Applications of Machine Learning in High-Entropy Alloys: A Review of Recent Advances in Design, Discovery, and Characterization

Abstract

High-entropy alloys (HEAs) have attracted considerable attention due to their exceptional properties and outstanding performance across various applications. However, the vast compositional space and complex high-dimensional atomic interactions pose significant challenges in uncovering fundamental physical principles and effectively guiding alloy design. Traditional experimental approaches, often reliant on trial-and-error methods, are time-consuming, cost-prohibitive, and inefficient. To accelerate progress in this field, advanced simulation techniques and data-driven methodologies, particularly machine learning (ML) with a particular interest in nanoscale phenomena, have emerged as transformative tools for composition design, property prediction, and performance optimization. By leveraging extensive materials databases and sophisticated learning algorithms, ML facilitates the discovery of intricate patterns that conventional methods may overlook, and enables the design of HEAs with targeted properties. This review paper provides a comprehensive overview of recent advancements in ML applications for HEAs. It begins with a brief introduction of the fundamental principles of HEAs and ML methodologies, including key algorithms, databases, and evaluation metrics. The critical role of materials representation and feature engineering in ML-driven HEA design is thoroughly discussed. Furthermore, state-of-the-art developments in the integration of ML with HEA research, particularly in composition optimization, property prediction, and phase identification, are systematically reviewed. Special emphasis is placed on cutting-edge deep learning techniques, such as generative models and computer vision, which are revolutionizing the field. this study explores the application of machine learning (ML) in developing highly accurate ML interatomic potentials (MLIPs) for molecular dynamics (MD) simulations. These MLIPs have the potential to enhance the accuracy and efficiency of simulations, enabling a more precise representation of the fundamental physics governing high-entropy alloys (HEAs) at the atomic level. A critical discussion is provided, addressing both the potential advantages and the inherent limitations of this approach. This review aims to provide insights into the future directions of ML-driven HEA research, offering a roadmap for advancing material design through data-driven innovation.

Article information

Article type
Review Article
Submitted
16 Apr 2025
Accepted
21 Jul 2025
First published
23 Jul 2025

Nanoscale, 2025, Accepted Manuscript

Applications of Machine Learning in High-Entropy Alloys: A Review of Recent Advances in Design, Discovery, and Characterization

M. H. Golbabaei, M. Zohrevand and N. ZHANG, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR01562F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements