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The death of the Job plot, transparency, open science and online 

tools, uncertainty estimation methods and other developments in 

supramolecular chemistry data analysis 

D. Brynn Hibbert
a
 and Pall Thordarson

*ab 

Data analysis is central to understanding phenomena in host-guest chemistry. We describe here recent developments in 

this field starting with the revelation that the popular Job plot method is inappropriate for most problems in host-guest 

chemistry and that the focus should instead be on systematically fitting data and testing all reasonable binding models. We 

then discuss approaches for estimating uncertainties in binding studies using case studies and simulations to highlight key 

issues. Related to this is the need for ready access to data and transparency in the methodology or software used, and we 

demonstrate an example a webportal (supramolecular.org) that aims to address this issue. We conclude with a list of best-

practice protocols for data analysis in supramolecular chemistry that could easily be translated to other related problems 

in chemistry including measuring rate constants or drug IC50 values. 

Introduction 

Central to scientific research is the cycle of hypothesis, 

experiment, data analysis, and then verifying, refining or 

rejecting the hypothesis based on interpretation of the data. 

Analysis of data is pivotal in this process, making robust data 

analysis methods critical in the armoury of most scientists. This 

is no different in supramolecular chemistry, although often, 

researchers do not seem to place the same value on 

understanding data analysis methods as, for instance, 

analytical chemists, or scientists in experimental physics or 

genomics (bioinformatics). There is, however, an opportunity 

here as supramolecular chemistry offers a rich collection of 

interesting challenges in the analysis and interpretation of its 

data. 

The three, somewhat linked, key challenges in the analysis 

of data in supramolecular chemistry concern: (i) determining 

the stoichiometry of interactions (1:1, 1:2, 2:1…),
1
 (ii) picking 

the most appropriate binding model (non-cooperative, 

cooperative…)
2
 and (iii) obtaining values of thermodynamic 

quantities such as binding constant(s) Ki, with reasonable 

estimates of measurement uncertainty.
1-3

 It has been stated by 

one of us that any analysis without proper information on the 

reliability of results is useless,
4
 which highlights the 

importance of using well-grounded methods to ensure 

reliability of the information obtained. 

The demand for reliability is now becoming intimately 

linked to a push for openness and transparency in how the 

data is handled. Proponents of the Open Science movement 

have stated its goal as encompassing transparent processes 

where good practices are characterised by: free, public access 

to scientific communication, open access to web-based tools 

that facilitate scientific collaboration and public availability and 

reusability of data.
5
 This approach has obvious benefits for 

improving the reliability of results obtained from data analysis. 

If both the raw data and the methodology used (e.g., software 

code) is made accessible and as transparent as possible, then it 

should be easier to detect and correct any mistakes, even 

post-publication.  

This feature article covers some recent developments in 

supramolecular chemistry data analysis in terms of the three 

aforementioned challenges with particular focus on 

uncertainty estimations. The potential role that open science 

and online tools have in addressing the challenges will also be 

discussed. First the paper will discuss the related challenges of 

stoichiometry and selection of a binding model. After brief 

comments on accuracy in the software used and on method 

selection (NMR vs UV-Vis), the paper will examine some 

different approaches to estimating measurement uncertainties 

using sample data to illustrate these methods. The paper 

finishes by discussing the role of open science and online tools 

for data analysis in supramolecular chemistry. To conclude a 

suggested best-practice list is offered for the researcher. The 

work here builds on our earlier discussions on the 

fundamentals of analysing binding data
1,2

 . After a brief review 

of the key equations for 1:1 and 1:2 equilibria and quality of fit 
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indicators, we shall frequently refer the reader to these papers 

for more in-depth descriptions of key principles and concepts.  

The availability of sufficient computing power to apply 

more realistic statistical and mathematical approaches has 

caused a shift from forced assumptions of linearity, pseudo-

first-order processes, and graphical methods, to numerical 

solutions of non-linear systems yielding models and 

parameters with GUM-compliant uncertainties.
6
 We hope that 

the current article will assist supramolecular chemists in 

critically evaluating past and present results and planning their 

future work to obtain more reliable results. 

1:1 and 1:2 equilibria and fit indicators 

The basic 1:1 equilibrium between a host (H – see Chart 1 for 

abbreviations and symbols used in this review) and a guest (G) 

is usually described using the equilibrium association constant 

Ka (or K1):
1,2

 

]G][H[

[HG]
a =K    [1] 

 Usually, the concentration of the host-guest complex 

cannot be obtained directly but it can be related back to the 

known total concentrations of the host ([H]0) and guest ([G]0) 

and the equilibrium constant Ka through the following 

quadratic equation: 
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In supramolecular titration experiments, the host is then 

typically titrated with a solution of guest and the change (∆Y) 

in some physical quantity that is sensitive to the formation of 

the host-guest complex is then measured. For UV-Vis titration 

the change in absorbance is measured (i.e. ∆Y = ∆A), which is 

proportional to the concentration of the host-guest complex 

[HG] from [2] multiplied by the difference between the molar 

absorptivities of host-guest complex and free host ε∆HG = εHG – 

εH 
1,2

 

([HG])  HG∆=∆=∆ εAY    [3] 

For NMR titrations the observed change ∆Y = ∆δ is likewise 

directly proportional to the change δ∆HG in the NMR 

resonances between the host-guest complex (δHG) and free 

host (δH) but this time multiplied by the amount fraction of the  

complex HG: 

 
[H]

[HG]
 

0
HG 








=∆=∆ ∆δδY    [4] 

 1:2 equilibria can similarly be described through the step-

wise equilibrium constants: K1 for the formation of 1:1 

complex HG, and K2 for the formation of 1:2 complex HG:
1,2

 

 

 

Chart 1 Abbreviations and symbols used in this paper. 

]G][H[

[HG]
1 =K    [5]          

and         

2
1

2
2

]G][H[

][HG

K
K =   [6] 

 Cooperative 1:2 systems are characterised by K1 ≠ 4K2 

whereas for non-cooperative systems, K1 = 4K2, simplifying the 

data analysis as discussed below.  

For systems where the measured physical change (∆Y) 

depends on the amount fraction, such as in NMR titrations, we 
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can use similar approaches as outlined above for simple 1:1 

equilibria, to obtain:
1,2

   

2
211

2
21HG1HG

[G][G] 1

[G][G]
 Y 2

KKK

KKYKY

++

+
=∆

∆∆
  [7] 

 For UV-Vis titrations the right-hand side of [7] is multiplied 

by [H]0. The concentration of free guest [G] cannot usually be 

obtained directly but it can be related back to the total 

concentrations of the host, guest and equilibrium constant 

through the cubic equation analogue of [2] (not shown 

here).
1,2

 For other equilibria such as 2:1, similar approaches 

are then used to obtain relationships between measurable 

parameters, a physical change that occurs upon forming the 

host-guest complex, and the equilibrium constants of interest. 

For 1:1, 1:2 and 2:1 host-guest systems straightforward 

analytical (exact) solutions are available, but for more complex 

systems, some shortcuts or approximations are necessary.
2

  

 We now turn our attention to the data fitting process. A 

general model of the problem such as [3] or [7] for N data (x-

data,ydata) with individual observations (xi, yi) can be written as: 

( ) iii exfy += β,
  [8] 

where yi is an observed value (NMR line, absorbance, pH)
1,2

 

for a value of the independent variable xi (concentration of 

ligand, volume added of reagent solution), and ββββ is a vector of 

parameters (K, δ). ei is Normally-distributed error with mean 

zero (i.e. no bias) and variance 
2
iσ

. The model is defined by 

the form of f(.). There are different approaches to arriving at a 

best fit model with parameters having appropriate coverage 

intervals. The majority find ββββ that minimises the weighted sum 

of square errors: 
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∑
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β

  [9] 

The chi-square (χ2
) here is also the maximum likelihood 

(Maximum Likelihood Estimation) and the maximum posterior 

probability (Bayesian). If the data are considered to have 

constant variance then [9] is the classical least squares 

function which can also be written as 

( )∑ −= 2

calcdata yyySS   [10] 

where ydata = (y1 … yN) and ycalc = f(x1 … xN,ββββ) in [8] and [9]. 

The program Sivvu minimises the equivalent root-mean-square 

of the residuals:
7,8

 

( )
N

RMS y
∑ −

=
2

calcdata yy   [11] 

Another fit indicator that we have applied is the variance of 

fit (covfit) which is the ratio of the variances of the fitted and 

the raw data:
1,2,9 

 

)(variance

)(variance

data

calc
fitcov

y

y
=   [12] 

Determining stoichiometry and the best binding 

model(s) 

Supramolecular interactions in host-guest chemistry are 

usually studied through titration experiments. The data 

obtained can then be fitted to as few or many binding models 

as desired to obtain the K-value(s) of interest.
1
 The data fitting 

process itself is “blind” and the results obtained have no 

inherent physical meaning.  

 Picking the correct model is not straightforward. A good fit 

of a “simple” model does not prove the model as there are 

usually an (almost) infinite number of other, usually more 

complicated, models that might fit the experimental data 

equally well. Traditionally, supramolecular chemists opt for the 

simplest plausible model (Occam’s razor) once the 

stoichiometry has been determined. However model selection 

is a mature statistical field and information theory gives 

approaches (e.g. Bayesian Information Criterion) that could be 

applied here.
10 

We describe below simple F-value calculations 

to aid the choice of model.  

 To narrow down the number of plausible binding models, 

knowledge about the host-guest stoichiometry is therefore 

paramount. Once that has been achieved the more subtle 

differences between available binding models can then be 

considered. 

The death of the Job plot  

The continuous variation method, better known as the Job 

plot
11

 has until recently been the most popular method for 

determining stoichiometry in host-guest chemistry. This is 

despite concerns raised first by Connors
12

 and echoed by us
1
 

and others
13

 about its limitations when more than one 

complex is present. More recently, Long and Pfeffer
14

 noted 

that popular shortcuts to the Job method, such as the 

MacCarthy modification,
15

 gave in some instances very 

different results from the original method. But until very 

recently the orthodox view in the community appeared to be 

that the original Job method was in most cases reliable when it 

came to determining stoichiometry in host-guest chemistry.  

Recently published work by Jurczak and co-workers
16

 at the 

Polish Academy of Sciences challenged this view and, in our 

opinion, essentially spelled the death of the Job plot as a 

useful tool in analysing supramolecular binding interactions! 

Their simulations show that the observed maxima in the Job 

plot (xmax) for various cases of 1:2 equilibria may or may not 

give the “expected” xmax ≈ 0.33 for a 1:2 system (Fig. 1). In 

other words, the observed xmax value is often misleading; of all 

the 1:2 cases shown in columns 3-5 in Fig. 1, only 4 out of 12 

have xmax ≤ 0.4 and only one is reasonably close xmax ≈ 0.33 

(0.36 at the bottom right corner of Fig. 1). What Fig. 1 shows is 

that the Job plot is more sensitive to the K1/K2 ratio and host 

concentration than to the real stoichiometry. 
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Fig. 1 Simulated Job Plots for various cases of 1:2 stoichiometry with the exception of the 1:1 complexes in column 2 (K2 = 0). In all cases K1 = 1000 M
-1

 with YHG =1 and YHG2
 = 2 

(additive model). The concentration of host in M is shown in column 1. The simulated maxima in the Job plots is shown as xmax.  Reproduced with permission from Ref 16. 

Jurczak and co-workers then go further and show that even 

at reasonably high host concentration (0.01 M) with a low 

K1/K2 ratio of 4, corresponding to classical non-cooperative 

binding, the outcome is highly dependent on the ratio and 

direction (increasing/decreasing) of the physical (analytical) 

signal Y from the 1:1 (YHG) and 1:2 (YHG2
) complexes formed 

(Fig. 2).
16

 In NMR titrations, YHG correspond to the chemical 

resonance (change) from the 1:1 complex (δHG) and YHG2
 to the 

one from the 1:2 complex (δHG2
) (see also [7] above).  

These simulations show that for a true 1:2 equilibria, 

depending on the combinations of YHG and YHG2
, the observed 

xmax may lie anywhere between 0.29 and 0.63, depending on 

the assumed 1:2, 1:1 or 2:1 stoichiometry! The message from 

the data in Figs. 1-2 is that Job plots are exceptionally poor 

indicators of stoichiometry in supramolecular host-guest 

chemistry. It is for this reason that we propose to declare the 

Job method as practically dead as an analytical tool in 

supramolecular chemistry. Jurczak and co-workers point out 

that the Job method may still have a valid use in the study of 
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inorganic complexes
16

 where the Ki’s are typically >> 1/host 

concentration [H]0 (or in other words, the dissociation 

constant(s) Kd << [H]0) which correspond somewhat to the case 

in the bottom right corner of Fig. 1. This situation is relatively 

rare in classical supramolecular host-guest chemistry, 

particularly the type that is studied by NMR titration where the 

K’s hardly exceed 10
5
 M

-1
 for practical reasons.

1,17
 

Alternatively, in the case of positive cooperativity, if K2 is 

comparable or even larger than K1, a Job plot will probably give 

the correct answer (consider this as an extreme case of the 

ones shown in the right-most column in Fig. 1). 

 

Fig. 2 Simulated Job Plots for various cases of 1:2 stoichiometry with concentration of 

host = 0.01 M, K1 = 1000 M
-1

 and K2 = 250 M
-1

, i.e. non-cooperative 1:2 binding. Only 

YHG and YHG2
 between cases A-D. The corresponding case for YHG =1 and YHG2

 = 2 is 

shown in row 4, column 5 of Fig. 1. Reproduced with permission from Ref 16. 

 Are Job plots then useful at all? In the limiting cases where 

either both K1 and K2 are large or K2 is relatively large 

compared to K1, Job plots still appear to give the “right” 

answer. However, one can only be certain about this if one has 

prior knowledge of K1 and K2. In other words, at best, a Job 

plot can only be used for additional positive confirmation of a 

binding model about which there is sufficient information, i.e. 

the values of K1 and K2. It is practically useless as a tool to rule 

out more complex models or to differentiate between 

different binding models. In light of our discussion below, the 

additional time and effort required to obtain a Job plot, would 

be much better spent on repeat experiments or by performing 

a titration experiment at a different concentration of the host.     

There are, as outlined in our earlier paper,
1
 other methods 

than the continuous variation method that can be used to 

determine stoichiometry in host-guest systems, including the 

consistency of the model(s) proposed to changes in 

concentration.
1
 Jurczak and co-workers point out in their 

paper that a residual plot is probably most useful.
16

 A regular 

sinusoidal distribution of the residual indicates the assumed 

model is incorrect but unfortunately, such an observation does 

not direct the researcher to the correct stoichiometry. In 

essence, this means that if there any ambiguity about the 

binding model or the correct stoichiometry, the best approach 

is to fit the raw data to all probable models and then compare 

the results.  

Comparing different binding models  

The stoichiometry problem aside, there is often more than one 

binding model that can be used to fit the data. For instance, 

even if it is known that the stoichiometry is 1:2, there are 4 

different binding model variants (Fig. 3B) or flavours of [7] that 

could be used to fit the data depending whether the 1:2 

binding interaction cooperative or not and whether the 

physical quantities ∆Y (e.g. δ for the complexes in NMR 

titration) are additive or not.
2,18

 So how should one compare 

these models? We will look at a recent example from our own 

work and then outline possible best practice for dealing with 

this problem.  

 

Fig. 3 (A) The structure of the host (H) 1 and its 1:2 host-guest (HG2) complex 2. 

(B) The four different binding models (flavours) based on [7] that can be used to 

describe a 1:2 equilibria. Reproduced with permission from Ref. 18. 

The host 1 (Fig. 3A) can bind up to two cations such as Ca
2+

 

or Mg
2+

 to form the 1:2 complex 2 (1 can also bind two 

anions). The binding data for Mg
2+

 and other cations and 

anions was fitted to all four flavours of the 1:2 equilibria and 

the results then systematically compared in terms of quality of 

fit indicators, residual plots vs. number of parameters obtained 

(Table 1).
18 

The most useful indicator used to select a binding model in 

this study was covfit obtained from [12]. The more complex 

model, and hence the number of parameters fitted, the better 

the fit generally is. To justify the selection of a more complex 

model such as the full 1:2 model over a simpler 1:2 additive 

model, covfit needs to be at least three to five times better 

(lower) for the complex model(s).
18

 For example, in the case of 

Mg
2+

 binding, the covfit for both the full and noncooperative 

1:2 model was 5.6x better (lower) than the simpler 1:2 

statistical model (Table 1). The additive model was ruled out 
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not only because of the poor covfit, but also as the magnitude 

of K1 obtained was physically improbable. The conclusion from 

this work was therefore that both the full and noncooperative 

1:2 models could be used to describe the binding of Mg
2+

 to 

1.
18

 

Table 1. Comparison of four different 1:2 binding models used to fit chemical shift data 

from an NMR titration of 1 with Mg(ClO4)2 in CD3CN/CDCl3 (1:1, v/v).
18 

The raw data and 

the fits are stored at supramolecular.org (Supplementary Information for URL’s).
19

 

Binding 

Model
a
 

K1 /   

M
-1

 

K2 /  

M
-1

 

covfit 

ratio
b
 

ssy / 

10
-3c

 
df

d
 F

e
 P

f
 

Full 4139 1059 5.6 1.98
g
 86 N/A N/A 

Noncoop. 4252 1063
h
 5.6 1.98

g
 87 0.004 0.95 

Additive
i
 3 x 10

6
 1784 0.5 7.33 90 58.1 10

-23
 

Statistical 15986 3997
h
 1 11.17 91 79.9 10

-30
 

a
The four different binding models compared (see Fig 3B). 

b
Raw covfit from [12] 

divided by covfit for the statistical model = 3.66 x 10
-3

. 
c
Calculated from [10]. 

d
Degrees of freedom = N-k. 

e
F-value from [11]. In all cases the more complex 

model (2 in [11]) is the Full 1:2 model. 
f
P-value (significance test).

20
 

g
The ssy for 

the Noncoop model is 0.004% greater than for the full model. 
h
For 

noncoopearitve/statistical binding K2 is calculated as K2 = K1/4 from the K1 value 

obtained. 
i
The K1 value obtained is physically improbable. If as in ref. 17 no 

constraints are used the model converges on a negative K2 which is physically 

impossible. 

The above process for selecting binding models relies on 

the subjective assessment of indicators. A greater number of 

coefficients will usually achieve a better fit, so a means of 

taking into account the reduced degrees of freedom would 

lead to comparable figures of merit. A more statistically robust 

approach is to test the sum-of-squares from each model by an 

F test at the appropriate degrees of freedom of each model:
21

 

( )
( ) 221

221

/

/

dfdfdf

SSSSSS
F

−
−

=   [13] 

 Here, number 1 and 2 refer to the simpler (Noncoop., 

Additive or Statistical) and more complex (Full) models being 

compared, SS1 and SS2 are the SSy values calculated according 

to [10] and df1 and df2 are degrees of freedom calculated from 

df = N-k with N = number of data points and k = number of 

parameters. The probability (P) of finding the observed F-value 

given the null hypothesis that the sums-of-squares are drawn 

from the same population, i.e. there is no difference between 

the models, can be readily calculated
20

.  Rejecting the null 

hypothesis at, say, the 95% level (P < 0.05) implies that the 

more complex model (number 2 in [13]) does fit the data 

better than the simpler one (number 1 in [13]). This is not 

same as saying the more complex model is correct if the P-

value is low but that the fit of the data is better described by 

that model.  

We analysed the data shown Table 1 using the F-test and 

calculated the corresponding P-values (Table 1). The results 

clearly show that we accept the null hypothesis (P > 0.05) 

between the full and noncooperative 1:2 binding model, and 

therefore infer the noncooperative binding model. This is in 

contrast to the difference between the more complex full 

model with either the additive or statistical 1:2 model which 

give minuscule P-values (< 10
-23

). The sum-of-square test yields 

the same conclusion as the simple semi-subjective quality of fit 

comparison but it is quantitative and objective.  

Accuracy in data fitting and the software used  

The older literature on fitting data in host-guest chemistry is 

filled with methods and examples aimed at simplifying the 

process by taking shortcuts or making approximations to avoid 

solving the complex fundamental quadratic (1:1) or cubic (1:2, 

2:1) equations that describe the concentrations of the species 

of interest. This made sense when computational power was 

scarce or non-existent, as when linear-transformations such as 

Benesi-Hildebrand
22

 or Scatchard
23

 plots were invented, but 

these have been shown time and again to be highly 

inaccurate.
21

 Amazingly though, they are still being used in the 

21
st

 Century with drastic consequences. A recent example 

concerns the quest for enantioselective hosts for anion guests. 

Ulatowski and Jurczak showed by NMR competition 

experiments that a previously claimed record holder for 

enantioselective anion recognition, which was based on 

analysis by the Benesi-Hildebrand method,
25

 did in fact have 

very limited selectivity.
24

  

 The frequent use of approximations in older literature and 

software programs also raises issues. Many legacy programs 

that are still quite popular use the method of successive 

approximation to solve the quadratic equation [4] for 1:1 

equilibria or the cubic equation that underpins [7] for 1:2 

equilibria. This is no longer necessary as the combination of 

modern computer processing power and highly sophisticated 

programs (languages) such as fast and accurate mathematical 

and statistical algorithms within the open source Python 

programming language or commercial packages like Matlab 

solve these polynomials quickly and accurately. Although these 

legacy programs often get the answer almost right, we have 

demonstrated previously
26

 that even in the case of relatively 

simple 1:1 NMR models, the binding constants obtained by 

one popular legacy program differs by a few percent when 

compared to a Matlab-based program
1
 that solves [4] directly.  

Selecting the appropriate experimental method  

For newcomers and experienced users in this field, choosing 

the appropriate experimental method presents a major 

challenge. As we pointed out previously, there is a risk of 

letting economical or emotional factors determine whether, 

for instance, one should use 
1
H NMR or UV-Vis titrations to 

determine host-guest binding constants in supramolecular 

chemistry.
1
 There is no simple answer to the question of 

selecting a method and in many instances, doing both would 

be desirable. One of the most powerful ways of testing a 

stoichiometry model is to carry out the experiment at different 

concentrations and see if the data fits the originally proposed 

model.
1
 For more concentrated solutions, (

1
H) NMR is usually 
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the best choice, however, if the association constant is K > 10
5
 

M
-1

, NMR is not reliable.
1,17

 For larger K’s, UV-Vis is more 

suitable.  

The main limitation of UV-Vis spectroscopic titrations is not 

only the need for a suitable chromophore, but that the 

titration has to be performed within the absorbance range that 

follows the Beer-Lambert law, limiting the available 

concentration range. Fluorescence titration can lower the 

concentration limit for UV-Vis (around 10
-6

 M for strong 

chromophores), even towards the nM range, but fluorescence 

titrations are also limited to the relatively narrow 

concentration range that yields a linear (Beer-Lambert like) 

response.
1,2

  

Spectroscopic UV-Vis or fluorescence titration methods at 

low concentrations will often “mask” the presence of higher 

stoichiometries, e.g. in the case of 1:2 host-guest complexes; 

unless K2 is particularly large, the concentration of the 1:2 

host-guest (HG2) complex will be minuscule and not detectable 

in the data obtained.  

Uncertainty estimation in host-guest chemistry 

Data without any information about their reliability is 

meaningless.
4
 A minimum indicator in quantitative analysis is 

the estimation measurement uncertainty of the measurement 

result for the target quantity.
6
 When doing n-repeat 

measurements, in the absence of bias (neglecting the bias 

from doing serial additions in titration experiments), the 

standard uncertainty (u) is taken as the standard deviation of 

the mean,  the sample standard deviation (s) of the n-repeat 

measurements divided by the square root of n. To obtain a 

coverage interval about the mean at a desired probability (e.g. 

95%) this is multiplied by the Student t-value for the degrees 

of freedom of the mean (n – 1).
3
 If replicate, independent 

measurements of binding constants are available, this 

approach is recommended if there is no evidence of between-

measurement variability (caused by uncorrected biases), as 

described in a following section. For values obtained from non-

linear model fitting, as is the case with determining binding 

constants, only approximations to true standard errors are 

obtained analytically from the regression.
21

 As discussed 

further below, having access to data from different 

laboratories allows investigation of inter- and intra-laboratory 

bias.
27,28

 

The “Guide to the expression of uncertainty in 

measurement” (GUM)
6
 and its supplements is produced by an 

international collaboration of eight organisations (including 

IUPAC), the Joint Committee for Guides on Metrology. It offers 

guidance on how the uncertainty of a measurement result can 

be estimated from knowledge of systematic and random 

factors that influence the result. There are strategies to obtain 

uncertainties that are not provided by statistical treatment of 

replicate measurements. Taking the measurement equation, 

uncertainties in each term are combined by the law of 

propagation of error. Combination of uncertainty terms in 

quadrature is correct for the linear case, and is also sufficient 

for problems that are mildly non-linear. However the use of 

Monte Carlo methods is recommended for obtaining coverage 

intervals of many problems where non-linearities do not allow 

simple error propagation.
29

 In analytical chemistry, the 

elimination, or correction for, systematic errors is a major 

problem in assuring the quality of results. Differences between 

results reported by laboratories, often in excess of estimated 

uncertainties, can be attributed to unknown, and uncontrolled 

bias.
30

 Error models used to obtain coefficients in 

supramolecular chemistry always assume the absence of bias, 

even when no great efforts have been made to demonstrate 

its absence. 

Monte Carlo methods 

The Monte Carlo approach to obtaining uncertainties for 

parameters takes the best fit and resamples the input data 

about their fitted values using known values of the standard 

deviation of those data. Each set of the M resampled data is 

then fitted giving M values of each parameter. These are a 

numerical approximation of the distribution function for the 

parameter. The standard uncertainty is the half width of the 

interval covering 68.3 % of the values, and other coverages, 

e.g. 95 %, 99 %, are simply obtained by choosing the 

appropriate fraction of the distribution about the mean. 

If the 100p % coverage interval is needed (e.g. P = 0.95) it is 

recommended that considerably more than 1/(1 – P) trials are 

taken. If M ~ 10
4
 x 1/(1 – P) the parameters can be expressed 

to about two significant figures (a relative uncertainty of ~1 %) 

As each trial to obtain equilibrium parameters requires an 

iterative, non-linear fit it is not practical with present 

computing power to run thousands or tens of thousands of 

trials. It is therefore recommended (section 7.2.3 of Ref. 6)
6
 

that if M = 100 or less, and a Gaussian distribution of the 

parameter values is assumed, then the mean and standard 

deviation of the set of M parameter values should be used to 

construct the coverage interval. In the simulations discussed 

below, M = 200 which means the relative uncertainty on the 

uncertainty values obtained is closer to 10% than ~1%, e.g. for 

a reported uncertainty value below of 8%, the uncertainty on 

that number is in the order of ±0.8% (rounded to ±1%). 

In host-guest titration data analysis one would include the 

uncertainties of the input concentrations ([H]0 and [G]0) and 

the “best” fitted physical values (ycalc in Equation [8]). To 

estimate the correct variances for these inputs, an uncertainty 

budget estimation
3
 on the concentration of the solutions 

prepared and the precision of the observed signal (e.g. 

chemical shift in NMR) should be made.  

Estimating the uncertainties of parameters s 

To deliver a set of parameters with GUM-compatible 

uncertainties depends on the quality of the fit, but also the 

view of the distribution of parameter estimates. For normally 

distributed parameter estimates, various linear assumptions 

give the following for the standard error of a parameter βi 
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   [14] 

and so the value of the parameter is reported as βi ± t u(βi), 

where t is the Student-t distribution for the required 

probability level and degrees of freedom. The second order 

differential in [14] is the diagonal of the Hessian matrix, and 

Equation [14] can also be written in terms of the diagonal 

elements of the covariance matrix. In practice is can be done 

without the Hessian by numerically calculating the partial 

differential as shown by de Levie.
31

  

It is stressed that the standard uncertainty given by [14] 

has many assumptions, and delivers a symmetrical interval, 

also called the asymptotic error.
21

  

An alternative approach uses the ‘profile likelihood’ or 

‘model comparison’
21

 method in which keeping k – 1 

parameters constant at their optimised values, varies the k
th

 to 

construct a coverage interval of 100 – α % based on a 

likelihood ratio that is at the α/2 limit of significance, as 

determined by an F-test using
21

  








 +
−

= −− 1
1

fitbestfixedall
N

k
FSSSS  [15] 

with k and N, the number of parameters fitted and data 

points, respectively, F = the critical value (Equation [13]) for 

the P-value
20

  of concern (typically P is obtained at α = 0.05 for 

95% confidence interval α = 0.317 for 68.3% confidence = σ or 

one standard deviation from the mean), SSbest-fit is SSy obtained 

from [8] for the best fit of parameter(s) and SSall-fixed is the 

target SSy to generate the model comparison boundaries 

(sometimes called confidence contours).
21

  

Reproducibility and combining uncertainties  

As with any experiments to establish the value of a particular 

parameter sufficient independent replicates should be 

performed to give some confidence in the results. It is 

dangerous to report results based on a single experiment. 

There is much advice on how to combine independent data 

with uncertainties, arising from several campaigns to certify 

reference materials based on data from National 

Measurement Institutes (NMIs).  

The value of the binding constant(s) (K) should be the 

arithmetic average K  of the N results Ki, or, if it is thought 

that the different data could have significantly different 

measurement uncertainties, the weighted mean ( wK ). 

∑∑
=

=

=

=
=

ni

i
i

ni

i

ii wKwK
11

w

  [16] 

where the weight is the reciprocal square of the standard 

uncertainty  

( )2/1 ii uw =
  [17] 

The associated combined uncertainty is more difficult to 

determine. Duewer
32

 gives eleven ways of combining the 

individual quoted uncertainties and the standard deviation of 

the means. The two recommended here as practical and easily 

implemented are the simple sample standard deviation of the 

mean ( )(Ks ) calculated from the data with no regard to the 

individual standard uncertainties (the assumption is the 

variability between values reflects the internal variability)  

( )
( )∑

=

= −
−

===
Ni

i

i

N

KK

NN

s
Ksu

1

2

1

1
)(

  [18] 

and a weighted standard deviation ( )wKs  where the 

individual standard uncertainties are scaled to 1/n: 

( ) ( )

( )

∑

∑
=

=

=

=
−

−
==

ni

i
i

ni

i

ii

w

KKw

N
Ksu

1

1

2
w

w
1

1

 [19] 

Estimating uncertainty on binding constants – case studies  

We now apply the above discussion on uncertainty estimation 

to the binding data discussed above (Fig. 3 and Table 1). We 

start by noting that best practice would be to perform multiple 

repeats of this experiment as discussed further below. It is, 

however, quite common to find it impractical to perform 

multiple experiments. We start therefore by looking at the 

different methods to estimate the uncertainty on the 

parameters obtained from a single (n = 1) fitting process (the 

fitting error).  

Table 2. Comparison of uncertainty limits of 68% and 95% coverage intervals obtained 

by three different methods to estimate the uncertainty on the fitting of experimental 

data from a titration of 1 with Mg(ClO4)2 in CD3CN/CDCl3 (1:1, v/v) to the full 1:2 model 

(see also Table 1).
17 

 

Binding 

constant 

analysed 

Type 

of limit 

u(Ki)
a
 

Model 

comparison
b
 

Monte Carlo 

method
c
 

+/- 

limit 

Lower 

limit 

Higher 

limit 

Lower 

limit 

Higher 

limit 

K1 
u

d
 ±4.1% -12% 14% -9% 9% 

U95%
e
 ±8.2% -15% 18% -16% 24% 

K2 
u

d
 ±5.2% -14% 18% -4% 3% 

U95%
e
 ±10% -19% 24% -7% 6% 

a
Relative standard uncertainty or asymptotic error

21
 from [14]. 

b
Based on [15],

21
 

also sometime also referred to as the profile likelihood method (see Fig. 4 for 

illustration). 
c
From Monte Carlo (M = 200) simulation using 2% relative 

uncertainty on [H]0, 1% relative uncertainty on [G]0 and 0.5% relative uncertainty 

on ycalc. The uncertainty values obtained from Monte Carlo have themselves 

approximately ±10% relative uncertainty. 
d
Standard deviation = standard 

uncertainty according to [16] (calculated using de Levie’s method)
31

 or 68.3% 

confidence interval (P-value or α = 0.317) for the Model Comparison and Monte 

Carlo methods. 
e
The 95% coverage interval (CI with P-value or α = 0.05). For the 

standard uncertainty method, the value obtained from [15] is multiplied by the t-

value at α = 0.05 and divided by √N. 

The fit of the data to the full 1:2 binding model was 

analysed (Table 2 and Fig. 4) using standard uncertainties of 

the binding constant values (u(Ki)) from [14] (asymptotic 

errors), the profile likelihood or model comparison based on 

[15], and from Monte Carlo simulations (M = 200) based on 
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random sampling from distributions of the input concentration 

data for the host ([H]0) and guest ([G]0), and the ideal 

calculated fit data (ycalc). The relative standard deviations of 

the distributions were 2% for [H]0, 1% for [G]0 and 0.5% for 

ycalc. The difference in relative standard deviations for [H]0 and 

[G]0 can be rationalised based on the fact that the 

concentration of the guest solution used in supramolecular 

titration is generally greater than that of the host. Modern 

NMR (and UV-Vis) instruments are also highly accurate making 

the 0.5% estimation of relative standard deviation 

conservative. 

The differences between these methods are most readily 

seen when they are plotted graphically as a function of relative 

(%) error of K1 and K2 (Fig. 4). The scatter pattern that the 200 

Monte Carlo simulations, and the corresponding confidence 

limits (broken black and blue lines) are clearly not symmetrical 

around the “best fit” K1 and K2 values (0%). The Monte Carlo 

results show more spread or up to 50% from the best fit K1 

value along the K1 axis, but at the most only about 10% away 

from best fit K2 value. The Model Comparison (Profile 

Likelihood) method is not symmetrical either but has a 

distinctly different shape than the Monte Carlo with the 

uncertainty being larger along the K2 axis. In contrast, the 

standard uncertainty or asymmetric error is symmetrical, 

unlike the raw Monte Carlo scatter. 

 

Fig 4 Graphical representation of the data shown in Table 2. The diamonds represent 

one of the M = 200 simulated results from the Monte Carlo calculations. The 68.3% or 

one standard deviation (blue) and 95% (black) confidence intervals for both the Monte 

Carlo (broken thick lines) and Model Comparison (solid thin lines) or Profile Likelihood 

methods. The symmetrical standard uncertainty (inner dotted red line box) or 

asymptotic error from [15] (calculated using de Levie’s method)
31

 limits are also shown 

together with the corresponding 95% confidence interval on the standard uncertainty 

value (outer dotted red line box). The insert shows two of the outliers (arrows) from 

the Monte Carlo simulations. 

 

 

Fig. 5 Monte Carlo simulations (M = 200) for NMR binding with underlying 1:1 

equilibria. In all cases [H]0 = 10
-3

 M, [G]0 is spread unevenly across 49 data points 

between [G]0 = 0 - 0.035 M and δHG = 1 ppm for the “ideal” dataset used as the starting 

points of these simulations. The data was fitted with Ka between 10
2
 - 10

6
 M

-1
, with 

relative standard deviation  of either 0% or 1% on ycalc (δcalc), 0-2% on [G]0 and 0-4% for 

[H]0. In each case the relative standard deviation of [H]0 is 2x that of [G]0 The contour 

plot is coloured according to relative (%) the Monte Carlo uncertainty on the expected 

Ka at the 95% confidence interval level (95% CI). (A) The colour scheme used in the 

contour plots between -100% and +100% of the expected Ka value. (B) Contour plot of 

the calculated Monte Carlo 95% CI assuming uncertainty of 0% for ycalc (δcalc). The lines 

indicate steps of 10%. The +/- 20% (blue) +/-40% (orange) and +/-60% (red) levels are 

highlighted with bold lines and labels. The y-axis represents changes in Ka. Starting from 

the central vertical line, the x-axis represents increasing variance in [H]0 and [G]0 for the 

lower limit (left side panel) and higher limit (right side panel) of the expected Ka. (C) 

Same as (B) except with additional 1% relative standard deviation on ycalc (δcalc).     

These results demonstrate the approximate nature of 

estimating standard uncertainty by Equation [14] or 

asymptotic error methods. Monte Carlo and Model 

Comparison (Profile likelihood) methods also give quite 

different results. The scatter in the Monte Carlo simulations 

suggests there is better information (smaller uncertainty) on K2 

than K1 in this system. This makes good sense; the ratio of 

K1/K2 suggests noncooperative binding (see also Table 1) and 

the calculated amount fractions (see unique URL from 

supramolecular.org
19

 in Supplementary Information) shows 

that the maximum amount fraction for the formation of the 
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1:1 complex is 0.5, where the 1:2 complex reaches a amount 

fraction of 0.9 at the end of the titration. This means the NMR 

data obtained from this experiment “sees” the 1:2 complex 

better than the 1:1 complex, resulting in a smaller uncertainty 

on K2. In line with best practice recommendation in the 

GUM,
29

 the Monte Carlo results appear to give the best 

presentation of the underlying uncertainties in host-guest 

binding studies. 

 Encouraged by these results, we carried out a large 

number of Monte Carlo simulations for NMR titrations for both 

the 1:1 and 1:2 binding equilibria, using a range of binding 

constants (Ki). In all cases the chemical shifts are assumed to 

be additive (see Fig 3B), the total host concentration was fixed 

at [H]0 = 10
-3

 M which is typical for NMR titrations and the final 

guest concentration at [G]0 = 0.035 M (35 equivalents). The 

results for the 1:1 binding equilibria are shown in Fig. 5. 

  

 

 

 

 

 

Fig. 6 Monte Carlo simulations (M= 200) for NMR titrations with underlying 1:2 equilibria (full model). In all cases [H]0 = 10
-3

 M, [G]0 is spread unevenly across 49 data points 

between [G]0 = 0 - 0.035 M, with δHG = 0.5 ppm and δHG2
 = 1 ppm (as in the additive model – Fig. 3B) as the starting values in the “ideal” datasets used at the start of these 

simulations. The data was fitted with K1 between 10
2
 - 10

6
 M

-1
 and K2 between 10 – 10

5
 M

-1
 with K2 always fixed at K2 = 0.1xK1 (mild negative cooperativity). The variance is either 

0% or 1% on ycalc (δcalc), 0-2% on [G]0 and 0-4% on [H]0. In each case the variance of [H]0 is 2x that of [G]0. The contour plot is coloured according to relative (%) the Monte Carlo 

uncertainty on the expected K1 (left column) and K2 (right column) values at the 95% confidence interval level (95% CI). (A) The colour scheme used in the contour plots between -

100% and +100% of the expected K1 or K2 values. (B) Contour plot of the calculated Monte Carlo 95% CI on K1 assuming uncertainty of 0% for ycalc (δcalc). The lines indicate steps of 

10%. The +/- 20% (blue) +/-40% (orange) and +/-60% (red) levels are highlighted with bold lines and labels. The y-axis represents changes in K1. Starting from the central vertical 

line, the x-axis represents increasing noises in [H]0 and [G]0 for the lower limit (left side panel) and higher limit (right side panel) of the expected K1. (C) Same as (B) except for K2 

instead of K1 including the y-axis which shows K2. (D) Same as (B) except with additional 1% RSD on ycalc (δcalc). (E) Same as (D) except for K2 instead of K1 including the y-axis which 

shows K2. Note the order of magnitude difference in the y-axis between the left (K1) and right (K2) columns. 
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The results give valuable insight into factors that affect 

uncertainty in determining binding constants from host-guest 

titrations with some interesting but expected trends clearly 

evident. In terms of the lower limits (Fig. 5 left panels) and the 

higher limits (Fig. 5 right panel) on the uncertainties on the 

expected Ka, they are not quite symmetrical with slightly larger 

uncertainties on the higher limits for a given relative standard 

deviation of [H]0, [G]0 and ycalc (δcalc). For Ka > 5 x 10
3
 M

-1
 the 

uncertainties do not exceed 10% regardless of the variance. As 

the Ka get larger, the variance has a more pronounced effect 

on the estimated uncertainty. At Ka > 10
5
 M

-1
, which in any 

case is close to the limit achievable by NMR,
1,17

 meaningful Ka 

(uncertainty < 40%) estimate can only be obtained with the 

noise (errors) on [H]0, [G]0 and ycalc (δcalc) are vanishingly small 

or 0%. 

The results from our simulations for NMR titrations for 1:2 

equilibria are shown in Fig. 6. These simulations were carried 

out under conditions where K2 = 0.1 x K1 or in other words, 

mild negative cooperativity (interaction parameter
12,33

 α = 

0.4). These simulations start by assuming that the chemical 

shift changes are additive (δHG = 0.5 ppm and δHG2 = 1 ppm). 

These results immediately demonstrate that the estimated 

uncertainty is highly sensitive to the relative standard 

deviation on both the total host and guest concentrations and 

the calculated ycalc (δcalc) values. The higher limit on K1 is 

particularly vulnerable to any variance; if the relative standard 

deviation of [G]0 exceeds 0.5 (relative standard deviation on 

[H]0 < 1%), a meaningful estimate on the upper limit of K1 

cannot be obtained (Fig. 6B and 6D). The uncertainty of K1 is 

on the other hand fairly insensitive to variance on the 

calculated ycalc (δcalc) values, or the expected measured 

analytical centre. This suggests that researchers need to take 

particular care at preparing host-guest solutions when a 1:2 

equilibria is suspected to minimize the resulting uncertainty. 

Interestingly, the simulations also suggest a region of 

stability where one expects fairly accurate K2 values, i.e. when 

K2 > 10
3
 M

-1
. In contrast if K2 < 10

3
 M

-1
, it appears that it would 

be very hard to obtain a meaningful estimate on K2. This does 

make sense as with a low K2 there would little “information” 

about the 1:2 complex on the expected binding isotherm 

whereas for high K2 the opposite is true (a  high K2 and a 10x 

higher K1 would be beyond the practical limit for NMR).
1,17

 

Up to this point we have only discussed how the 

uncertainty on binding constant(s) obtained from host-guest 

titration studies could be estimated from a single experiment 

(n = 1). This is, however, not the ideal situation – if possible, an 

experiment needs to be repeated several times and the 

uncertainty then estimated from these n-repeats. The 

uncertainty of each individual fit then becomes incorporated in 

the uncertainty or variations across the multiple repeat, 

allowing us, as we show below, to largely ignore the estimated 

uncertainty on individual fits. At the very minimum, one 

should perform the experiment in triplicate (n = 3) but we 

strongly recommend that titration experiments should be 

carried out in quadruplicate (n = 4) as the results for n = 4 are 

significantly more statistically robust than for n = 3. Compared 

with three repeats, four repeats will improve the ratio of the t-

values multiplied with the ratio of the square root of n (see 

[18]) by 36% and going from n = 4 to n = 5 improves that 

number by 21%. 

The next question is how to estimate the uncertainty on 

the arithmetic or weighted mean values we obtain. To answer 

this we return to our Mg
2+

 titration of 1 example (Fig. 3 and 

Table 1) but this time looking at three repeats of this 

experiments (n = 3) with the results summarised in Table 3. 

Table 3. The results from three repeats (n = 3), on the fitting of experimental data from 

a titration of 1 with Mg(ClO4)2 in CD3CN/CDCl3 (1:1, v/v) to the full 1:2 model (see also 

Table 1). The raw data and the fits are stored at supramolecular.org (Supplementary 

Information for URL’s).
19

 

 K1 Uncertainty
a
 K2 Uncertainty

a
 

 value / -s
b 

/ +s
c 
/ value / -s

b 
/ +s

c 
/ 

 M
-1

 -M
-1

 M
-1

 M
-1

 M
-1

 M
-1

 

Experiment 1 4139 -378 386 1059 -40 30 

Experiment 2 4832 -480 545 907 -38 32 

Experiment 3 3840 -372 490 667 -28 32 

K  (mean)
d
 

-/+ ( )Ks e
 

(relative ( )Ks ,%) 

4271 M
-1

 

-/+293 M
-1

 

(-/+ 6.9%) 

878 M
-1

 

-/+114 M
-1

 

(-/+13%) 

wK
f
 

+/- ( )wKs  g
 

(relative ( )wKs ,%) 

4185 M
-1

– 4216 M
-1

 

-275 M
-1

, + 261 M
-1

 

(-6.6%, +%6.2) 

823 M
-1

– 1050 M
-1

 

-122 M
-1

, +114 M
-1

 

(-14.9%, +10.9%) 

a
 Standard deviation (68.3% confidence interval, CI) limit on Ki obtained from 

Monte Carlo (parameters the same as in Table 2 and as M = 200, these 

uncertainty values themselves also have a relatively uncertainty of ±10%). 
b
The 

lower 68.3% CI limit from Monte Carlo. 
c
The upper 68.3% CI limit from Monte 

Carlo 
d
Mean = sum of Ki values / n. 

e
Calculated standard deviation of the mean 

from [18]. 
f
Weighted mean from [16]; lower value calculated from lower Monte 

Carlo limits (-s) and higher value from the higher Monte Carlo limits (+s). 
g
Weighted standard deviation from the mean calculated with [20] and based on 

the lower (-s) and higher (+s) Monte Carlo uncertainties. 

Apart from calculating the (normal) mean K  and (normal) 

standard deviation of the mean )(Ks  from [19], we also 

include here the weighted mean wK  [16] and weighted 

standard deviation of the mean ( )wKs  [19]. And as the Monte 

Carlo uncertainties are not symmetrical, this result in different 

lower and upper limit estimated of wK  and ( )wKs . 

Interestingly, the weighted wK  and ( )wKs  do not seem to 

differ much from the normal K  and )(Ks  values even though 
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only the former incorporates the uncertainty (here Monte 

Carlo) estimates from the individual fits. We conclude from 

this that in most cases, the normal (unweighted) process for 

calculating the mean and standard deviation of the mean is 

perfectly acceptable. 

There are two key lessons to take from this last example; 

firstly, by doing n-repeats and assigning the (normal) standard 

deviation of the mean of these repeats to the standard 

uncertainty, one can almost ignore the problem of estimating 

the uncertainty on the parameters in each experiment! We put 

the qualifier almost here, as it would still be prudent to 

estimate these, even if it just done with the simple standard 

uncertainty (asymptotic error) method using [15] to check how 

realistic the obtained Ki’s are. The other interesting lesson is 

that for this experiment, the relative standard deviation of the 

mean is greater (13%) for K2 than for K1 (6.9%) – opposite from 

the estimation of the uncertainties from the individual fits 

according to Tables 2-3! The reason for this becomes evident if 

one compares the results from Experiment 3 to the others in 

Table 3 as the K2 value appears to be an outlier resulting in a 

large standard deviation of the mean for K2. 

Open science and online tools 

The above examples indicate the importance of transparent 

processes and show that with access to raw data from 

previous publication(s), it is sometimes possible to refine (or 

reject!) previously published findings. On a more philosophical 

level, it stands to reason that, when practical, data should be 

accessible to the public and the processes used to analyse 

them be as transparent as possible – principles that perfectly 

align with the ethos of the Open Science movement.
5
 Open 

Science encourages the free-of-charge universal sharing of 

good transparent practices, open access to scientific 

publications, scientific collaboration through open access web-

based tools and open access and reusability of data. 

Open access to publications is now quite common but 

researchers in host-guest chemistry, and to some extent in 

chemistry at large, have been relatively slow to adopt other 

important Open Science tools. Depositing raw data with 

manuscripts is the exception and until now, there has not been 

any open access database for host-guest complexation data. 

Contrast this with single crystal X-ray crystallography where for 

50 years the Cambridge Crystallographic Data Centre (CCDC) 

has allowed researchers both to deposit raw data and then 

search and retrieve any other deposited data for further 

analysis.
34

  

One of us (Thordarson) has now established the web-portal 

OpenDataFit
35

 which includes the site supramolecular.org.
19

 

This site provides data deposition and storage, and offers the 

community a free (open) access web-tool to fit their data to a 

range of binding models. The software code is open source 

(Python) and available online for scrutiny and further 

improvements (Fig. S1).  

The website is built around the concept of end-users 

uploading their input data (host and guest concentrations and 

the measured physical signal such as NMR resonance) in a 

simple spreadsheet format. The user then selects between 

various binding models and sets parameters such as initial 

guesses of the binding constant(s) being sought. After fitting 

the data and examining the results, which include residual and 

mole-fraction (speciation) plots, the user either refines the 

binding process further or saves the results. The archiving step 

includes an opportunity to add metadata such as which host 

and guest were used, solvent, temperature and other useful 

information. The user is then given a unique URL that can be 

used to access the data later as well as the option of 

downloading all the results in a spreadsheet for further 

analysis and plotting (Fig. 7 and Fig. S1-S4). 

 

Fig. 7 The Open Access website supramolecular.org
19

 for data analysis and archiving in 

host-guest supramolecular chemistry. (A) Flow diagram of how data is processed on 

the website. (B) Snapshot from the website showing the result window from data 

archived at the unique url: http://app.supramolecular.org/bindfit/view/8a658114-

0b28-4c63-92c0-09a7a976f0be which was fitted to 1:2 NMR binding data. Additional 

screenshots are provided in Supplementary Information (Fig. S2-S5). 

The website offers inter alia, global
36

 fitting of host-guest 

titration data to 1:1, 1:2 and 2:1 binding models, including the 

various 1:2 (and corresponding 2:1) flavours mentioned above. 

Users can also choose between the robust Nelder-Mead
37

 

(Simplex) algorithm and the L-BFGS-B
38,39

 (limited (L) memory 

quasi-Newton Broyden-Fletcher-Goldfarb-Shanno simple box 

(B) constraints), which allows constraint of the search space. 

The site also returns the standard uncertainty
21

 (asymptotic 

error – see above) of the estimated binding constants. Users 

can also simulate binding data to help design their 

experiments. Planned additions include Monte Carlo 

estimation of uncertainty (see above). For the 1:1, 1:2 and 2:1 

binding models, the fitting processes are based on the exact 
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solutions (no approximations) of the equations used to 

describe these binding equilibria, e.g., [4] in the case of the 1:1 

NMR model. 

The database function should in time, allow for systematic 

investigation of inter- and intra-laboratory biases by 

comparing data from different laboratories. Data mining might 

also allow investigators to do more systematic investigations 

into methods for comparing models, answering questions such 

as how robust the F-value [13] calculation method really is 

with a large set of real data.  

It is our hope that the supramolecular.org website might 

also provide a catalyst for the supramolecular chemistry 

community for setting minimum standards for publishing data, 

along the lines of what is already common practice in the 

crystallography community. Other data-intensive fields have 

also established community-based “minimum information 

criteria” for publishing data, with proteomics being a prime 

example.
40

  

Conclusions 

In this article we have shown a few recent examples that 

illustrate how data analysis in host-guest chemistry 

experiments can be improved. We focused on the three key 

challenges as we see them; choosing the right model and 

stoichiometry, access to data and methods to analyse data and 

most importantly, methods to estimate uncertainties on the 

results obtained using case studies and simulations to explore 

the problem. We will now draw our conclusions together in a 

list of our suggestion for the start of a best-practice protocol 

for data analysis in supramolecular chemistry: 

Draft for best-practice protocol for data analysis in supramolecular 

chemistry  

1. Following Jurczak and co-workers
15 

work it is now clear that 

Job plots should not be used in ordinary host-guest titration 

experiments.
41

 At the very best it can only be used as an “after 

the fact” verification once the K’s have been established with 

confidence based on titration experiment data. Given that 

constructing Job plots is quite time consuming, researchers 

should focus instead on repeat experiments or performing 

titration studies at different concentrations to test the 

robustness of the assumed binding model(s).  

2. If more than one stoichiometry or binding model is 

suspected, fit the data to all models and systematically 

compare results to eliminate those that do not fit based on 

criteria’s such as shape (scatter) of the residual plot
16

 and the 

sum-of-squares F-test
19

 (Equation [13]). 

3. If certain binding constants in multi-species equilibria are 

very low, e.g. K2 in the 1:2 host-guest equilibria, the 

information content associated with that complex is inherently 

very limited. No method, no matter how sophisticated  is likely 

to yield any reliable estimate of that binding constant (they 

will have large uncertainties). 

4. Reviewers should without hesitation request for a revision 

of any papers that still use outdated and inaccurate linear-

transformation methods such as Benesi-Hildebrand. 

5. When possible, the program used to fit the data should 

calculate the concentrations of the species involved using the 

exact mathematical expression for the equilibria of interest. 

For simple 1:1, 1:2 and 2:1 binding model this should be 

mandatory and legacy programs that use the method of 

successive approximation should not be allowed.  

6. Best practice for estimating uncertainties clearly involves 

repeating the experiment at least 3, ideally 4 or more, times. 

The estimated uncertainty on the fit in individual experiments 

should be checked for signs of very poor fit. This can be done 

with the simple standard uncertainty method (asymptotic 

error) using [15] but Monte Carlo is desirable.
42

 If the 

individual fits are not unreasonable, they can subsequently be 

ignored and the uncertainties of binding constants and other 

parameter then simply estimated from the standard deviation 

of the mean )(xs  from the n-repeat experiment.  

7. If n-repeat measurements cannot be performed for practical 

reasons, we strongly recommend that the estimation of the 

uncertainty on the fitted parameters should, as recommended 

by the GUM Supplement 1,
5,29

 be performed by Monte Carlo 

simulations and reported at the 95% confidence interval level. 

8. Data should be made accessible (Open Access) and the 

software code used available and transparent to ensure others 

can verify and analyse further the experimental data.
42 

 

 Repeating once again the message that “data without any 

information about its reliability is meaningless”
4
 we hope that 

this article and the list above will provide the host-guest 

supramolecular chemistry community with the necessary tools 

to make their results even more reliable. This will reduce 

mistakes and confusion in the field and accelerate further the 

rapid progress of host-guest supramolecular chemistry. We 

note also that the above approach could easily be adopted in 

other fields of chemistry, e.g. when determining rate constants 

or measuring drug potency via experiments to measure IC50 or 

EC50. 
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