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Grain boundaries in periodic vs. in aperiodic
crystals composed of colloids with preferred
binding angles

Robert F. B. Weigel and Michael Schmiedeberg *

Using a modified phase field crystal model that we have recently introduced [Weigel et al., Modelling and

Simulation in Materials Science and Engineering, 2022, 30, 074003], we study grain boundaries that occur

in two-dimensional structures composed of particles with preferred binding angles like patchy colloids. In

the case of structures with a triangular order, we show how particles with a 5-fold rotational symmetry that

differs from the usual 6-fold coordination of a particle in bulk affect the energy of the dislocations in the

grain boundaries. Furthermore, for quasicrystals we find that the dislocation pairs recombine easily and the

grain boundaries disappear. However, the resulting structure usually possesses a lot of phasonic strain. Our

results demonstrate that the preferred symmetry of a particle is important for grain boundaries, and that

periodic and aperiodic structures may differ in how stable their domain boundaries are.

Patchy colloids are particles whose surface is decorated such
that there are special binding sites (see, e.g., ref. 1). These
sites might be either attractive or repulsive. As a result,
patchy colloids possess preferred binding angles such that
they can organize into a large variety of complex structures
(see, e.g., ref. 2 and 3).

Recently, we have developed a phase field crystal model
to describe the phase behavior of particles with preferred
binding angles.4 Phase field crystal theories5,6 are based on
the expansion of the free energy similar to that in the
Swift–Hohenberg approach,7,8 can be derived from
microscopic theories,9,10 and have been proposed to study
the phase behavior in two dimensions.5,6 A similar
approach had been introduced to explain the stability of
quasicrystals.11,12

Quasicrystals possess a long range order but no
translational symmetry. They were first reported in a physical

system by Dan Shechtman.13 In the meantime, there are also
many soft matter systems where quasicrystals have been
observed.14–18 There are special collective rearrangements
called phasons that occur in quasicrystals, which – similar to
phonons in a crystal – do not increase the free energy;19,20

quasicrystals differ from periodic crystals, for e.g., in their
growth behaviour21,22 and in how grain boundaries are
formed or might disappear.23,24 Quasicrystals are also
expected to occur for systems composed of patchy
colloids.25–30

In this paper, we study grain boundaries in both periodic
and aperiodic crystals composed of particles with preferred
binding angles.

1 Model system

To denote the preferred binding angles in our phase field
crystal approach,4 we consider particles with a given
n-fold rotational symmetry. Our approach is motivated by
the phase field crystal model of particles with axial
symmetry.31
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Design, System, Application

We perform calculations with a phase field crystal model of particles with preferred binding angles. The system is described by a density-like field that
gives the relative deviation from a homogeneous density and a complex orientational field that contains both the strength of the orientation and a phase to
denote the angle with respect to some reference direction. The phase field crystal approach uses a functional that corresponds to a power law expansion of
the free energy that we minimize in our calculations. We seed grains with different orientations and study the free energy and the number of dislocations
as a function of the angle between the seeded grains. For periodic crystals, we are especially interested in those composed of particles that possess a 5-fold
rotational symmetry and find that they do not affect the dependence of the free energy on the angle between the grains. However, if quasicrystalline grains
are considered, the outcome is totally different from that of periodic crystals as dislocations recombine.
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The system is described by a density-like field ψ that
gives the relative deviation from a homogeneous density;
thus its mean is 0. Furthermore, there is a complex
orientational field U that contains both the strength |U|
of the orientation and a phase to give the angle with
respect to some reference direction. A homogeneous state
is represented by ψ = 0 and a constant U. A state with
isotropic orientation has a vanishing U = 0.

The free energy functional of our phase field crystal
approach was derived in ref. 4 and is given by

 ψ; U½ � ¼
ð
d2x B1ψ

2 þ Bxψ 2∇2 þ ∇4� �
ψ − 1

3
ψ3 þ 1

6
ψ4 þ D Uj j2 þ ER U f ∇2� �

U*
� �þ 1

256
Uj j4 þ FR Uκnð Þψ þ 1

8
ψ − 1ð Þψ Uj j2

� �

(1)

with the operator κ = ∂x − i∂y and a function f (∇2), which
ensures stability and allows for the suppression or
enhancement of modulations in U.4 Furthermore, there
are constants Bl, Bx, D, E, and F that have to be chosen
appropriately to obtain the desired stable phase. The terms
that only depend on ψ in the integrand in eqn (1) are
analogous to the Swift–Hohenberg approach.7 The terms
proportional to ψ2, the spatial derivatives, and ψ4 stabilize either
the homogeneous phase or a stripe phase or the triangular
phase, depending on the parameters Bl and Bx. The terms that
only depend on U have a similar structure, being proportional
to |U|2, spatial derivatives, and |U|4. The remaining terms
couple ψ and U. The term proportional to F is the lowest-order
coupling term that respects n-fold rotational symmetry and is
anisotropic, i.e. it depends on the direction contained in the
field U and not only on the strength of the orientation |U|. This
term realizes one particular symmetric arrangement of n
patches. Higher-order terms, with κ raised to higher
powers, and additional fields,32 coupled to ψ and U,
would be required to vary the width of the patches or to
model patches that are not distributed in an n-fold
rotational symmetry across the colloid. The parameter-free
terms in eqn (1) can be derived from an ideal rotator
gas.33 As usual, in phase field crystal models, the free
energy functional is given in a rescaled form, where
energy is dimensionless. The unit of length is implicitly
given by the Bx term, which sets the equilibrium nearest-
neighbor peak distance to 2π. The actual equilibrium
lattice constant in the triangular phase is 6.73 ≈ 1.07 · 2π, due
to the nonlinear terms.

The phase behavior has been discussed in ref. 4. Note
that as usual for the phase field crystal or similar models
the resulting structures correspond to periodic or
aperiodic cluster crystals.4,34

As we consider grain boundaries in the triangular
phase for n = 2, 5, and ∞ (i.e., isotropic interactions), we
choose parameter values for which the triangular phase is
stable:4 Bl = 3, Bx = 3.5, D = 0.5, and E = 0.5.
Furthermore, f (∇2) = ∇6 in order to suppress instabilities.4

Choosing F = 0 results in a vanishing orientation field U
= 0. In this sense, F = 0 is equivalent to considering

isotropic particles with n = ∞. When considering other
values of n, we set F = 1, such that the orientation field
plays a role.

The dodecagonal quasicrystalline phase is stable for n
= 6, Bl = 3, Bx = 3.5, D = 2, E = 1, and F = 14. In this
case, to enhance modulations in the orientation, we have
to choose a non-monotonic function for f (∇2), which in
reciprocal space has an extended flat minimum at small
wave numbers k and for large k, it grows like k8. For
further details, please see the discussion in ref. 4.

2 Setup and procedure
We study the behavior of grain boundaries by seeding
crystalline grains of different orientations of the lattice lines
next to each other. We set the angle α between the grain
boundary and the lattice lines symmetrically on both sides
of the grain boundary (see Fig. 1a). Due to the 6-fold
dihedral symmetry of the triangular lattice, the system is

periodic in α with a period of
π

3
and a mirror symmetry at

half the period. Thus, it suffices to consider the range of α

∈ π

3
;
π

2

� �
. The other angle in the triangle formed by the

grain boundary and two lattice lines,
2π
3

−α, simultaneously

covers the range
π

6
;
π

3

� �
.

We interpolate between the two grains with the
functions (1 ± cos(k

→

0 · x→))/2 with k
→

0 = dk(cos γ, sin γ) and
dk = 2π/L. As L is the length of the square-shaped
simulation box with periodic boundaries, these
interpolation functions make just one oscillation across
the length of the box. Since the functions are smooth,
they do not create a sharp edge between the grains but
introduce a Moiré pattern between them instead (see
Fig. 1b). Upon minimizing the free energy, the Moiré
pattern relaxes to a grain boundary, which may not follow
a straight line; see Fig. 1c. The angle γ is the angle
between the straight line, where the grain boundary most
likely will emerge, and a side of the simulation box. Since
the free energy of the system may depend on the
orientation of the simulation box relative to the grain
boundary or relative to the orientation of the grains
themselves, we vary γ when necessary to average over this
dependence, effectively tilting the simulation box against
the two grains; see Fig. 2. The angle α is always defined
relative to the straight line, around which the grains are
initialized. Hence, when γ is varied at constant α, both
grains rotate relative to the simulation box.

To obtain statistics, we perform computations for 10
different random initial configurations for each α: both
grains' lattices are displaced by independent random
vectors drawn from their respective rotated primitive unit

(1)
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cells; see Fig. 1a. The orientation field is initialized as
low-amplitude random noise.

For our study regarding the triangular phase, it suffices to
not vary γ and keep γ = 0, as shown in section 3.4.

To study grain boundaries in dodecagonal quasicrystals,
we initialize the seed of each grain as 12 modes in reciprocal
space with equal amplitudes and random phases. Hence, the
position of the symmetry center and other degrees of
freedom (isomorphism class) are random. In the same range

of α ∈ π

3
;
π

2

� �
and for 11 values of γ in the inclusive range

0;
π

12

� �
, we perform 10 simulations each.

We freely minimize the free energy with respect to the fields
ψ andU by following the negative of the functional derivatives,

dtψ ¼ − δ
δψ

þ λ (2)

dtU ¼ − δ
δU*

; (3)

where the Lagrange multiplier λ ensures that the mean of ψ is
conserved, exactly as in ref. 4. This minimization is not a
dynamical simulation; thus, no physical timescale is present.

15 000 iterations of semi-implicit Euler integration with a step
size of 0.03 are enough to reach the local minimum. The global
minimum, a single crystal, cannot be reached with simple
Euler integration from the initialization with two grains.

With the equilibrium nearest-neighbor peak distance
being roughly 2π, we perform simulations in a square box of
length L = 24.39 · 2π with periodic boundary conditions,
discretized to 512 × 512 points, i.e. with a spatial resolution
of 0.0476 · 2π.

When the simulation box is resized, stress might be
reduced. The terms proportional to Bx, E, and F are the only
ones sensitive to the size, and their reciprocal-space
representation is a polynomial in the resolutions dkx and
dky. The free energy can be minimized with respect to the
resolutions with, for e.g. the Nelder–Mead algorithm.35 We
do this to reduce stress once during the simulation, at half
the simulation time, after the fields have almost become
stationary. Note the size difference between Fig. 1b and c.
This step adapts the size of the simulation box or the
spatial resolution, respectively. However it does not change
the mean density.

3 Results
3.1 Grains align in the nematic phase

The nematic phase – a homogeneous density with a constant
finite orientation field – is also stable under some
parameters.4,31 To study grain boundaries in the nematic
phase, we initialize the orientation field as two grains of
different directions and the density-like field as low-amplitude
noise. Grains of different nematic orientations eventually align
after the energy minimization, leaving no boundaries. Thus,
theminimization leads to the global minimum in this case.

3.2 Defects of the triangular lattice

Dislocations are topological point defects in two-dimensional
lattices. While every peak has 6 neighbor peaks in the regular
triangular lattice, a dislocation corresponds to a pair of one

Fig. 1 (a) Schematic of the orientation of the grains with respect to the grain boundaries and the primitive unit cells. (b) Color map of the initial
density-like field consisting of the seeds of the two grains and the Moiré pattern in between. (c) Final density-like field with dislocations
highlighted. The 17 peaks with 7 (5) neighbors are marked with a purple (dark green) circle. The orientation field is not visualized.

Fig. 2 Schematic of the grains and grain boundaries tilted by an angle
γ against the simulation box.
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peak with only 5 neighbors and another peak with 7
neighbors. Usually, these two are the nearest neighbors to
each other. In our model, we observe that 5-coordinated
peaks are smaller and 7-coordinated ones are larger in width,
compared with the regular 6-coordinated peaks; see Fig. 3.

Dislocations can be created and annihilated in pairs of
opposing Burgers vector. However, as we initialize the system
without special care for the defect composition, in some
configurations an odd number of dislocations is present. Due
to the topology, the number of defects must stay odd (or
even) under any peak-conserving dynamics. Some
dislocations are deformed: it is very hard to tell apart the 5-
and 7-coordinated peaks from some of their 6-coordinated
neighbors. The Burgers vector reveals that they are normal
dislocations nevertheless; see Fig. 4.

Rarely, we observe disclinations, i.e. peaks with 5 or 7
neighbors surrounded by 6-coordinated neighbors
exclusively. They only occur in configurations with many
dislocations. Often, they are located close to chains of
alternating 5- and 7-coordinated peaks with an odd length. In
these cases, it is fundamentally ambiguous to decide which
of the ends of the chain belongs to the dislocations and
which is from another disclination. For statistics, we count a
disclination pair as one dislocation.

3.3 Orientation field matching the lattice

For n = 2, the orientation field vanishes at all peaks,
regardless of how many neighbors they have; see Fig. 3a. In

contrast, for n = 5, the orientation field still vanishes at the 6-
and 7-coordinated peaks, but it is finite – even quite large –

at the 5-coordinated peaks; see Fig. 3b. This phenomenon
appears to be largely independent of α. Hence, the large
orientation field at the peak is not induced by long-ranged
interactions between the grains, but rather by the local
environment around a 5-coordinated peak.

Without this knowledge, but based on the observation of
strongly oriented 5-coordinated peaks in uncontrolled grain
boundaries, we conjectured in 4 that an orientation between
grains matching the 5-fold symmetry may be energetically
favored for n = 5. In the next section, we show that our new
calculations of the free energy as a function of the angle
between grains do not support this conjecture.

3.4 Free energy

First, we establish that the orientation of a single
triangular crystal relative to the box has no big influence
on the free energy, as is shown by the crosses connected
by lines in Fig. 5. A single crystal may be strained, when
it is tilted against the box. Thus, its energy may be
slightly higher than that of the perfect triangular lattice
without strain or defects. We find that the free energies
of configurations with grain boundaries and dislocations
are considerably higher than those of strained single
crystals. Therefore, it is sufficient to consider only γ = 0,
i.e. not to vary the tilt between the box and the initial
grain boundary.

We rescale the energy by the absolute of the free
energy of the perfect triangular lattice for the respective n,
which is given in Table 1. The rescaled /|tri| of a

Fig. 3 Similar dislocations in configurations obtained with (a) n = 2
and (b) n = 5. The peaks with 7 (5) neighbors are marked with a purple
(dark green) circle; all other peaks have 6 neighbors. The orientation
field is visualized using markers on top of the density-like field: the size
of the circles encodes the magnitude of the orientation field and the
direction is indicated by the arms. The spatial resolution of the
orientation field is as tight as that of the density-like field; for ease of
reading, we only show a few markers.

Fig. 4 A distorted dislocation. The density-like field and orientation
field are visualized as shown in Fig. 3. The open Burgers path around
the dislocation is shown in red.
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perfect crystal is −1 and the rescaled free energy of a
homogeneous isotropic configuration is still 0. Contrary to

our conjecture, α ¼ 2π
5

or
7π
15

is not energetically favored

for n = 5. Instead, the maximum rescaled free energy

occurs roughly at α ¼ 2π
5
, as the data in Fig. 5 show. The

situation is almost identical for all considered n, up to
the constant rescaling factors and a slightly smaller
increase of the free energy in the case of n = 5 in
comparison to the increase for isotropic interactions (n = ∞).

The increase of the free energy can be explained by a
growing number of dislocations that are present in the
respective configurations. Of course, this number depends
only on the angle α and not on n as can be seen in the
lower part of Fig. 5. It follows that the free energy gain
of oriented 5-coordinated peaks for n = 5 is small in
comparison to the typical free energy cost of adding a
dislocation in the triangular lattice.

3.5 Quasicrystals

From the dodecagonal symmetry, one should expect a period

of
π

12
in α. However, if the tilt angle γ is varied in the full

symmetrically independent range from 0 to
π

12
, no α

dependence is left at all. Instead different free energy levels
emerge that are independent of α, as can be seen in Fig. 6.

The marginal distributions of γ = 0 and
π

12
are indicated by

the solid lines in Fig. 6. The combination of the two already
shows the full range of the total distribution. The
distributions for the in-between values of γ interpolate
between the two extremal distributions.

Which free energy level is reached does not directly
depend on angle α, which characterizes the initial grain
boundaries. It rather depends on the relation between the
simulation box and the dodecahedra that appear in the
system. If the edges of the dodecahedron align with the
edges of the rectangular box, lower free energies are
typically reached, than in the case of vertices pointing to
the box edges.

The different free energy levels correspond to periodic
approximants of different sizes. Some of them do not fit well
into the simulation box. In these cases, they are combined
with filler structures, which likely can be viewed as smaller
approximants in turn. The smaller the approximant's
asymmetric unit, the higher is its free energy (see Fig. 7 for
some examples).

A mode analysis36,37 reveals that the dislocations, which
had initially been present, usually annihilate during the
minimization. So, in contrast to periodic structures, free
energy changes are not caused by dislocations. This holds for
all the free energy levels. The approximants seem to contain

Fig. 5 The rescaled free energy/|tri| is shown as a function of angle
α for different numbers of patches n = 2, 5, and ∞. The cross symbols
show the outcomes of independent simulation runs and the surrounding
shapes are violin plots, in which the width gives the frequency of the
respective value. The free energy is rescaled by the energy tri of the
perfect triangular crystal of the respective n, which is given in Table 1. At

α ¼ π

3
and

π

2
, the grains are parallel. Thus, the system easily relaxes to a

single crystal with a rescaled energy of −1. Remarkably, however, the
data coincide rather well for the different n at any angle α. Additionally,
the free energy of a single crystal, rotated by α against the simulation
box, is plotted. Also, the number of dislocationsNd takes qualitatively the
same course with α as the rescaled energy and Nd are essentially
independent of n. The sketches below the α axis illustrate how the lattice
lines meet at the grain boundary. The red stars indicate at which α the
lattice lines meet compatible with a regular pentagon.

Table 1 Free energy per area of the equilibrium triangular crystal

n

2 −0.644
5 −0.755
∞ −0.362

Fig. 6 The distribution of the free energy per area /A is shown
as a function of angle α for parameters that stabilize quasicrystals.
The cross symbols show the outcomes of independent simulation
runs and the surrounding shapes are violin plots, in which the
width gives the frequency of the respective value. The full
distribution contains different values of the tilt γ between the initial
grain boundaries and the box. The solid lines are guides that
highlight the trends in the colored data. These are the distributions
restricted to the extreme cases of tilt angles γ = 0 (orange) and

γ ¼ π

12
(purple). Exemplary configurations for the free energies

labeled (a) through (d) on the right are shown in Fig. 7.
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phasonic flips as the structures differ from the initial
quasicrystalline patterns. The phasonic flips cause phasonic
strain that probably causes the different free energy levels.
This is similar to the situation in ref. 23 where two
quasicrystals merge by relaxing the possible defects by
phasonic flips but at the cost of exciting phasonic strain.

Although our minimization scheme is not a dynamical
simulation, the process of annihilation observed during the
minimization steps looks like what one would expect from a
dynamical simulation: dislocations of opposing Burgers
vectors approach each other and then recombine. The
approach is facilitated by the local phasonic rearrangements.
In very rare cases, we observe that dislocation pairs are
formed and do not annihilate or move anymore.

Conclusions

We have studied grain boundaries in a system with preferred
binding angles with a phase field crystal approach. To be
specific, we have explored the grain boundaries in periodic
crystals composed of particles with 5-fold rotational
symmetry, and in addition, for comparison for particles with
2-fold symmetry and for isotropic particles. Furthermore, we
have also studied dodecagonal quasicrystals obtained from
particles with 6-fold rotational symmetry.

We have found that the increase in free energy due to
grain boundaries is slightly less pronounced for particles
with 5-fold symmetry than for isotropic particles.
Furthermore, for particles with 5-fold rotational symmetry,
we observe a very strong orientational field at the position of
the particles that have only five nearest neighbors. The strong
orientation might be the reason for the less pronounced
increase of the free energy.

However, we have not observed any preferred angles
between the crystals in contact due to a preferred binding
angle. To be specific, except for a small overall decrease, the
free energy as a function of the relative angle between the
crystals does not significantly change if particles with n = 5
instead of particles with isotropic symmetry (n = ∞) are
considered.

If the preferred binding angles are used to stabilize a
quasicrystal, we find a completely different behavior at the
grain boundaries. The phasonic degrees of freedom are used
to move the dislocations such that they can recombine with
opposite dislocations from another grain boundary. As a
result, one finds patterns with motives of quasicrystals but
no dislocation at all. We argue that the situation is similar to
that in ref. 23 and 24 where the number of defects was
reduced due to phasonic rearrangements. However, here we
even observe a more extreme behavior, as usually all

Fig. 7 The columns (a) through (d) show typical configurations corresponding to the free energies labeled in Fig. 6. The top row displays the full
density-like fields, with the orientation fields omitted. The insets in the top row show the absolute magnitudes of the Fourier transform of the
respective density fields. The bottom row shows zoomed-in sections of the respective configurations, where the density-like field and orientation
field are visualized as seen in Fig. 3.
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dislocations disappear and the resulting pattern is distorted
a lot which corresponds to a large phasonic strain. It seems
that even local phasonic rearrangements can be easily excited
in our model allowing an efficient way to repair defects.

As already pointed out in ref. 4, an important advantage of
our approach is that the orientation field is treated separately
from the local density field. Therefore, the strength of the
orientation field at a grain boundary might differ from the
strength of the orientation close to a particle in bulk.
Furthermore, the effect of phasonic rearrangements can be
studied with our model. As a consequence, our mean field
approach is suitable to study and understand the behavior of
particles with preferred binding angles close to grain
boundaries.
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