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Computing Organic Stereoselectivity – from Concepts to 

Quantitative Calculations and Predictions 

Qian Penga,b,†, Fernanda Duartea,b,† and Robert S. Paton*a,b  

Advances in theory and processing power have established computation as a valuable interpretative and predictive tool in 

the discovery of new asymmetric catalysts. This tutorial review outlines the theory and practice of modeling 

stereoselective reactions. Recent examples illustrate how an understanding of the fundamental principles and the 

application of state-of-the-art computational methods may be used to gain mechanistic insight into organic and 

organometallic reactions. We highlight the emerging potential of this computational tool-box in providing meaningful 

predictions for the rational design of asymmetric catalysts. We present an accessible account of the field to encourage 

future synergy between computation and experiment.   

 

1. Introduction 

The search for stereoselective chemical reactions is driven both by 
fundamental academic curiosity as well as society’s need for new 
pharmaceuticals, agricultural chemicals, and materials. The 
development of asymmetric catalysts, in which each molecule of a 
chiral catalyst can yield many molecules of chiral product, continues 
to challenge our understanding of the factors controlling rate and 
selectivity. Traditionally, however, mechanistic and computational 
insight has followed rather than led synthesis. This is beginning to 
change: computational insights, which contribute to the theoretical 
understanding of asymmetric catalysis and enable predictions to be 
made, will play an important role in the development of new 
catalysts.  

Asymmetric transition metal catalysis and computational 
chemistry both emerged coincidentally as prominent areas of 
research towards the end of the 20th century. Chemistry Nobel 
Prizes were awarded to pioneers of theory and computation Kohn 
and Pople in 1998, and then in 2001 to Knowles, Noyori and 

Sharpless for the discovery of asymmetric catalytic methods in 
synthesis. Both fields continue to grow apace, for example through 
the discovery of new metal-free and organocatalytic asymmetric 
reactions. During these developments it is fair to say that 
computational chemistry has, in the main, been used as an 
interpretative rather than a predictive tool. However, with the 
advent of new theoretical methods and exponential increase in 
computational power, theory and computation have become more 
active, and their predictive power exploited even more

1, 2
. This can 

be seen in the increasing number of research works combining both 
experiment and computation (Fig. 1), which have contributed to a 
better understanding of asymmetric catalytic processes and most 
recently to the discovery of new catalysts. 

 

 
Fig. 1 Web of Science

TM
 citation counts on 26 April 2016 associated 

with keywords of TOP=(Comput* AND asymmetric AND Catalys*). 
 
In this tutorial review, we outline contemporary computational 

techniques that have become a popular tool for rationalising and 
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predicting the stereoselectivity of chiral reagents and catalysts. First, 
we briefly introduce the basic principles underlying stereoselectivity 

Building on these principles we then discuss the different ways 
in which experimentalists and computational chemists quantify 
selectivity, and show how they can be obtained from widely 
available programs. Prominent examples have been chosen to 
demonstrate how computational chemistry has been used to gain a 
mechanistic understanding of these processes, leading to working 
models used by synthetic and computational chemists (Scheme 1). 
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Scheme 1: Examples of catalytic enantioselective processes 
discussed in this review: a) proline, b) BINOL phosphoric acids and 
c) thioureas.  

This tutorial concludes by highlighting recent advances in the 
field as well as outstanding challenges. We hope this tutorial review 
will encourage and assist non-specialists to apply computational 
modelling in synergy with experiment.  

2. Kinetic vs Thermodynamically Controlled 

Stereoselectivity 

In 1944 Woodward and Baer reported the Diels–Alder reaction 
between 6,6-pentamethylenefulvene and maleic anhydride 
(Scheme 2)

3
. The observed reaction led to a mixture of endo- and 

exo- diastereomers, initially described as α- and β-adducts, either of 
which could be favoured by changing the experimental conditions. 
For example, while the endo-adduct was formed in greater amount 
at low temperature, the exo-adduct became predominant at higher 
reaction temperatures or after allowing the mother liquor to stand 
for several weeks. Based on the concepts of transition state (TS), 
activation barrier, and potential energy surface (PES), introduced 
earlier by Eyring, Evans and Polanyi, a qualitative potential energy 
diagram was used to account for these observations. The formation 
of the endo product was suggested to have a lower activation 
energy barrier and therefore to be the preferred pathway at low 
temperature and when the reaction was left for short period of 
time. On the other hand, the exo product was suggested to be 
thermodynamically favourable, and therefore predominant when 
products reach equilibrium (Fig 2). Although the terminology of 
thermodynamic/kinetic control was not used in this original work, 
and would only begin to appear in the literature years later, 
Woodward provided the first implicit use of these concepts in the 
field of organic chemistry. The concepts where later formally 
defined by Catchpole, Hughes, and Ingold, in 1948, who emphasised 
the distinctions between kinetic and thermodynamic control in an 
allylic rearrangement process, using a similar graphical illustration 
to that originally presented by Woodward and Baer. Since then, 
these concepts have become an essential part of the chemical 
lexicon in rationalising reactions and selectivity.  

 

Scheme 2 The computed energy profile (SMD-M06-2X/def2-QZVPP) 
shows the competition between thermodynamic and kinetic control 
as exemplified by Woodward and Baer for the diastereoselective 
cycloaddition of 6,6-pentamethylenefulvene with maleic 
anhydride

3
. 
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The change between a kinetically to a thermodynamically 
controlled process can be influenced by temperature, but also by 
the identity of reagents, catalysts, and/or the solvent used. 
Additionally, while, it is possible that diastereoselectivity may result 
in either scenario, enantioselectivity is restricted only to reactions 
under kinetic control, since enantiomers are isoenergetic. Although 
it is instructive to consider the single-step reactions in Fig. 2A and 
Fig. 2B, as graphical examples of thermodynamically and kinetically 
controlled processes, respectively, most synthetic transformations 
occur in a multistep fashion. One such scenario is envisaged in Fig. 

2C, where the irreversible product forming step is preceded by the 
interconversion of reactant conformations or diastereomers. 
Provided the intermediates can rapidly equilibrate, the Curtin-

Hammett principle enables the quantitative estimation of product 
stereoselectivity. However, for reactions involving several 
competitive pathways one may require the use of more complex 
kinetic models in order to account for stereoselectivity. 

The next sections emphasise the application of these concepts 
in generating quantitative estimates of selectivity from 
computations, reliant upon the underlying mathematic 
relationships. 

 

Fig. 2 Illustrative Gibbs energy profiles for single-step reactions 
under (A) thermodynamic and (B) kinetic control. In the first case 
the products reach equilibrium, while in the latter conversion is 
irreversible. (C) Application of the Curtin-Hammett principle when 
two species RA and RB equilibrate more quickly than the forward 
reaction. In this particular example, the minor intermediate affords 
major product A. 

 
 
 
 

2.1 Stereoselectivity under thermodynamic control 

To quantitatively illustrate the concepts introduced above, we 
will consider a single-step process such as that illustrated by the 
Gibbs energy profile in Fig. 2. Here, a single reactant R can be 
converted into two stereoisomeric products A and B. Firstly we 
discuss the scenario where interconversion between these products 
is possible, either through reversibility of the first step or by an 
additional pathway. If the relative amounts of A and B are 
considered to be time-independent (i.e. either because they have 
reached equilibrium, or the competing pathways are of the same 
order), the product ratio [A]/[B] is determined by their relative 
stabilities. The reaction is said to be thermodynamically controlled 

(Fig. 2A). Stereoselectivity is mathematically expressed in terms of 
the temperature-dependent equilibrium constant, which is related 

to the standard-state Gibbs free energy of reaction, ∆G0 at 

temperature T: 
 

[A]

[B]
= K = e−∆G

0
/RT

                (1) 
 

where K represents the equilibrium constant and R is the gas 
constant. Since the relative Gibbs energies of enantiomers are 
identical (i.e. K = 1) it is obvious that enantioselectivity is impossible 
under such conditions. Diastereoselectivity is a possibility, its extent 
dependent upon the relative stability of diastereomers A and B.  

Thermodynamic stabilities can be determined experimentally by 
calorimetric measurements or studies of equilibrium constants e.g. 
by NMR. Computationally, the relative stability of two 
diastereomers can be computed directly from the difference in 
calculated Gibbs energies at the appropriate temperature 

(concentration/pressure do not affect the diastereomeric ∆G0). 
Often this may be approximated to the difference in electronic 
energies, effectively assuming that the partition functions of the 
two species are identical. Diastereomeric energy differences 
obtained from fairly modest calculations using density functional 
theory (DFT) with a medium-sized basis are often within 1-2 
kcal·mol

-1
 of experiment, despite worse performance for activation 

barriers and reaction energies. Most species will exist as several, 
rapidly interconverting, conformations that contribute to the 
equilibrium ratio. Computationally it is necessary to compute the 
stability of each of these conformers individually (Fig. 3).  

In these more complex cases, where different conformations of 
the same product are accessible at the experimental temperature, 
one can calculate the ratio of the population of products as a 
function of their Gibbs energy differences and the Boltzmann 
factors associated to each of them in Eq 2. Here, the numerator 
sums all Boltzmann factors associated with conformers of product A 
and the denominator sums all those associated with conformers of 
product B (also see SI) 

 

[A]

[B]
=

1+ e(∆GA1−∆GA2 )/RT + e(∆GA1−∆GA3 )/RT

e(∆GA1−∆GB1 )/RT + e(∆GA1−∆GB2 )/RT + e(∆GA1−∆GB3 )/RT
      (2) 

 
 
where ∆GXi

≠
−∆GYj

≠ is the Gibbs energy difference between the 

product (X,Y = A,B,…) in their different conformations (i,j = 1,2,…) 
and A1 is the most stable. In the scenario depicted above, A would 
be the major diastereomer. However, considering only the 
stabilities of the most stable species would overestimate the 
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selectivity since the second and third conformers of B are more 
stable than those for A. 

 

∆G

∆GA1

∆GA2

∆GA3

A B

∆GB1

∆GB2

∆GB3

 
Fig. 3 Scenario in which diastereomeric products A and B are 
characterised by three thermally accessible conformations. 

2.2 Stereoselectivity under kinetic control 

If the activation barriers for the conversion of either A or B back 
into R (see Fig 2) are large enough to prohibit the reverse reaction 
and there is no product interconversion, the reaction will be 
kinetically controlled. Any stereoselectivity will be determined by 
the relative rates of formation of each product (Fig. 2B).  

Within the context of transition-state theory (TST), the 
macroscopic rate constant for the formation of each product can be 
expressed as in Eq 3: 

 

k1 =
kBT

h
e−∆GA

≠ /RT k2 =
kBT

h
e−∆GB

≠ /RT

         (3)  
 

where ∆GA/B
≠  are the activation free energies for formation of A or 

B, respectively, kB is the Boltzmann constant, and h is Plank’s 
constant. A similar treatment to the one shown above (Eq 2) can be 
used in case several conformers are accessible at the reactant and 
transition state. The application of TST has proven sufficient to 
quantitatively account for the rates and selectivities of many 
thermal reactions. However, the expressions in Eq 3 only holds 
under certain assumptions4 and recent works have revealed 
instances where TST is insufficient to describe common organic 
reactions5, 6.    

A key assumption of TST is that redistribution of internal 
(vibrational) energy within and between molecules/solvent is faster 
than the timescale for breaking/forming a bond. This means that 
reactants and the activated complex are close to thermodynamic 
equilibrium (quasi-equilibrium) and the rate of the process follows 
Maxwell-Boltzmann statistics. Within this framework the reaction is 
also assumed to be electronically adiabatic, i.e. the 
Born−Oppenheimer separaVon of electronic moVon from 
internuclear motions is valid. Furthermore, the TS is described as 
dividing surface perpendicular to the reaction coordinate and all 
trajectories passing through this surface go on to product without 
recrossing. This means that the rates calculated from Eq 3 will 
always provide an upper limit to the true rate constant

4
. To allow 

for recrossing, a temperature-dependent transmission coefficient κ 

(usually close to 1) can be introduced, which also allows one to 
account for quantum effects. Finally, within the TST framework, it is 
assumed that at all times during a chemical reaction the system 
follows the minimum energy path (MEP) on the potential energy 

surface (PES), thus neglecting the kinetic energy of the system. Even 
though this can be considered a fairly good approximation, several 
examples have been shown in recent years emphasising the 
importance of dynamic factors in dictating the chemical output. 
This is the case for example, when a very shallow intermediate exist 
or where a valley bifurcates into two (so-called bifurcation points)

5
. 

In these cases, a single TS lead to two different products, and 
therefore selectivity is no longer determined at the TS.  

Keeping in mind the limits of its predictive power, we outline 
here the principles of TST as it is used to computationally model 
selectivity. Within this framework and at a given temperature, 
selectivity in a kinetically controlled reaction will be given by the 
ratio between the competitive rates (Eq 4). 

 

A[ ]
B[ ]

=
k1

k2
= e−∆∆G

≠ /RT ; ∆∆G≠
= ∆GA

≠
−∆GB

≠

    (4) 
 
Under mild conditions kinetic control is the most common 

scenario. Moreover, for enantioselective reactions, where products 
are isoenergetic, this is the only possibility, unless a chiral solvent or 
resolving agent is used, in which case diastereomeric adducts with 
different thermodynamic stabilities can be formed. Enantioselective 
induction can also be obtained using chiral catalysts (asymmetric 
catalysis). In this case a chiral catalyst selectively interacts with a 
prochiral substrate to generate a pair of diastereomeric transition 
states with different energies, which evolve to enantiomeric 
products. The enantiomeric product that predominates is the one 
generated via the TS lower in energy, despite the fact that both 
products have identical energies. 

 

  
Fig. 4: Dependence of kinetically controlled stereoselectivity (k1/k2) 
on temperature (top panel); and free energy difference between 
the TS/products for a kinetic/thermodynamically-controlled 
reaction (bottom panel). 
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2.3. Quantifying selectivity  

In either a kinetically or thermodynamically controlled regimen, it is 
important to emphasise the exponential dependence of the product 
distribution on both free energy and temperature. This is 
graphically illustrated in Fig. 4, where Eqs 1 and 4 are plotted for 
different temperature and free energy differences. As can be seen, 
only 1 kcal·mol

-1
 difference between the TS/product energies is 

enough to obtain a product ratio of 90% or more. Additionally, at 
low temperature, where the curves flatten out more quickly, such 
dependence becomes even steeper. This means that for values of 
∆∆G

‡
 a precision in the order 1.0 kcal·mol

-1
 or less is necessary to 

obtained reliable estimates and draw meaningful conclusions.  
As shown in Fig. 4, stereoselectivity can be expressed either as a 

diastereomeric (dr) or enantiomeric ratio (er) or as percentage of 
the major product, which are directly related to the Gibbs energy 
difference between TSs or products. Given the historical 
relationship between chirality and optical activity, another way to 
quantify the product composition is optical purity (Op), which is 
defined in terms of specific rotations measured by polarimetry: 

 

Op= 100× ( a[ ]
mixture

/ a[ ]  pure sample )             (5) 
 

where [α]mixture and [α]pure-sample are the observed and maximum 
specific rotations of a sample. Assuming a linear relationship 
between optical activity and composition, Op is numerically 
equivalent to the percentage of one enantiomer over the other, 
which is defined as enantiomeric excess (ee): 

 

ee =
R[ ]− S[ ]
R[ ]+ S[ ]

×100                   (6)  

 
where [R] and [S] represent the mole fraction of the R and S 

enantiomer, so that a mixture composed of 80% R enantiomer and 
20% S enantiomer will have an ee of 80% − 20%= 60%. Despite the 
fact that today few chemists use Op to measure optical purity and 
the merits of alternative metrics have been suggested

7
, ee has 

become the most common way to report enantioselectivity. For 
mixtures of diastereomers, analogous terms for diastereomeric 
excess and percentage diastereomeric excess have also been 
defined.  

From Eqs 4 and 5, one can computationally determine ee as in 
Eq 7. As with ground-state structures, the absolute Gibbs energies 
are obtained for the pair of diastereomeric TSs leading to the 
enantiomeric products.  

 

ee =
1− e

−∆∆GR/S
≠ /RT

1+ e
−∆∆GR/S

≠ /RT
×100

              (7) 
 
In a Curtin-Hammett scenario (Fig. 2C), selectivity can be 

estimated by computing the standard free energy difference 
between the respective transition states only (as in Eq 4 and/or 7). 
Here, the information regarding the energy difference between the 
intermediates is considered to be irrelevant. However, it is 
important to keep in mind that this is implicitly contained in the 
activation term (∆∆G≠

= ∆GA
≠
− (∆GB

≠
+∆GAB

° ) ). This treatment can be 

extended to any case where different products are formed from 
two rapidly interconverting starting materials (conformers, 
tautomers or isomers). A well-characterised example of such a 
situation is the asymmetric hydrogenation of α-

acetamidocinnamates with a chiral rhodium-phosphine catalyst 
proceeding via the Halpern-Brown mechanism, in which the minor 
(but more reactive intermediate) undergoes reaction to afford the 
major enantiomer of product

8
.  

 

3. Theoretical Methods for Computing 

Stereoselectivities 

The ability to model structures and energetics of competing TS 
structures underlies much computational effort in exploring the 
origins of stereoselectivity. In general terms, quantum mechanics 
(QM) calculations are most commonly employed for this task since 
bond formation and/or breaking requires no additional 
parameterization, unlike classical molecular mechanics (MM) 
methods. This is not to say that MM has no place in the study of 
stereoselectivity, since it can be useful for conformational sampling 
prior to QM computations, as a part of hybrid QM:MM methods to 
describe larger chemical systems, or in specific MM 
parameterisations to describe TS structures9. Houk has 
schematically described a workflow, from mechanistic hypothesis, 
progressing through MM conformational searches to QM TS 
optimisations and evaluation

10
. Nonetheless, chemical systems on 

the order of hundreds of atoms are currently amenable to study 
with QM methods, and in particular density functional theory (DFT) 
has become a staple in the study of reaction mechanisms and 
selectivities. DFT offers the advantage of describing instantaneous 
electron-electron correlation, which is neglected in the mean field 
Hartree–Fock (HF) approach, at a much lower computational cost 
compared with correlated wave function theory (WFT, often 
referred to as ab initio). For example, while HF and DFT methods 
scale nominally as N3

-N
4 (N being a relative measure of the system 

size), correlated WFT approaches such as Moller-Plesset (MP2) and 
Coupled-Cluster (CC) scale as N4 and N

6-N7, respectively. Although 
HF calculations were key in seminal early studies of 
diastereoselectivity11, today they have been largely superseded by 
DFT. Even though correlated WFT calculations are now possible, 
they suffer from slower convergence with respect to basis-set size, 
which has contributed to the establishment of DFT as the “method 
of choice” for the study of realistic chemical reactions. Recent 
methodological developments in local forms of correlated ab initio 

calculations have enabled them to be applied to the study of 
catalytic reactions; however, geometry optimisations remain out of 
reach at present12.  

Today, a large number of DFT exchange-correlation functionals 
exist (known as “the functional zoo”)

13
. While this offers flexibility 

in terms of choice, it is also challenging to systematically explore 
the different features, advantages, and pitfalls inherent to these 
different methods. Since the exact form of the universal density 
functional is unknown, each functional adopts a different 
formulation of inter-electronic exchange and correlation with 
varying levels of empiricism. Some only use parameters based on 
general rules of quantum mechanics (LDA, PBE, TPSS, and TPSSh), 
while other use a variable number of empirical parameters fitted to 
experimental data (B88, B3LYP, ωB97X-D, M06-family, etc). 
Furthermore, they can also be classified according to their rung on 
Perdew's ‘Jacob's Ladder’,  each rung representing a different level 
of approximation of the exchange-correlation functional (Fig. 5). 

In general, there is no single functional that can perform best 
for all chemical applications and therefore a careful choice needs to 
be made for each system under study. There is an abundance of 
DFT functional benchmarking studies for chemical applications to 
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be found in the literature, and while there are relatively few studies 
specific to modelling stereoselectivity

14-17
, nonetheless we attempt 

to summarise the important considerations here:  
 
 

 
Fig. 5 The hierarchy of exchange-correlation functionals is often 
represented by the rungs of Jacob’s ladder, according to the 
number and kind of local ingredients.  

 
There are well-publicised failures of the B3LYP hybrid functional 

to capture the effects of dispersion (i.e. medium or long-range 
correlation effects) or to describe energy changes accurately in 
simple reaction types

18
. Despite this, the B3LYP/6-31G(d) 

(equivalently indicated by 6-31G*) combination of functional and 
basis set has been applied to the study of stereoselective reactions 
to optimise competing TSs and to evaluate their energies, giving 
satisfactory agreement with experiment

10
. Houk’s seminal work in 

uncovering the mechanisms and selectivities of organocatalytic 
aldol and Mannich reactions (discussed in more depth below) 
adopted this level of theory and sufficient quantitative accuracy 
was possible to enable the design of new stereoselective reactions, 
a landmark in the field

19
. Rzepa’s comprehensive analysis of Houk’s 

earlier work, demonstrated that the resulting Houk-List model of 
stereoinduction, remains robust irrespective of the computational 
treatment adopted

17
. Corrections for dispersion caused a general 

decrease in energy differences between stereoisomeric TSs, but the 
impact on the predicted stereoselectivities was nearly negligible for 
the systems originally studied by Houk and List

19
. Símon and 

Goodman have systematically studied the choice of functional on 
the gas phase energy difference between two competing TS 
structures for nineteen organic/organometallic reactions

14
. Their 

work revealed that B3LYP optimizations coupled with re-evaluation 
of the energies (single-point calculations) at these geometries using 
more recently developed functionals (in this case M05-2X) were 
appropriate for many studies of organic reaction mechanisms. 
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Fig. 6 Comparisons of B3LYP/6-31G(d) computed 

enantioselectivities against experimental results in asymmetric 
epoxidation of alkenes by dioxiranes from ref. 

15
. The green area 

represents reactions for which the absolute sense of 
enantioselectivity was successfully predicted, whereas the red area 
represents a prediction in the opposite sense to experiment.  
 

The absence of “experimental” TS geometries means that 
experimental selectivities, kinetic isotope effects, or high-level 
computed structures/energetics are used as computational 
benchmarks for optimised TS structures. Tsogoeva and Clark 
focussed on stereoselective organocatalytic transformations and 
compared the gas phase TS geometries obtained from DFT 
calculations with those from more expensive MP2/TZVP 
optimisations

16
. In this study, more modern functionals which 

incorporate an explicit or implicit correction for dispersion (ωB97X-
D and M06-2X) gave structures closer to the ab initio benchmark, 
and energetics were closer to the reference values using the M06-
2X method

20
.  

The most comprehensive “meta-analysis” of the ability to 
quantitatively predict enantioselectivity in a given asymmetric 
transformation with DFT calculations has been performed by 
Breslow and Friesner, who have studied the epoxidation of alkenes 
by chiral dioxirane reagents

15
. Such studies are relatively rare since 

there is often limited experimental selectivity data for a given 
reaction, coupled with the fact that the computational analysis of 
conformationally flexible systems is still far from routine. 
Nevertheless, this study demonstrates the value of recording and 
utilising all selectivity values (which often remain unpublished) and 
also the fairly good performance achieved with B3LYP/6-31G(d) 
computations. In Fig. 6 we show the comparison of computed and 
experimental selectivities obtained for enantioselective 
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epoxidation15, obtained from the solution-corrected TS free energy 
differences, as in Eq 7.  

The two panels in Fig. 6 result from gas phase and solution-
phase optimisations. Most of the time, the computed sense of 
enantioselectivity agrees with experiment (green section), with 
relatively few outliers as qualitatively incorrect (red section). The 
straight line represents perfect quantitative prediction, while the 
arcs around this line encompass regions that lie within +/- 0.5 
kcal·mol-1 (dark grey) and +/- 1.0 kcal·mol-1 (light grey) from the 
experimental free energy difference. TS optimisations in solution 
give only one result which is clearly outside the larger error-bound. 
The authors note that the correlation coefficient is high enough that 
it would be plausible to use this computational methodology to 
predict low, medium or high levels of enantioselectivity. It is also 
interesting to note that the quality of these predictions were 
worsened using energetics obtained with the M05-2X functional. 
This result emphasises the importance of benchmarking a chosen 
level of theory or density functional carefully against empirical 
results before attempts at prediction are made. 

From an empirical perspective, the use of DFT optimisations 
with fairly modest double-zeta valence polarized basis sets, such as 
B3LYP/6-31G(d) has been, and continues to be a cost-effective 
approach for the study of kinetically-controlled stereoselectivities. 
The comparison of chemically-related structures, as in a 
stereoselective reaction, benefits from the cancellation of 
systematic errors, and quantitative accuracies in several cases 
compare well with experiment. Equally, systems with interactions 
where B3LYP may be expected to fail, where sizable dispersive 
interactions are important, will require the inclusion of dispersion 
corrections either by design (the Minnesota functionals) or from its 
explicit inclusion (DFT-D, vdw-DF). Another alternative to include 
long-range interactions is to use an atom-centered potentials, so 
called dispersion-correcting potentials (DCPs)

21
. QM/MM 

calculations may offer the best of both worlds, combining a QM-
description of changes in chemical bonding with the explicit van der 
Waals terms of the classical approach at a reduced cost compared 
to a semi-empirical or quantum chemical lower level, which lack an 
adequate description of dispersion terms

22
. We note that the 

effects of truncated basis sets tend to mimic attractive dispersion 
forces (albeit without the correct R

-6
 dependency at long range), 

such that optimisations with small basis sets and dispersion 
corrections will give misleading results. Recent experimental results 
also suggest that the extent of measured dispersion interactions in 
solution are exaggerated by DFT-D, presumably by the neglect of 
solute-solvent interactions in the gas phase calculations

23
.  

 

4. Computational Studies of Asymmetric 

Catalysis: Case Studies  

4.1 Proline-catalysed asymmetric aldol reactions 

Asymmetric organocatalysis emerged from the seminal work of 
Hajos, Parrish, Wiechert, Eder and Sauer in the early 1970s using 
proline as a catalyst. More recent developments have been 
pioneered by List, Barbas and Lerner24 and Macmillan25. This has led 
to the generation of new organocatalysts, including Lewis acids and 
bases, Brønsted acids and bases, and chiral phase transfer 
catalysts

25, 26
. In parallel with these synthetic developments, 

computational studies have provided simple yet powerful models to 
rationalise the origin of enantioselectivity in these processes

2, 10
. 

Here, we briefly describe some of these works, and show how 
different computational tools have been used in order to probe the 

mechanism and the origin of stereoselectivity of challenging 
chemical systems.  

 

 

Fig. 7 Stereochemical possibilities for the asymmetric aldol reaction 
based on Houk-List model. 

In 2003 Houk, List and colleagues investigated the proline-
catalysed asymmetric intermolecular aldol reaction between 
cyclohexanone and benzaldehyde (and isopropionaldehyde)19. The 
computational procedure used in this study, as well as the model 
derived from it (known as the Houk-List model, Fig. 7) provided a 
generally applicable transition state model for C-C bond formation, 
as well as the basis for rationalising the sense of the observed 
stereoselectivity in this and related systems.  

This investigation began by examining the potential products 
and transition states of the reaction. Considering the relative 
orientation between the enamine and the acid, anti or syn, and the 
two prochiral faces for attack, Re or Si (Fig. 7), they found four 
different stereochemical products. Additionally, considering the 
three different staggered arrangements between aldehyde and 
enamine and both half-chair conformations of the cyclohexene ring, 
the authors found 24 potential TSs. Using model systems to analyse 
key interactions they were able to reduce this number to eight 
relevant TSs (for four possible stereoisomeric products). This 
preliminary exploration substantially reduced the conformational 
space to be explored, and consequently the number of calculations 
that had to be performed. These calculations included geometry 
optimisation of stationary points (reactants and TSs) in gas phase at 
the B3LYP/6-31G* level of theory, followed by single-point 
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calculations using a polarizable continuum model (CPCM) of DMSO 
solvent. 

TSs involving re-face attack of the anti-enamine were found to 
be the most favourable ones (Fig. 7). These TSs were characterised 
by having a half-chair conformation of the NCC−CO atoms and a 
hydrogen bond interaction between the carboxylate and the 
aldehyde, which was found to play a key role in determining the 
outcome of the reaction, (Fig. 7, middle panel). Furthermore, a 
hydrogen bond interaction between the hydrogen of the carbon 

adjacent to the proline nitrogen and the forming alkoxide (NCH⋅⋅⋅O) 
was found to provide an additional electrostatic stabilisation to 
these conformations. This model of stereoinduction agreed with 
the absolute sense of stereoselectivity, showing that the (S,R) 
diastereomer is the dominant species formed, and the quantitative 
levels of selectivity observed experimentally. The pyrrolidine ring of 
the proline catalyst is non-planar, and its conformation (up/down) 
can influence stereoselectivity depending on the substituents, 
because stabilisation of the forming alkoxide changes as the proline 
ring flips between these two conformations. These and other more 
subtle conformational changes show the importance of a thorough 
search of conformations of transition states for accurate predictions 
of stereoselectivities

27
. 

Recently Rzepa and colleagues17 have revisited this reaction and 
examined the effect of using modern computational methodologies 
on the final results, including the use of a larger basis set, inclusion 
of implicit solvent, dispersion, kinetic isotope effects (KIE) 
calculations, and analysis of non-covalent interactions (NCI). This 
study demonstrated the robustness of the Houk-List model, 

confirming the role of the NCH⋅⋅⋅O interaction and the nature of the 
rate-limiting step. The alternative mechanisms studied (such as 
proton-relays involving a water molecule or the Hajos–Parrish 
alternative) were found to be higher in energy. This demonstrates 
that despite the quantitative improvements of current 
methodologies, the computational protocol originally presented by 
Houk and List and the model generated remain valid today.  

4.2 BINOL-phosphoric acid catalysis 

In addition to the covalent mode of activation exhibited by proline 
and imidazolidinone-based organocatalysts, chiral organic 
molecules can also induce stereoselectivity through non-covalent 
interactions. Using this activation mode, a vast number of highly 
enantioselective organocatalysts have been developed over the last 
decade, including ureas, thioureas and BINOL-derived phosphoric 
acids

28
. This area has also proved to be fruitful for the 

computational understanding of catalytic asymmetric synthesis, 
where the quantitative results from calculations led to the 
establishment of simplified structural models that have found use in 
predicting selectivities for a diverse array of reactions. 

Such synergy can be exemplified by the computational studies 
on the catalytic mechanism of BINOL-derived phosphoric acids, 
originally developed by Akiyama and Terada

29, 30
. Símon and 

Goodman
31, 32

 and Marcelli, Hammar and Himo
33

 independently 
studied the asymmetric reduction of imines by Hantzsch esters 
(dihydropyridines) catalysed by C2-chiral phosphoric acids (Fig. 8). 
Due to the large size of the real catalysts, Símon and Goodman

31
, 

used QM:MM calculations to optimise transition structures of the 
full catalyst at the ONIOM(B3LYP/6-31G(d):UFF level of theory. The 
Universal Force Field (UFF) description of conformational energetics 
is typically quite poor

34
, however, when used to study a rigid 

catalyst backbone and flanking groups this is not as important as 

the force field’s description of non-bonding interactions between 
the catalyst’s aromatic groups and the two substrates. This can lead 
to greater accuracy than uncorrected DFT (e.g. B3LYP) 
calculations

31
. Marcelli, Hammar and Himo used a full DFT 

description33, optimising at the B3LYP/6-31G(d) level, to describe 

the resolution of chiral α-branched aliphatic imines, which 
necessitated the truncation of the binaphthyl to a biphenyl 
backbone in the catalyst. 

Both of these computational studies established a bifunctional 
role for the phosphoric catalyst. The acidic proton activates the 
imine substrate through a hydrogen bond, while the P=O bond 
simultaneously coordinates to the N-H bond of the reducing agent 
(Fig. 8). With both substrates coordinated to the phosphoric acid 
group in the reduction TS, the 3,3’-substituents of the binaphthyl 
backbone create a C2-symmetric chiral environment that 
discriminates between the attack of the two enantiofaces 
(diastereofaces in the resolution) of the imine. The energetically 
favoured TS proceeds via a Z-imine geometry in which the N-
substituent is oriented into an open region of space. The computed 
structures are encapsulated by the working models of Goodman, 
Himo and Terada35 which have subsequently been deployed to 
understand and predict selectivities in the reactions of C2-chiral 
phosphoric acids with several different substrates32 and related bis-
iminophosphoranes. Reaction types with this class of catalyst 
studied computationally now include (in addition to reaction of an 
imine derivative with nucleophiles), Michael additions, Mannich-
type reactions, Friedel-Crafts Reactions, Dipolar cycloadditions, 
among others (see ref. 

26
 and references cited therein). 

 

Fig. 8 Enantioselectivity in the transfer hydrogenation of aryl-
imines. Concise model of BINOL-phosphoric acid used by 
Goodman

31
 (top view), and Himo

33
 , Terada35 (side view). Here, the 

dihydropyridine reagent was modeled as the methyl diester. 

 

4.3 Enantioselective catalysts by computational design  
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Considerable synthetic effort is currently invested in the discovery 
and refinement of new asymmetric catalysts. Traditionally, trial-
and-error approaches have been used, with mechanistic insights  

  

Scheme 3 Asymmetric catalysts designed by computation and 
validated experimentally. Blue substituents indicate modifications 
from existing structures screened computationally.  

 

following rather than leading their synthesis. However, with the 
development of field, some few notable examples have shown the 
great potential of computational modelling to guide asymmetric 
catalyst design

36-38
(Scheme 3). Thus far, this work has focused on 

computational-led modification of existing catalyst or ligand 
scaffolds. While the de novo computational discovery of new 
asymmetric catalysts remains out of reach, it has proven possible to 
design ligands that make reactivity possible which would not 
otherwise occur39. 

4.3.1 Anti-diastereoselectivity in the Mannich reaction by a 

designer organocatalyst 

The first and successful examples of the computational design of a 
stereoselective organocatalyst that was later experimentally 
validated resulted from collaborative work between Barbas and 
Houk groups(Scheme 4). They focused on the development of an 
unnatural amino acid to catalyse Mannich reactions giving opposite 
diastereoselectivities to proline

36
. The change from syn- to anti-

selectivity was engineered by fixing the enamine conformation. In 
the newly designed organocatalyst a methyl group was introduced 
to the 5-position and the carboxylic acid was moved around to the 
3-position, with the two pyrrolidine substituents trans- to each 
other. Similar to proline, imine facial selectivity is controlled by 
proton-transfer from the acid to the imine, whereas steric 
interactions due to the methyl group force the enamine to react 
from the opposite enantioface. Computationally, the four 
competing TS stabilities (i.e. according to the Curtin-Hammett 
principle) for the addition of propionaldehyde to N-PMP-protected 

α-imino methyl glyoxylate were considered at the relatively cheap 
HF/6-31G(d) level of theory. This catalyst was predicted to give the 
desired inverted 95:5 anti:syn diastereoselectivity and �98% ee for 
the formation of the (2S,3R)-product. Experimentally, the addition 
of propionaldehyde and ethyl glyoxylate gave a 94:6 dr and > 99% 
ee, with the same sense as predicted computationally. 

 

 

 

Scheme 4 A computationally designed catalyst for the asymmetric 
Mannich reaction gives access to the anti-diastereomer, in contrast 
to the syn selectivity obtained with proline. 

4.3.2 A computationally modified primary amine for 

enantioselective Michael additions 

Together with Prof. Darren Dixon (Oxford) we have recently studied 
the organocatalysed intramolecular Michael addition of ketones to 
α,β-unsaturated esters

37
. This reaction is promoted by primary 

amines, forming only one diastereomer in the process. The 
development of this transformation into an enantioselective 
version by using chiral amines was studied in tandem by experiment 
and computation. Computationally, a novel catalyst structure was 
examined and predicted to be highly enantioselective: this was later 
confirmed synthetically (Fig. 9). Firstly, the mechanism of the 
reaction was investigated using M06-2X/6-311+G(d,p) 
computations. The use of a triple-zeta valence polarized basis set 
and the inclusion of solvation (toluene) during the geometry 
optimisations was found to be important to describe the stepwise 
nature of the C-C bond forming step. The endo-diastereoselectivity 
of this reaction was found to result from a lower barrier and 
irreversible nature of the Michael addition step. 
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Fig. 9 Computed mechanism of primary-aminothiourea promoted 
intramolecular Michael addition, showing the computed TS 
geometries for the major and minor enantiomer, which led to the 
computationally proposed modification of the R-substituent. 

 

For the asymmetric reaction, the different possibilities were 
computed separately: the enamine and enoate can react via either 
enantioface and the enamine can adopt either an s-cis or s-trans 
conformation. The conformation of a bifunctional aminothiourea 
catalyst was investigated by fixing the core TS structure and 
sampling many possible structures with semi-empirical (dispersion-
corrected PM6) calculations. This method, an abbreviated form of 
HF calculations by approximating or neglecting integrals, gives 
results qualitatively consistent with DFT calculations and reasonably 
accurate optimised geometries, making it useful for preliminary 
studies. Considering enantioselectivity, the reactive enamine 
conformation differs between the two pathways, with the s-cis 
enamine yielding the major enantiomer and the s-trans enamine 
yielding the minor enantiomer. The conformation of the catalyst 
also differs between the two enantiomers, with eclipsing 
interactions in the minor pathway. Although all these 
conformations benefit from close NH---O contacts between the 
ester and catalyst, our computational study suggested a lack of any 
significant contribution from the thiourea substituent (R in Fig. 9). 
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Therefore, we proposed that the catalyst could in principle be 
simplified to –Me from a more complex structure. Accordingly, this 
new catalyst was synthesised and tested. The product of the 
reaction was obtained in 83% yield and 97% ee as a single 
diastereomer, thus validating the computational hypothesis. This 
work illustrates how a detailed analysis of the mechanism and the 
key interactions driving stereocontrol can inform design of a simpler 
and robust catalyst. 

 

4.3.3 Ligand optimisation in asymmetric transition-metal catalysed 

cycloisomerisation 

It is possible to quantitatively account for levels of stereoselectivity 
in terms of the relative energy difference between diastereomeric 
transition state structures that define the competitive pathways. 
However, the rational modulation or design of new catalysts also 
requires an understanding of the structural or electronic features 
underlying this selectivity. Currently, several computational 
techniques are available to study such effects. They include 
topological approaches, such as Bader’s atoms in molecules (AIM) 
theory and noncovalent interaction (NCI) analysis, which utilise the 
electron density, and orbital-based approaches, such as the natural 
bond orbital (NBO) method. 

A collaborative experimental and computational investigation 
with Prof. Edward Anderson (Oxford) led to the discovery of new 
chiral phosphoramidite ligands for use in Rh-catalysed 
stereoselective [5+2]-cycloisomerisations of ynamide-
vinylcyclopropanes (Fig. 10)

38
. Firstly, we compared competing 

mechanisms for the cycloisomerisation mechanism, at the ωB97X-
D/6-311++G(d,p)/Lanl2TZ//ωB97X-D/6-31G(d)/Lanl2DZ level of 
theory. A dispersion-corrected functional was chosen due to the 
presence of nonbonding interactions, evident in the X-ray 
structures of metal-phosphoramidite complexes. All stereochemical 
possibilities were computed, including the substrate and ligand 
orientations about the coordinating metal centre. These 
computations suggested a mechanistic sequence in which an 
irreversible, stereodetermining C-C coupling between the alkyne 
and alkene takes place before metal insertion into the 
vinylcyclopropane (Fig. 10). The enantioselectivity computed 
according to this model for Feringa’s original phosphoramidite 
ligand (in which F atoms are replaced by H, Scheme 3) matched 
experimental data (calculated ∆∆G

≠
: 2.7 kcal·mol

-1
, 97.9% ee 

comparing with 98% ee in the experiment), and so we sought to 
understand how chemical modification of the phosphoramidite 
ligand could be used to enhance stereoinduction. 

Intramolecular interactions in the key TS were analysed 
separately with both NCI and NBO approaches (Fig. 10). Both are 
available as standalone programs, while NBO v3 is implemented as 
a fully integrated part of the Gaussian package. The NCI isosurface 
shows regions in space corresponding to overlapping atomic 
densities, which may be associated with noncovalent interactions. 
The coloration is used to indicate the approximate magnitude and 
sign of these interactions. In this case, green regions showing the 
van der Waals/dispersion-dominated interaction between ligand 
backbone and substrate, and blue regions showing a strong 
attraction between Rh and the P atom and aromatic group of the 
ligand. Red regions, indicative of steric repulsion are absent in this 
analysis. NBO analysis allowed us to quantify specific donor-
acceptor interactions between the metal and the aromatic group in 
this structure. The major contribution comes from a π-donor orbital 
of the arene into the vacant d-orbital of Rh, rather than due to Rh 
back donation to π* of C=C (Fig. 10b).  

 

 
Fig. 10. Non-Covalent Interaction (NCI) and Natural Bond Orbital 
(NBO) analyses of key interactions involving the phosphoramidite 
ligand during the asymmetric [5+2] cycloisomerisation process. 

 
Identifying an arene-metal interaction in the stereodetermining 

TS prompted attempts to strengthen or weaken this interaction. As 
expected from the NCI and NBO analyses, phenyl substitution by an 
electron-donating group (p-OMe) strengthened this coordination, 
while an electron-withdrawing group (p-F) weakened it. 
Computationally, it was found that weaker coordination by the 
aromatic group led to a lower activation barrier, as the 
electrophilicity of the metal is enhanced in the C-C coupling step. 
Formation of the major enantiomer through this TS was 
preferentially accelerated, leading to greater predicted 
enantioselectivity with the fluorinated ligand. A tighter substrate-Rh 
complexation (a consequence of a slightly weaker ligand-metal 
interaction) enhances any unfavourable steric effects. This result 
was validated experimentally across a range of substrates, and was 
successful in both the matched and mismatched double-
stereodifferentiating setting (i.e. competing catalyst vs. substrate 
stereocontrol). 
 

5. Challenges in quantifying selectivity 

5.1 Describing non-covalent Interactions 

The growth of non-covalent asymmetric catalysis coincides with an 
ever-greater appreciation of the challenges associated in accurate 
computational modelling of non-bonding interactions. In the 
context of computing stereoselectivity, this may be important in 
obtaining qualitative geometries and in the evaluation of relative 
stabilities of competing TS structures. For example, Krenske and 
Houk have focussed on the importance of aromatic interactions in 
stereoselective reactions, such as [4 + 3] cycloadditions of oxallyl 
intermediates with furans reported by Hsung

40
. Here, an Evans 

chiral auxiliary provides stereoinduction; however, when a phenyl 
substituted oxazolidinone auxiliary was used the reaction 
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proceeded in a contra-steric sense, the diene approaching the same 
side as the phenyl group. DFT computations reveal the existence of 
a stabilising edge-to-face interaction between furan and phenyl 
group, which stabilises this pathway. Quantitative estimation of the 
energy difference between the two competing [4 + 3] TSs illustrates 
the importance of dispersion in this favourable interaction. As can 

be seen in Fig. 11, ∆∆E
‡
 increases from 0.2 kcal·mol

-1
 with B3LYP to 

1-2 kcal·mol
-1

 with dispersion-corrected or M06-2X functionals, 
since B3LYP effectively neglects this interaction. Uyeda and 
Jacobsen

41
 have discovered a key aromatic interaction between 

catalyst and substrate in the asymmetric catalysis of Claisen 
rearrangements. In the most stable TS an aromatic group of the 
catalyst interacts with a polar C-H group of the substrate, and 
differing aromatic substitution patterns modulate this interaction 
and hence enantioselectivity. While B3LYP/6-31G(d) results give 
poor correlation with the experimental trend, M05-2X/6-31G(d) 
calculations led to an improvement in the computational 
performance (R

2
 = 0.88 over seven different catalysts) due to a 

more accurate description of non-covalent interactions. 
 

 
Fig. 11. Relative energies (in kcal·mol-1) of TS and TS’, computed 
with different functionals and the 6-31G(d) basis set over the 
B3LYP/6-31G(d) geometries. a In this case the 6-311+G(d,p) basis set 
was used.  

 
For Cinchona-amine catalysed intramolecular aldol reactions 

the origins of stereoinduction in the Houk-Lam model42 lie in the 
conformational preference of the hydrogen-bonded nine-
membered cyclic aldol TS. Multiple non-bonded interactions occur 
in each competing TS, and the inclusion of dispersion correction to 
the B3LYP-computed energetics resulted in closer quantitative 
agreement with experimental selectivities.  

For asymmetric catalysis with chiral boron Lewis-acids, such as 
Corey’s oxazaborolidines the importance of so-called “non-classical” 
hydrogen bonds has been found to be important in pre-
organisation of the ensuing TSs

43
. In the case of asymmetric Diels-

Alder reactions of maleimides promoted by protonated 
oxazaborolidine catalysts, we found little computational support for 
these interactions as stereo-controlling elements as judged by NBO 
and QTAIM analysis

44
. However, sizable dispersive interactions do 

occur in the more favourable exo-face TS, which leads to the major 
enantiomer. 

 

Fig. 12 . Competing exo- and endo-face coordinated TS structures in 
an asymmetric Diels-Alder reaction: the inclusion of dispersion is 
essential to correctly account for the observed enantioselectivity. 

In Fig. 12 these regions are illustrated for the competing TSs by 
the inclusion of the NCI isosurface, which outlines the region of 
space where the maleimide sits over the catalyst in the more stable 
structure. Using DFT-D and M06-2X functionals we achieve a 
quantitative reproduction of the experimental selectivity (86%, ee 

∆∆G
‡
 = 1.1 kcal·mol

-1
 with M06-2X/6-31G(d)). In contrast, the 

computed sense of selectivity is incorrectly inverted when the same 
functionals are applied without an explicit dispersion correction.  

Medium- to long-range interactions pose a particular problem 
to DFT due to the semi-local treatment of electron correlation, 
which underlies all functional forms in use. This makes precisely 
gauging the significance of non-covalent interactions in 
stereoselectivity difficult, although as we have described above, 
scenarios in which DFT-D results give contrasting results implicate 
an important role. One means to qualitatively assess the extent of 
non-bonding interactions comes from an NCI analysis as developed 
by Contreras-Garcia and colleagues

45
. Here, regions of slowly 

varying electron density corresponding to non-covalent interactions 
are highlighted graphically: the first example of this technique to an 
asymmetric reaction was performed by Rzepa and Hii

46
, in the 

silver-catalysed addition of alcohol and amine nucleophiles to 
allenes. Using this technique they showed that noncovalent 
interactions between the chiral ligand and substrate play a key role 
in determining selectivity. 

 

5.2 Conformational Flexibility 
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The computational study of systems in which a number of 
conformations are accessible poses a challenge in terms of 
exhaustively sampling the possible TS geometries. The description 
of bond making/breaking may be captured by electronic structure 
theory; however, such calculations are typically incompatible with 
automated conformational sampling algorithms (e.g. molecular 
dynamics or Monte Carlo) even at relatively low levels of theory. An 
active area of research thus surrounds alternative descriptions of 
TSs using classical approaches, which are amenable to 
incorporation with standard searching techniques that require 
multiple optimisations to be performed on-the-fly. In asymmetric 
reactions and catalysis the most well-developed of these has 
proven to be quantum-guided molecular mechanics (Q2MM)9. The 
origins of this approach lie in the reaction-specific parameterisation 
of molecular mechanics force fields to describe a TS geometry, as in 
Houk’s work on radical cyclisations culminating in the Houk-
Beckwith model for diastereoselecitivity in 5-exo-trig-cyclisations

47
. 

The TS is represented as a minimum by the force field, although key 
distances, angles and dihedrals are reproduced faithfully. Norrby 
has pioneered the systematic optimisation of MM parameters 
based on reference data from QM calculation, and has successfully 
demonstrated the application of this approach to challenging 
problems of stereoselectivity prediction in flexible organic and 
organometallic systems. Studying the rhodium-catalysed 
hydrogenation of enamides with chiral bisphosphine ligands, the 
Q2MM approach was tested using a full set of known ligands having 
varying efficiency in asymmetric hydrogenation, and a range of 
substrates. An impressive correlation was obtained with only 3 
anomalies from 29 calculations, the remainder giving the correct 
handedness of the product. The correlation between computation 
and experiment (R

2
 = 0.92) demonstrates the potential predictive 

power of such an approach. QM-guided force-field development is 
under continued development by Norrby and Wiest, such that 
Q2MM offers the possibility of computationally predicting 
enantioselectivities on a timescale that would not be possible with 
QM calculations. The description of a TS as a minimum rather than 
a saddle-point has limited the accuracy of some force fields, 
however, we recently reported that true transition state force fields 
(TTSFF) may be derived in a similar fashion to earlier work to give 
superior reproduction of the QM energy surface around the TS

48
. 

The Q2MM approach enables automated conformational 
sampling of TS structures, which can be accurate enough to 
generate a quantitative prediction of selectivity. Nevertheless, 
alternative approaches seek to combine sampling at the MM level 
of theory, or even with semi-empirical calculations (as we have 
done in the case of enantioselective phase-transfer catalysis) with 
subsequent QM calculations. Here the lower-level conformational 
sampling is used as a filter through which only the most promising 
candidate structures (i.e. those within a certain energy window) 
proceed to a more rigorous QM optimisation. Whatever the 
approach used, the result is an ensemble of TSs leading to the 
competing products. The selectivity is computed taking into account 
the contributions of all structures: in Fig. 13, the R-selectivity would 
be overestimated if only the two most stable TS energies were 
analysed, since there are two low-lying structures for the S-
pathway. The (enantio)-selectivity may be obtained assuming a 
thermal ensemble involving all TS structures, and by computing the 
Boltzmann factor for each. 

 

computed ee (%)

R
2
= 0.92

Q2MM

 
Fig. 13: Q2MM computed enantioselectivity against experimental 
results for asymmetric Rh-catalysed hydrogenation of enamides, 
from ref

. 49. Green areas correspond to correct prediction of the 
absolute sense of enantioselectivity, whereas red areas correspond 
to a prediction in the opposite sense to experiment. 

 

6. Key Considerations 

In the following paragraphs we provide some guidelines to keep in 
mind when selecting a computational method. There is of course no 
definitive approach, and the recommended method of choice will 
usually be a compromise between accuracy and computational 
cost. Although this review focuses mainly on enantioselective 
catalysis, the suggestions outlined below can also be applied to 
other studies.  

6.1 Choosing the “appropriate” method  

The selection of the level of theory will depend on the chemical 
process under study, i.e the kind of bonds being broken and 
formed, the influence of nonbonding interactions, and the size and 
conformational flexibility of the system.  

Optimisation: For rigid organic molecules, optimised geometries 
are relatively insensitive (compared with other properties or 
relative energies) to the choice of basis set or density functional. 
However, when dispersion effects are important, the level of theory 
chosen can profoundly affect geometries. This is particularly 
relevant for flexible molecules, where a range of non-covalent 
interactions can allow a large number of conformations, some of 
them very close in energy. In general, the use of a dispersion 
corrected functional along with a 6-31G(d) basis set is usually 
enough to capture the geometry of the species of interest.  

Energetics and other electronic properties: To obtain reliable 
estimates on these quantities higher-level calculations are 
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recommended. This can be done, for example, using a triple-ζ 
quality basis set on the previously optimised structures. 
Quantitative estimates of selectivity rely upon relative energy 
differences, militating against systematic errors in the computation 
of barriers of energy changes. For stereoisomers there does appear 
to be beneficial error cancellation such that accuracy of less than 1 
kcal·mol-1 can commonly be achieved, as is the case for the 
examples mentioned above. This might explain in part the success 
of the B3LYP functional on the study of several asymmetric 
processes. However, it is difficult to know this in advance, and other 
DFT functionals or WF approaches may be more appropriate in 
some cases. Guidance for choosing a DFT functional can be found 
from previous benchmarking studies for related chemical systems. 
Comparisons to gas phase CCSD(T)/CBS may be possible for small 
systems. However, comparison with experimental selectivity values 
is probably more useful.  

Finally, while thermochemical properties including enthalpies, 
entropies, and heat capacities may be important in order to 
compare to experimental data, the accurate calculation of these 
quantities still represents a severe challenge. These values can 
usually be obtained within the harmonic approximation; however 
they are known to be extremely is sensitive to the geometries, basis 
set, optimisation convergence criteria and grid. Moreover, they can 
be notoriously inaccurate when several low-lying vibrational 
frequencies i.e. less than 100 cm

-1
) exist. In such cases, relative free 

energies may be less reliable than relative energies. Several 
approaches have been included to estimate entropies, including the 
treatment of low-lying vibrational modes by a free-rotor 
approximation, and empirical corrections to account for solvent 
effects.  

 

6.2 Solvent effects 

In many cases, the effect of solvent can be considered via a simple 
implicit solvent model calculation (e.g., PCM, CPCM, SMD) coupled 
with UFF, UAHF, or UAKS radii to define the solute cavity. While 
solvation can be included as a correction on the energy of the 
system, one should also consider its inclusion in optimisation 
calculations, particularly when charged and/or highly polarizable 
species are involved. While the use of implicit solvent models has 
proven adequate in many applications, the use of explicit solvent 
may be relevant in cases when specific interaction between the 
solvent and substrate are important. Computational studies on 
stereoselectivity in explicit solvent are still very rare. However, with 
the development of new techniques and the increase in 
computational power, they are expected to become more 
accessible. 

 

6.3 Configurational Space  

Current approaches provide a clear protocol to find local energy 
minima on the PES. For small organic molecules it may be relatively 
easy to manually inspect the accessible configurations. However, 
for larger systems a more efficient (preferably automated) 
conformational search is required in order to identify the 
conformations accessible under the experimental conditions. 
Following from this, for each conformation the energy has to be 
calculated and Boltzmann-weighted to obtain the predicted energy 
and or selectivity ratio. For asymmetric catalysis, this includes 
exploring the conformations of substrates and catalyst, as well as 
the different binding modes between them, which also determine 

the outcome of the reaction. MM-based conformational searches 
may be computationally affordable but their reliability is dependent 
on the force field parameters used. In the absence of specific 
parameterization and testing for a system of interest, the quality of 
structures and energetics is highly uncertain. The MM 
configurational sampling of transition states is possible via the 
Q2MM method. Recent advances in the automated following of 
reaction coordinates with QM calculations suggest that this will 
become more prominent in future years. 

 

6.4 Validation 

In the comparison of theoretical results against experiment it is 
helpful to appreciate the inherent accuracy of the chosen 
computational methodology – i.e ±1 kcal·mol-1 is not uncommon for 
DFT-computed relative energies, while barrier heights and energy 
changes will be less accurate. In calculations of stereoselectivity, 
good quantitative agreement, particularly for only a single data 
point, may be coincidental. Reliance on multiple experiments – 
including negative data and repeated measurements – is helpful to 
ensure that computational results are “right for the right reason”. 
Furthermore, we recommend computational work should be 
performed blind i.e. without prior knowledge of the experimental 
selectivity to avoid a positive confirmation bias. The ultimate test of 
the computations is the ability to predict results prior to 
experiment! 

 

Conclusions and perspectives 

Based on a thorough mechanistic understanding it is possible to 
quantify levels of stereoselectivity through the use of relatively 
affordable computational methods. The quantitative results of 
these calculations may be used to develop understanding and to 
formulate models, which account for experimental observations. 
They may also help to predict the outcomes of future experiments: 
these predictions range from the qualitative to the quantitative, 
where computation can assist in the design of new asymmetric 
catalysts. We hope that this review will aid and encourage the 
organic chemistry community in adopting computations in the 
study and design of asymmetric reactions.  
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