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Reaction kinetics for the synthesis of an anti-
cancer drug (adavosertib) precursor†
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The development of kinetic models which can accurately describe drug synthesis reactions is an important

part of process design in the pharmaceutical industry. Correctly identifying these models can be difficult,

since the reaction pathways used to manufacture new pharmaceutical compounds are often extremely

complex. Consequently, many kinetic modelling and parameter estimation tools have been developed in

recent years to allow drug manufacturers to test and compare a variety of reaction models before selecting

the one which provides the best predictions. The present paper employs a multistart parameter estimation

code (in MATLAB®) to parameterise a range of kinetic models describing the synthesis of a key

intermediate required for the production of a new anti-cancer drug, Adavosertib (AZD1775). Furthermore,

the Akaike and Bayesian Information Criteria are used to rank these models based upon their complexity

and fidelity to reflect real-world experimentation.

1. Introduction

Since 2005, public spending on anti-cancer drugs has steadily
increased across Europe (Fig. 1a) and the United States;
leading to a total global spending of 150 billion USD in
2020.1,2 Whilst some of this spending can be attributed to
rising incidence rates of various cancer types around the
world2–6 (with 18.1 million new cases and 10 million deaths
reported in 2020 alone7), it is clear that rising drug prices
have contributed to this landscape (Fig. 1b). Consequently,
pharmaceutical companies must find a way to reduce the
price of their medications if treatments are to be affordable
in the future.1,2

To accomplish this goal, drug manufacturers must first
find a way to intensify their manufacturing processes.
Moreover, they must do so whilst minimising
experimentation so as to not simply inflate costs elsewhere in
their pipeline. Therefore, many authors8–16 propose that fit-
for-purpose process models should be developed, to
accurately describe the different unit different operations
involved in pharmaceutical processes. Once these models are

correctly parameterised, they can provide an efficient way to
visualise and optimise processes. This has already been
demonstrated by Jolliffe et al.,15 Diab et al.,8 and Cuthbertson
et al.17 for ibuprofen, diphenhydramine and amoxicillin,
respectively.

Numerous studies have been published in recent years
on the importance of developing and parameterising kinetic
models for chemical synthesis11,18–36 and crystallisation
processes;37,38 with the former receiving particular attention
(Table 1). For example, Schenk et al.39 demonstrated how
parameter estimation tools can be used to compare different
kinetic models available to describe drug synthesis
processes, using the production of an asymmetrical urea
compound required to manufacture various active
pharmaceutical ingredients (APIs) as a case study. Earlier,
Grom et al.22 had shown that computational modelling
techniques can be used to study the reaction mechanisms
underpinning Lorcaserin synthesis (a complicated reaction
network, consisting of 27 reaction steps and 15 chemical
species), leading to the robust development of a
temperature-dependent kinetic model with 29 parameters.
Published studies have been conducted to show how kinetic
modelling can be used to comparatively assess the benefits
of batch vs. continuous manufacturing processes.12,40 The
paper of Kraus et al.41 considered the eco-friendly
production of carbamazepine from urea and iminostilbene.
Because of these efforts, various established software
packages are now available to conduct this type of studies,
and they are summarised in Table 2.
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Several studies have also been conducted to show how
computational modelling can simplify conceptualising and
ranking the kinetic models developed for these reactions.53

Tsu et al.54 recently used integer linear programming (ILP)
to identify stoichiometric coefficients for synthetic chemical
reactions, whilst August et al.55 used it to identify promising
chemical reaction networks for biological systems.
Meanwhile, Taylor et al.23,56 and Willis et al.57 have shown
that Mixed Integer Linear Programming (MILP) can be used
to automatically generate and test different rate laws and
reaction networks for systems where the reagents, products
and intermediates are already known. Ultimately, the grand
vision is allowing all feasible unimolecular and bimolecular
reactions between different chemical species to be
determined automatically,53,54,57 before leveraging metrics
such as the Akaike23,56,58 and Bayesian information
criterions59 to identify models which have the simplest
structure, yet can accurately predict experimental
observations.23,60

A promising cancer therapy which can particularly benefit
from accelerated process R&D is Adavosertib (AZD1775) – an
experimental oral medication which may inhibit tyrosine
kinase WEE1 activity during cell signalling, growth and
division61 – since it has shown clinical efficacy as a

monotherapy against a range of cancers. Most notably, it is
potent against non-small cell lung cancer (NSCLC) and
pancreatic cancers,62 which together account for over 50% of
all cancer-related deaths in Europe today.4 This compound
has also shown promise as a combinatorial therapy when
treating NSCLC, ovarian cancer and leukemia using
Sotorasib,63 chemotherapy62 and Cytarabine64 as partner
therapies.

Considering this, in the present paper we propose a
range of kinetic models which can be used to describe the
synthesis of an important precursor required for
adavosertib production: AZD1775 hydroxymethylsulfanyl
(HMS). Neither a reaction mechanism nor any kinetic
model have ever been previously proposed for the
synthesis of this compound, but understanding its
synthesis and production is critical for the cost-effective
manufacture of Adavosertib. To conduct this kinetic study,
we have used an original parameter estimation code
written in MATLAB® to parameterise 64 candidate kinetic
models, before ranking them based on their complexity
and fidelity to reflect lab-scale experimentation.
Remarkably, each of the models hereby postulated and
considered have been developed by invoking knowledge of
similar chemical reactions.

Fig. 1 Anti-cancer spending in Europe, 2005–2018 (data: ref. 2 and 3). (a) Anti-cancer drug expenditure; (b) drug cost fraction.
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2. Experimental

The experimental data required for kinetic modelling is
obtained once AZD1775 HMS is synthesised from a feedstock
of pyrimidine (Pyr) and bromopyridine (PyBr) in the presence
of potassium acetate (KOAc), using copper(I) iodide (Cu(I)I)
and racemic ± trans-N,N′-dimethylcyclohexane-1,2-diamine
(CyDMEDA) acting as a catalyst and ligand, respectively
(Fig. 2).

The chemical synthesis protocol involves first weighing
appropriate amounts of solids (i.e. Pyr, PyBr, KOAc, Cu(I)I
and CyDMEDA) into vials, before purging them with
nitrogen, and adding the reaction solvent (degassed MeCN)
to these reagents under inert conditions only. Consequently,
an Amigo Chem® workstation (Fig. 3) has been used to carry
out the synthesis reaction, over a range of reaction
temperatures (338.15, 348.15, and 355.15 K) and initial
reagent concentrations (cf. ESI,† Table S1). High Performance
Liquid Chromatography (HPLC) has been used to determine
the concentration-time profile of each reagent during these
reactions (hereafter, referred to as experiments a–n),
measuring the concentration of species Pyr, PyBr, PyI and
HMS over the course of the reaction. For the final

experimental run (experiment ‘n’), Pyr concentration was not
recorded.

Key properties of these compounds are provided in
Table 3.

3. Reaction mechanism & kinetic
model development

To develop a reaction mechanism which can accurately
describe AZD1775 HMS synthesis, inspiration has been taken
from a similar reaction already studied by Strieter et al.67

(specifically, the copper-catalysed N-arylation of amides),
since HMS synthesis occurs via Ullmann-type coupling.68,69

Herein, we have adapted the reaction mechanism presented
by these authors to allow the consideration of several
characteristics unique to HMS synthesis. These include:

1. The production of an aryl iodide compound (PyI), due
to the presence of a side reaction involving PyBr (Fig. 4).

2. The production of acetic acid (HOAc), which can hinder
the progress of the reaction (Fig. 4).

3. The presence of potassium acetate (KOAc), which may
influence reaction rates (Fig. 4).

Table 1 Summary of published reaction modelling and kinetic parameter estimation studies conducted for different APIs and drug precursors

API/precursor Condition treated Study outcomes Software Ref.

Carbamazepine Epilepsy Kinetic model & Arrhenius rate law MATLAB® 41
Unspecified Unspecified Kinetic model & isothermal rate

constants
KIPET 39

Lorcaserin Obesity Kinetic model & Arrhenius rate law — 22
Lomustine Brain tumours, Hodgkin's lymphoma Kinetic models, isothermal rate

constants
MATLAB® 18

Osimertinib
intermediate

Non-small cell lung cancer Kinetic model & Arrhenius rate law Dynochem® 19

Carfilozomib
intermediate

Myeloma Kinetic model & Arrhenius rate law Dynochem® 20

Merestinib
intermediate

Biliary tract & non-small cell lung cancer Kinetic model & isothermal rate
constants

— 21

Paracetamol Moderate pain, fevers Kinetic model & isothermal rate
constants

MATLAB® 23

Metoprolol High blood pressure Kinetic model & isothermal rate
constants

MATLAB® 23

Unspecified Unspecified Kinetic model & isothermal rate
constants

KIPET 24

Ibuprofen Moderate pain, fevers, inflammation Kinetic model & isothermal rate
constants

MATLAB® 25

Diphenhydramine Hay fever, common cold, short-term insomnia Kinetic model & isothermal rate
constants

MATLAB® 8

Nevirapine HIV Arrhenius rate law MATLAB® 11
Aziridines
(building block)

Cancer therapies (mitomycin, azinomycin) Arrhenius rate law gPROMS® 26

Pyrroles
(building block)

Cancer therapies (sunitinib),
pain relief (ketorolac), heart disease (atorvastatin)

Kinetic models & Arrhenius rate law COMSOL
Multiphysics®

27

Abemaciclib Advanced/metastatic breast cancers Arrhenius rate law Dynochem® 28
Thiazolidine
intermediate

Diabetes Kinetic model & Arrhenius rate law — 29

Glitazone intermediate Diabetes Kinetic model & Arrhenius rate law — 30
Tryptophol Insomnia Kinetic model & Arrhenius rate law COMSOL

Multiphysics®
31

Dolutegravir
intermediate

HIV Kinetic model & Arrhenius rate law COMSOL
Multiphysics®

32
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Using this approach, we have defined three fundamental
regimes under which different kinetic models can be
developed to describe HMS synthesis (Fig. 4). These are:

• Case 1: AZD1775 HMS synthesis disregarding PyI
production.

• Case 2: AZD1775 HMS synthesis considering irreversible
PyI production.

• Case 3: AZD1775 HMS synthesis considering reversible
PyI production.

Each of these cases can be described using systems of
differential algebraic equations (DAEs), as shown in Table 4,
where R1 and R2 denote HMS synthesis from PyBr and PyI,
respectively, whilst R3 and R4 denote the production and
reversible consumption of PyI, respectively (Fig. 4). To
summarise their differences, we note that in Case 1 the
production of PyI from PyBr is completely ignored, allowing
us to treat PyBr and PyI as a single pseudo-aryl halide
(PyHal). Conversely, in cases 2 and 3, we explicitly consider

Table 2 Software packages for kinetic parameter estimation (CT = concentration-time data; AT = absorbance-time data; V = various data types)

Software elements Required packages
Input
data

Open
source

Dynochem42 • ODE solvers (e.g., Rosenbrock) • Dynochem® V
• Local-optimisation algorithms (e.g., Levenberg–Marquardt) and search tools
(e.g., multiple start-point)

MATLAB43 • ODE solvers (e.g., Rosenbrock, Runge–Kutta, variable step variable order
solvers)

• MATLAB® V
• Global optimisation
toolbox• Various optimisation algorithms (e.g., Levenberg–Marquardt,

trust-region-reflective, simulated annealing, Nelder–Mead, genetic algorithm,
particle swarm, surrogate polynomial optimisation, pattern search) and search
tools (e.g., multiple start-point)

gPROMS44,45 • ODE solvers (e.g., DAEBDF, or DASOLV variable step variable order backward
differentiation formulae, SRADAU variable step Runge–Kutta)

• gPROMS® Process or
Formulated Products

V

• Local-optimisation algorithms (e.g., maximum likelihood) and search tools
(e.g., multiple start-point)

SciPy46 • ODE solvers (e.g., Runge–Kutta, variable step variable order solvers) • Python V
• SciPy
• NumPy• Local-optimisation algorithms (e.g., Nelder–Mead, trust region reflective,

Newton-CG, sequential least squares programming)
KIPET24,47,48 • ODE solvers (e.g., orthogonal collocation on finite elements) • Python CT

AT• Pyomo• Local-optimisation algorithms (e.g., maximum likelihood) and search tools
(e.g., multiple start-point) • SciPy

• NumPy
• KIPET

GEKKO49 • ODE solvers (e.g., orthogonal collocation on finite elements) • Python V
• GEKKO

• Local optimisation algorithms and Hyperopt search tools (e.g., grid search,
random search, tree-structured parzen estimator, adaptive tree-structured parzen
estimator)

• NumPy

GDOC33,35,36,50 • ODE solvers (e.g., CVODES) • Fortran, C, or C++ CT
• Local-optimisation algorithms (e.g., sequential quadratic programming via
NPSOL, etc.) and search tools (e.g., branch and bound algorithm coupled with
convex relaxation considerations)

• NPSOL
• Any ANSI compliant
Fortran, C, or C++ compiler

COMSOL51,52 • ODE solvers and optimisation modules (e.g., optimisation module, LiveLink™
for MATLAB)

• COMSOL Multiphysics® V

• Local-optimisation algorithms (e.g., Levenberg–Marquardt, bound optimisation
BY quadratic approximation)

Fig. 2 The overall reaction scheme for AZD1775 hydroxymethylsulfanyl (HMS) batch synthesis.
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rate laws for PyI production via irreversible (Case 2) and
reversible (Case 3) halide substitution reactions. Thereby, we

allow for PyBr and PyI to both react with Pyr independently
in order to produce HMS.

Within each case different rate laws describe:
1. The mechanism by which HMS synthesis occurs (from

PyBr, PyI or the pseudo-aryl halide PyHal).
2. The influence of HOAc on reaction rate.
3. The impact of KOAc concentration on reaction rate.

Fig. 3 Schematic representation of a magnetically stirred Amigo Chem® batch reactor used for AZD1775 HMS synthesis.

Table 3 Properties of compounds used in AZD1775 HMS synthesis

Species Role #CAS Chemical formula M [g mol−1] Tbp [K] Tmp [K]

Pyr Reagent 955368-90-8 C9H10N4OS 222.27 671.05a —
PyBr·HBr Reagent — C8H11Br2NO 296.99 — —
PyBr Reagent 638218-78-7 C8H10BrNO 216.08 546.35a 339.36a

HBr Reagent 10035-10-6 HBr 80.91 206.15b 186.15b

KOAc Reagent 127-08-2 C2H3KO2 98.14 — 565.15b

PyI Intermediate — C8H10INO 263.08 — —
KBr By-product 7758-02-3 KBr 119.00 1708.15b 1003.15b

HOAc By-product 64-19-7 C2H4O2 60.05 391.15b 289.85b

HMS Product 955369-56-9 C17H19N5O2S 357.43 838.75a —
Cu(I)I Catalyst 7681-65-4 CuI 190.45 1563.15a 878.15a

CyDMEDA Ligand 67579-81-1 C8H18N2 142.25 459.95a 283.38a

MeCN Solvent 75-05-8 C2H3N 41.05 354.82b 228.15b

a Ref. 65. b Ref. 66.

Fig. 4 Proposed reaction mechanism for AZD1775 HMS synthesis:
UICi denotes unidentified compounds due to inhibitory HOAc action.

Table 4 System of DAEs corresponding to each case developed

Case 1 Case 2 Case 3

d Pyr½ �
dt

¼ −R1
d Pyr½ �
dt

¼ −R1 −R2
d Pyr½ �
dt

¼ −R1 −R2

d PyrBr½ �
dt

¼ −R1
d PyBr½ �

dt
¼ −R1 −R3

d PyBr½ �
dt

¼ −R1 −R3 þ R4

d KOAc½ �
dt ¼ −2R1 d PyI½ �

dt
¼ R3 −R2

d PyI½ �
dt

¼ R3 −R2 −R4

d HOAc½ �
dt

¼ 2R1
d KOAc½ �

dt
¼ −2R1 − 2R2

d KOAc½ �
dt

¼ −2R1 − 2R2

d KBr½ �
dt

¼ 2R1
d HOAc½ �

dt
¼ 2R1 þ 2R2

d HOAc½ �
dt

¼ 2R1 þ 2R2

d HMS½ �
dt

¼ R1
d KBr½ �
dt

¼ 2R1 þ 2R2
d KBr½ �
dt

¼ 2R1 þ 2R2

d HMS½ �
dt

¼ R1 þ R2
d HMS½ �

dt
¼ R1 þ R2
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4. PyI production.
Consequently, candidate rate laws for each of these

aspects have been covered in section 3.1 for each case.

3.1. Candidate rate laws for cases 1–3

Full kinetic models developed for each case have been
provided in the ESI† (Case 1: Table S2, Case 2: Table S3,
and Case 3: Table S4). The individual rate laws used in
each of these kinetic models are discussed in the
following sections.

3.1.1. AZD1775 HMS synthesis disregarding PyI
production (Case 1). The production of HMS occurs via
Ullmann-type coupling as per the study of Strieter et al.67

Thus, assuming PyBr and PyI can be treated as a single
compound (PyHal), HMS synthesis may be described using
the rate law presented in eqn (1) and (2).

R1 = k1[LCuPyr][PyHal] (1)

LCuPyr½ � ¼ K3K4 CuI½ �0 L½ � Pyr½ �
K3 Pyr½ �2 þ K4 L½ � þ K3K4 Pyr½ � L½ � (2)

Moreover, we postulate that potassium acetate (KOAc) may
impact reaction rate. Thus, an alternative rate law for HMS
synthesis is defined, to account for this possibility, as shown
in eqn (3).

R1 = k1[LCuPyr][PyHal](Ksp[KOAc])
α where: α ∈ [0, 1] (3)

HMS may also be produced via a two-step Ullmann-type
coupling reaction (Fig. 5). Hence, it is also possible that the
reaction proceeds with 2nd order dependence on the ligated
Pyrimidine compound (LCuPyr);68,69 leading to the
development of a second candidate rate law, as shown in
eqn (4).

R1 = k1[LCuPyr]
2[PyHal](Ksp[KOAc])

α where: α ∈ [0, 1] (4)

Beyond these considerations, it is also important to consider
the possibility that acetic acid (HOAc) impacts the rate of
reaction. Hence, reversible processes are defined, which

temporarily take reactants off-cycle from the main reaction to
model this effect (eqn (5) and (6)).

PyHal½ � ¼ PyHal½ �total
1þ HOAc½ �K6

(5)

Pyr½ � ¼ Pyr½ �total
1þ HOAc½ �K8

(6)

The nature of the compounds produced by these side
processes (eqn (5) and (6)) is unknown. Thus, we have
simply represented them as UIC1 and UIC3 in this study
(Fig. 4).

Considering each of these options, it is clear that either
eqn (3) or (4) can be used to describe HMS synthesis, by
setting α to 0 or 1. Moreover, eqn (5) and (6) can be used to
augment eqn (3) and (4) to account for the effects of HOAc.
Consequently, a total of 16 kinetic models can be built for
Case 1 – full details of which can be found in the ESI† (Table
S2). These models are named 1–16.

3.1.1.1. Calculating ligand concentration. To calculate the
free ligand concentration required for each model, according
to eqn (2), we define its concentration in terms of observable
species only. To do this, we note that the concentration of the
catalyst and free-ligand may be defined in terms of the Cu-
bound and ligated species as per eqn (7) and (8): when
combined and rearranged, these yield eqn (9).

[L]total = [L] + [LCu]+ + [LCuPyr] (7)

[CuI]total = [CuI]0 = [LCu]+ + [LCuPyr] + [CuPyr2]
− (8)

[L] = [L]total − [CuI]0 + [CuPyr2]
− (9)

Accordingly, we use Fig. 4 to define eqn (10), before
combining it with eqn (2) and (9) to produce eqn (11) (after
extensive algebraic rearrangement).

K4 ¼ LCuPyr½ � Pyr½ �
CuPyr2½ �− L½ � (10)

Eqn (11) is a simple quadratic equation, solvable at each
timestep for the reaction.

(K3K4[Pyr] + K4)[L]
2 + (K3[Pyr]

2 + K3K4[CuI]0[Pyr] + K4[CuI]0
− K4[L]total − K3K4[Pyr][L]total)[L] − K3[Pyr]

2[L]total = 0 (11)

3.1.2. AZD1775 HMS synthesis considering irreversible PyI
production (Case 2). For Case 2, HMS synthesis is modelled
assuming Ullmann-type coupling, just as in Case 1. Herein,
however, we also consider PyI formation, assuming that it is
produced irreversibly from PyBr. Consequently, HMS production
for Case 2 is defined using eqn (12) and (13) to describe HMS
synthesis from PyBr (eqn (12): one-step coupling, eqn (13): two-
step coupling), whilst eqn (14) and (15) are used to describe its
production from PyI (eqn (14): one-step coupling, eqn (15): two-
step coupling).

Fig. 5 Ullmann-type coupling68,69 hypothesis for AZD1775 HMS
formation.
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R1 = k1[LCuPyr][PyBr](Ksp[KOAc])
α where: α ∈ [0, 1] (12)

R1 = k1[LCuPyr]
2[PyBr](Ksp[KOAc])

α where: α ∈ [0, 1] (13)

R2 = k2[LCuPyr][PyI](Ksp[KOAc])
α where: α ∈ [0, 1] (14)

R2 = k2[LCuPyr]
2[PyI](Ksp[KOAc])

α where: α ∈ [0, 1] (15)

Following these definitions, expressions (as per eqn (5) and
(6) of Case 1) are defined to describe the inhibitory effect of
HOAc on PyBr, PyI and Pyr independently (eqn (16)–(18)).

PyBr½ � ¼ PyBr½ �total
1þ HOAc½ �K6

(16)

PyI½ � ¼ PyI½ �total
1þ HOAc½ �K7

(17)

Pyr½ � ¼ Pyr½ �total
1þ HOAc½ �K8

(18)

A variety of rate laws are tested for the production of PyI from
PyBr, all of which are reminiscent of those in other areas of
chemistry where halogenic substitution takes place.70–79 For
example, it is noted that some studies71–73 have found that
halogenic substitution reactions involving pyridines follow
second-order rate laws (which are first-order in both the
substrate and solvent). Moreover, a recent study by Kundu
et al.74 explored reaction mechanisms underpinning ligand-
assisted substitutions involving pyridines and their
derivatives, concluding that they proceed via third-order
reactions (first-order in catalyst and second-order in aryl
halide substrate).74 Other authors70,71 have suggested that
such reactions proceed with rate laws of non-integer order
(i.e., between 1 and 2). Consequently, two variable-order rate
laws are hereby tested to allow each of these possibilities to
be examined simultaneously, limiting the reaction order with
respect to PyBr to between 1 and 2 (eqn (19) and (20)). This is
a critical problem simplification, removing the need to
explicitly quantify acetonitrile and copper(I) iodide
concentrations, whilst defining β as an extra kinetic
parameter to be estimated.

R3 ¼ k′5 PyBr½ �β where: k′5 ¼ k5 MeCN½ �≈k5 CuI½ � (19)

R3 = k5[CuI]0[PyBr]
β (20)

This approach results in a total of 32 models for Case 2
(named models 17–48), with details in the ESI† (Table S3).

3.1.3. AZD1775 HMS synthesis considering reversible PyI
production (Case 3). For Case 3, we retain eqn (2) from Case
1 and eqn (12)–(18) from Case 2 to describe the production
of HMS from PyBr and PyI. However, we replace our
treatment of PyI to consider its reversible production from
PyBr. Specifically, this is postulated to occur via a reversible
copper-catalysed Finkelstein reaction (eqn (21) and (22)).75–79

R3 = k5[CuI]0[PyBr][I
−] where: [I−] ≈ [I−]0 + [CuI]0 − [PyI] (21)

R4 = k−5[KBr][PyI] (22)

This leads to the development of 16 kinetic models for
Case 3, resulting in a total of 64 models across all three
cases. Consequently, the kinetic models arising from Case
3 are named models 49–64. A full description of each
model developed as part of Case 3 can be found in the
ESI† (Table S4).

3.2. Kinetic rate law temperature dependence

To capture the temperature dependence of each reaction step,
Arrhenius and van't Hoff relationships are embedded within
each of the kinetic models proposed (eqn (23)–(25)).

kn ¼ kn;refe
−Ea;n
R

1
T− 1

Tref

� �
(23)

Kn ¼ Kn;refe
−ΔH0

n
R

1
T− 1

Tref

� �
(24)

Kn ¼ kn
k−n

(25)

The temperature dependence of the solubility of KOAc within
HOAc80 has also been estimated using the van't Hoff equation
(eqn (26) and (27))81 (Fig. 6).

Ksp = xKOAc
2 (26)

ln xKOAcð Þ ¼ − ΔH0
d

RT
þ ΔS0d

R
(27)

4. Parameter estimation & model
discrimination

Parameter estimation and model discrimination methods are
hereby used in tandem to identify the highest-fidelity kinetic
model for HMS synthesis from the 64 models developed in
section 3. Consequently, the computational procedure is

Fig. 6 Temperature-dependent KOAc solubility in HOAc (data:
ref. 80).
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summarised in Fig. 7, and sections 4.1 and 4.2 are provided
below to offer detailed explanations of each of the blocks in the
software architecture illustrated in this diagram.

Each case (and model) has been studied independently using
multistart nonlinear programming (NLP). Hence, parameter
estimation efforts are conducted for each model individually,
and model discrimination methods are subsequently employed
to analyse the results from each of these studies.

4.1. Kinetic parameter estimation methodology

The parameter estimation problem is formulated as a
multistart constrained optimisation problem for each model,
using the objective function and constraints of eqn (28)–(30).

min f (θ) (28)

s:t:

f θð Þ¼ WLS

θ ¼ kn;ref ; Ea;n; ΔH0
n; Kn;ref ; ΔH0

d; ΔS
0
d; β

� �
θ lb≤θ≤θub

θ∈

8>>><
>>>:

9>>>=
>>>;

(29)

WLS ¼ 1
2

XNspecies

i¼1

XNdata

j¼1

Wi Cexpt
i; j −Cmodel

i; j

� �2
(30)

Using this approach, parameter estimations are initialised
from 1000 different start-points for each model, using 1000
different random guess-vectors containing different
parameter values within the specified bounds (Table 5). To
avoid divergence, parameter estimations resulting in non-
numeric, infinite or imaginary objective function values must
be rejected, forcing the optimisation algorithm to modify the
search vector space.

A detailed discussion of the code structure is provided in
section 4.1.1 below. The kinetic parameters and reaction
orders required by each model are estimated using an in-
house parameter estimation code written in MATLAB®
(Fig. 7), employing its fminsearch command (which
implements the Nelder–Mead algorithm) at the centre of a
while loop, so as to iteratively minimise the sum of weighted
least squares (eqn (30)) for each model: this occurs by setting
weights (Wi) to the reciprocal of the square uncertainties of
experimental measurements, whilst also placing user-
specified bounds on each of the parameters to be estimated
(Table 5).

To enable this approach, it has been stipulated that kinetic
rate constants within the kinetic models tested can take
values between 0–6 × 1011, since liquid-phase bimolecular
reactions do not exceed rates of 6 × 1011 M−1 min−1.82–86

Fig. 7 The computational procedure for kinetic parameter estimation and reaction model discrimination, implemented in MATLAB®.
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Likewise, it has been specified that activation energies (Ea,n)
take values between 1–150 kJ mol−1, to align with data from
classical organic synthesis reactions.87 Moreover, it has been
acknowledged that standard reaction enthalpies (ΔH0

n) for
organic reactions are within ±1000 kJ mol−1, whilst their
equilibrium constants (Kn) have values of 0.01–100, whenever
equilibrium concentrations are measurable.88 Reaction
orders, β, must be bounded between 1 and 2 (for the reasons
discussed in section 3), and KOAc dissolution properties (ΔH0

d

and ΔS0d) are set within limits equal to their 95% confidence
intervals (as per Fig. 6).

Given the range of each of these bounds, the search space
for each problem is reduced by natural logarithm transforms
of parameters kref,n, Ea,n and Kref, as per recent studies.89,90

This approach is not possible for ΔH0
n parameters, as it would

result in imaginary solutions with no physical meaning (it is
also not required for β parameters due to range brevity).

4.1.1. Code structure. Parameter estimation has been
carried out for each kinetic model independently (i.e., models
1–64) using original MATLAB® code based on the next
concepts:

1) Local optimisation: MATLAB®'s fminsearch command
(implementing the Nelder–Mead algorithm) is used to
minimise the objective function of each model (eqn (28)–
(30)) by varying the value of their model parameters (θ)
within their specified bounds. Moreover, it continues to do
so until one of the following criteria is met:

a) The minimum step size (10−6) has been violated, and the
objective function cannot be improved upon by more than
10−6.

b) The maximum number of iterations or objective
function evaluations is exceeded (MATLAB default settings
used).

Once one of these criteria is met, fminsearch releases any
parameter estimates held (θcurrent). The algorithm then
checks whether one of the following criteria has also been
satisfied:

c) The kinetic parameters have not changed compared to
the values last supplied to the optimiser.

d) The user-specified maximum allowable time for
estimations (48 h) has been exceeded.

If one of (c) or (d) has been satisfied, then the current
parameter estimates (θcurrent) are saved against their
associated start-point identification number (Ns) for later
analysis. However, if neither of these criteria have been
achieved, then the output parameter estimates (θcurrent) are
provided to fminsearch again, as a new initial guess. This
serves to enhance convergence by repeating step 1 until (a)–
(b), plus one of (c) or (d), are satisfied (Fig. 7).

2) Multistart problem initialisation: to improve estimations,
step 1 is repeated using 1000 different initial guesses (θguess)
before selecting the set of parameters which yield the lowest
objective function value. Following this, the 95% confidence
intervals are calculated for the selected parameter set, and
parameters which give unacceptably high confidence intervals
(i.e., greater than 15%23,24,48,56) should be fixed39,91 (Fig. 7).

The parameter estimation code used can be run in series
or parallel – depending on the computing facilities available.
Running parameter estimations in parallel (splitting jobs
across multiple CPU/GPU cores) will invariably provide faster
results, as computational cost scales linearly with the number
of starting points used.

4.2. Model discrimination

Following parameter estimation, the Akaike Information
criterion (AICc) is used to rank each model based on its: (i)
simplicity, and (ii) fidelity vs. experimental observations23,56

(eqn (31)). Consequently, models with lower AICc values are
favoured, since this indicates accurate reproduction of
experimental findings whilst avoiding the use of
unnecessary terms, thus preventing overfitting and
unjustifiable over-parameterisation.23

AICc ¼ Nobs ln
WLS
Nobs

� �
þ 2Nparam þ 2Nparam Nparam þ 1

� 	
Nobs −Nparam − 1 (31)

Relative Akaike likelihood metrics (eqn (32) and (33)) are
simultaneously used to determine the probability that the
model with the lowest AICc for a given case is indeed
better than all other model candidates available for the
same case. Evidence ratios (eqn (34)) and normalized
probabilities (eqn (35)) are also calculated for each model,
to assess the likelihood that the selected model is better
than the next-best model (i.e. the probability that model i
is more suitable compared to model j).58,60,92,93

wi;AICc ¼
exp − 1

2Δ AICcð Þi
� 	

PNmdl

j¼1
exp − 1

2Δ AICcð Þj
� � (32)

Δ(AICc)i = (AICc)i − (AICc)min (33)

ERð ÞAICc
¼ wi;AICc

wj;AICc

(34)

NPð ÞAICc
¼ wi;AICc

wi;AICc þ wj;AICc

(35)

Table 5 Parameter bounds

kn,ref [various] Kn,ref [various] Ea,n [kJ mol−1] ΔH0
n [kJ mol−1] ΔH0

d [kJ mol−1] ΔS0d [kJ mol−1 K−1] β [—]

Lower bound (θlb) 10−10 0.01 1 −1000 10.702 0.0184 1
Upper bound (θub) 6 × 1011 100 150 1000 12.365 0.0230 2
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The Bayesian Information Criterion (BIC) is also estimated
for each model via eqn (36) to corroborate this analysis, by
calculating normalised probabilities as done for AICc. Hence,
lower BIC values represent more promising models (higher
fidelity), with BIC penalising model complexity more harshly

than AICc.
59

BIC ¼ Nobs ln
WLS
Nobs

� �
þ Nparam ln Nobsð Þ (36)

Fig. 8 AICc and BIC values for: (a) Case 1 (no PyI production); (b) Case 2 (irreversible PyI production); and (c) Case 3 (reversible PyI production).
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5. Results & discussion

Three distinct cases are considered for kinetic models
describing HMS synthesis:

• Case 1: AZD1775 HMS synthesis disregarding PyI
production.

• Case 2: AZD1775 HMS synthesis considering irreversible
PyI production.

• Case 3: AZD1775 HMS synthesis considering reversible
PyI production.

Consequently, Fig. 8 provides an overview of AICc and BIC
values for every single model, ranking all 64 models hereby
considered within these three cases.

Models 14, 42 and 62 are determined to be the most
promising ones from Cases 1, 2 and 3, respectively. The
normalised AICc and BIC probabilities both sit at 1.0 for each
of these models when compared with the next-best model
from their respective cases. Moreover, we observe that among
models considering PyI production (Cases 2 and 3), model 62
outperformed model 42 by a significant margin, as it
exhibited WLS, AICc and BIC values 50.10, 16.03 and 14.66%
lower than the latter, respectively. Hence, model 42 is
rejected, rendering model 62 as the most reliable vs. all other
models describing PyI production.

The reaction profiles predicted by models 14 and 62 are
compared with experimental data in Fig. 9 and 10,
respectively; final kinetic parameters for both these models
are provided in Table 6. Both models 14 and 62 provide
looser fits for experiment “l” than for the rest of the
experiments, most likely due to undercalculation of HMS
concentrations for this experiment only (possibly caused by
non-uniform mixing), since less HMS was produced than Pyr
consumed in this experiment (no other species were observed
during HPLC measurements for this experiment). The use of
Weighted Least Squares (WLS) regression during our original
analysis is able to successfully mitigate the effects of this
suspected effect, especially since similar percentage
uncertainties are computed for each experimental data point
measured – leading to larger absolute experimental
uncertainties for species with higher concentrations (e.g.
HMS in experiment “l”).

From these findings, we observe that both highest-fidelity
models share all their main pathway features, with the sole
exception of PyI production treatment (cf. model structures in
Tables S2 and S4 within the ESI†). Thus, we conclude that each
of the aspects accounted for by these models plays a key role in
the AZD1775 HMS synthesis mechanism. For example, since
the production of HMS from aryl halides and Pyr is second-
order in LCuPyr concentration for both models, it is likely that
a two-step Ullmann coupling (Fig. 5) occurs instead of a
single-step mechanism. Conversely, the characteristics ignored
by these models (e.g. KOAc concentration dependence) are
unlikely to have any significant effect on the HMS synthesis
reaction.

Furthermore, we can also conclude that PyI is most likely
produced via a copper-catalysed Finkelstein reaction, since

the kinetic models employing this assumption (those in Case
3) often outperform their equivalent counterparts (those in
Case 2). However, further experimentation focused on
analysing the production of PyI is required to fully confirm
this hypothesis. Similarly, because both highest-fidelity
models consider inhibitory effects brought about by the
presence of HOAc, acetic acid may indeed inhibit the action
of Pyr, PyBr and PyI. The exact mechanism by which this
inhibition may occur remains unclear (as per section 3,
Fig. 4), however. Consequently, future studies should
establish the true mechanism by which this HOAc inhibition
occurs – a possible explanation is that the presence of HOAc
creates a buffer system impacting the deprotonation of
pyrimidine, thus slowing down the oxidative addition of aryl
halides (Fig. 5).

6. Conclusions

The present paper performs an original parameter estimation
and extensive model discrimination to arrive at a novel
reaction mechanism (Fig. 4) which successfully captures all
known key features of AZD1775 HMS synthesis, with three
broad kinetic model classes (Cases 1–3) and 64 individual
models developed, tested and comparatively evaluated for the
first time. Specifically, the model collection comprises those
addressing HMS synthesis by disregarding PyI production
entirely (Case 1: models 1–16), as well as those which
considered irreversible (Case 2: models 17–48) and reversible
(Case 3: models 49–64) PyI production. Thus, a total of 64
candidate kinetic models have been proposed, parameterised
and evaluated to describe the copper-catalysed and ligand-
assisted HMS synthesis. Candidates 14 and 62 have the
highest model fidelity, demonstrating the most promising
results by a significant margin and exhibiting the lowest
objective function values and the most favourable Akaike and
Bayesian (AICc and BIC) metrics following their successful
parameterisation. Consequently the authors propose that
manufacturing facilities and research groups should use
model 14 to model HMS synthesis if PyI production can be
ignored (as this model has a far simpler structure and a
concise parameter set), but employ model 62 if PyI
production is to be considered for explicit quantification.

The original parameter estimation and model
development and discrimination method and code proposed
herein does not guarantee uniqueness. Consequently,
alternative models may yield comparable results to those
achieved here, but they also be far more complex than those
presented. Accordingly, future studies should focus on using
the kinetic models presented here for the first time, to
identify optimal reaction conditions for HMS synthesis, by
manipulating process variables such as temperature, reaction
time and initial reagent concentrations to maximise product
yield whilst minimising side product generation.
Furthermore, future parameter estimation studies can
incorporate parameter identifiability and estimability
analyses94,95 in the respective workflows. Bootstrapping
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Fig. 9 Kinetic model predictions vs. experimental data (model 14).
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Fig. 10 Kinetic model predictions vs. experimental data (model 62).
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methods can also be incorporated into future workflows,
especially for codes which may study similarly many kinetic
model scenarios under limited experimental data availability.

Nomenclature & acronyms
Latin letters

Cexpt
i,j Experimental concentration of species i at

datapoint j [M]
Cmodel
i,j Modelled concentration of species i at datapoint j

[M]
Ea,n Activation energy associated with forward reaction

n [kJ mol−1]
f (θ) Temperature dependent fitting objective function

[—]
ΔH0

d Standard enthalpy of dissolution for KOAc in
HOAc [kJ mol−1]

ΔH0
n Standard reaction enthalpy with reaction n [kJ

mol−1]
[i] Molar concentration of component i [M]
[i]0 Initial molar concentration of component i [M]
kn Kinetic rate constant associated with forward

reaction n [various]
kn,ref Pre-exponential reference constant for forward

reaction n [various]
k−n Kinetic rate constant associated with reverse

reaction n [various]
Kn Equilibrium rate constant associated with reaction

n [various]
Ksp Solubility product [M2]
M Molecular weight [g mol−1]
Ndata Number of experimental data points [—]
Nmdl Number of models tested [—]
Nobs Number of experimental observations (i.e.,

time-points) [—]
Nparam Number of parameters [—]
Ns Number of start-points [—]

Nspecies Number of species [—]
R Universal gas constant [J mol−1 K−1]
Rj Reaction rate j [mol L−1 min−1]
 Real numbers [—]
ΔS0d Standard entropy of dissolution for KOAc in HOAc

[kJ mol−1 K−1]
t Reaction time [min]
T Reaction temperature [K]
Tbp Boiling point temperature [K]
Tmp Melting point temperature [K]
Tref Reference temperature [K]
wi,AICc

Normalised relative Akaike likelihoods [—]
Wi Objective function weight associated with

measurement i [M−2]
xKOAc Solubility of KOAc in HOAc at a given temperature

[mol mol−1]

Greek letters

α Binary decision variable [—]
β Unknown rate order [—]
θ Parameter vector [various]
θcurrent Parameter vector outputted at interim points

during estimations [various]
θguess Initial parameter vector guess for a given start-

point [various]
θlb Parameter vector lower bounds [various]
θub Parameter vector upper bounds [various]

Acronyms

AICc Corrected Akaike's information criterion [—]
(AICc)i Corrected Akaike information criterion of

model i [—]
(AICc)min Minimum corrected Akaike information

criterion obtained [—]
Δ(AICc)i Corrected Akaike differences of model i [—]
BIC Bayesian information criterion [—]
(ER)AICc

Corrected Akaike evidence ratios [—]
(NP)AICc

Corrected Akaike normalized probabilities [—]
WLS Weighted least squares [—]
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Table 6 Kinetic parameters (estimated and fixed) for models 14 and 62

Model 14 Model 62

k1,ref [M
−2 min−1] 131.339 (± 1.140%) 852.151 (± 2.164%)

k2,ref [M
−2 min−1] — 12 273.399 (fixed)

k5,ref [M
−2 min−1] — 1.482 (± 0.014%)

K3,ref [M] 99.993 (± 0.011%) 8.004 (± 0.086%)
K4,ref [—] 0.166 (± 0.148%) 0.052 (± 0.063%)
K5,ref [M

−1] — 9.284 (fixed)
K6,ref [M] 4.112 (± 10.168%) 0.549 (± 2.408%)
K7,ref [M] — 6.977 (fixed)
K8,ref [M] 8.057 (± 6.120%) 2.296 (± 5.839%)
Ea,1 [kJ mol−1] 146.134 (± 7.539%) 31.272 (± 9.268%)
Ea,2 [kJ mol−1] — 1.045 (fixed)
Ea,5 [kJ mol−1] — 60.497 (± 3.047%)
ΔH0

3 [kJ mol−1] 200.464 (± 1.030%) −309.601 (± 1.146%)
ΔH0

4 [kJ mol−1] 0.825 (± 1.045%) 9.908 (± 2.465%)
ΔH0

5 [kJ mol−1] — 253.532 (fixed)
ΔH0

6 [kJ mol−1] 404.302 (± 6.580%) −515.590 (± 3.211%)
ΔH0

7 [kJ mol−1] — −584.127 (± 10.448%)
ΔH0

8 [kJ mol−1] 102.235 (fixed) −217.411 (± 8.344%)
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