.

Multi-agent modeling has the potential to transform the
landscape of de novo protein design, enhancing efficiency,
adaptability, and the capacity to meet diverse and complex
design goals, thereby establishing a new paradigm in materials
design workows. To fully realize the transformative potential
of multi-agent modeling in de novo protein design, it is
important to address the gap in evaluation methodologies that
currently exist in the eld. A crucial element in the development
of AI models involves evaluating their performance, typically
done using well-established benchmarks. However, current
benchmarks for assessing AI models do not yet incorporate
multi-agent strategies and oen rely on simplistic single-shot or
multi-shot responses. Thus, developing a comprehensive
benchmark specically for evaluating multi-agent strategies in
protein tasks presents an intriguing avenue for future research.
© 2024 The Author(s). Published by the Royal Society of Chemistry
The development of such benchmarks would greatly enhance
the ability to evaluate the success and applicability of LLM-
based multi-agent systems in the eld of protein science.
4 Materials and methods
4.1 Agent design

As shown in Fig. 1a, we design AI agents using all-purpose LLM
GPT-4 and dynamic multi-agent collaboration is implemented
in Autogen framework,89 an open-source ecosystem for agent-
based AI modeling.

In our multi-agent system, the human user_proxy agent is
constructed using UserProxyAgent class from Autogen, and
Assistant, Planner, Critic agents are created via AssistantAgent
class from Autogen; and the group chat manager is created
using GroupChatManager class. Each agent is assigned a role
through a prole description listed in Table 1, included as
system_message at their creation.
4.2 Function and tool design

All the tools implemented in this work are dened as python
functions. Each function is characterized by a name, a descrip-
tion, and input properties with a description as tabulated in
Table S1 of the ESI.† The list of functions are incorporated into
the multi-agent system, included as the function_map parameter
in the Assistant agent at its creation.
4.3 Autoregressive transformer model to predict protein
unfolding force-extension from sequences

We use a special-purpose GPT-style model denoted as Pro-
teinForceGPT, similar as in,85 here trained to predict force-
extension curves from sequences along with other mechanical
properties, and vice versa (https://huggingface.co/lamm-mit/
ProteinForceGPT). The protein language model is based on
the NeoGPT-X architecture and uses rotary positional embed-
dings (RoPE).90 The model has 16 attention heads, 36 hidden
layers and a hidden size of 1024, an intermediate size of 4096
and uses GeLU activation functions.

Pre-training was conducted based on a dataset of ∼800 000
amino acid sequences, using next-token predictions using
a “Sequence” task (https://huggingface.co/datasets/lamm-mit/
GPTProteinPretrained):

The ProteinForceGPT model was then ne-tuned bidirec-
tionally, to predict mechanical properties of proteins from
their sequence, as well as sequence candidates that meet
a required force-extension behavior and various other prop-
erties. Fine-tuning is conducted using a dataset derived from
molecular dynamics (MD) simulations.91 Sample tasks for the
model include:
Digital Discovery, 2024, 3, 1389–1409 | 1405
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Sample results from validation of the model are shown in
Fig. S2.† We only use forward predictions for use in the agent
model reported here.

4.4 Soware versions and hardware

We develop our multi-agent models using local workstations
with NVIDIA GPUs. We use Python 3.10 and pyautogen-0.2.2.89

Additional implementation details are included in the code.

4.5 Visualization

We use Py3DMol92 for visualization of the protein structures.

4.6 Secondary structure analysis

We use the dictionary of protein secondary structure (DSSP)93

module via BioPython94 to analyze the secondary structure
content of the proteins from its geometry.

4.7 Natural vibrational frequency calculations

We perform Anisotropic Network Model (ANM)95,96 calcula-
tions as implemented in ProDy97 for normal mode analysis.
The problem is solved by considering the protein as a network
of interactions, dened within a cutoff distance for which
spring-like potentials are assumed to dene molecular
interactions.
1406 | Digital Discovery, 2024, 3, 1389–1409
4.8 Retrieval augmented generation

We use Llama Index98 as a tool to implement RAG where the full
text of papers cited as ref. 67 and 68 are used as external sources
from which information can be retrieved by the system in real-
time.
Data and code availability

All data and codes are available on GitHub at https://github.com/
lamm-mit/ProtAgents. Alternatively, they will be provided by the
corresponding author based on reasonable request.
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