
 

 

 

Tuning the Molecular Weight Distribution from Atom 
Transfer Radical Polymerization Using Deep Reinforcement 

Learning 
 

 

Journal: Molecular Systems Design & Engineering 

Manuscript ID ME-ART-12-2017-000131.R1 

Article Type: Paper 

Date Submitted by the Author: 27-Feb-2018 

Complete List of Authors: Li, Haichen; Carnegie Mellon University, Department of Chemistry 
Collins, Christopher; Carnegie Mellon University, Department of Chemistry 
Ribelli, Thomas; Carnegie Mellon University, Department of Chemistry 

Matyjaszewski, Krzysztof; Carnegie Mellon University, Department of 
Chemistry 
Gordon, Geoffrey; Carnegie Mellon University, School of Computer Science 
Kowalewski, Tomasz; Carnegie Mellon University, Department of Chemistry 
Yaron, David; Carnegie Mellon University, Department of Chemistry 

  

 

 

Molecular Systems Design & Engineering



Design, System, Application Statement
For manuscript “Tuning the Molecular Weight Distribution from Atom Transfer

Radical Polymerization Using Deep Reinforcement Learning”

Haichen Li, Christopher R. Collins, Thomas G. Ribelli, Krzysztof Matyjaszewski,
Geoffrey J. Gordon, Tomasz Kowalewski, and David J. Yaron

The molecular weight distribution (MWD) of polymer chains can have substantial impact on
the mechanical and other properties of the resulting material. Atom transfer radical polymerization
(ATRP) provides a means to control the MWD, but most work has focused on creating samples
with narrow MWDs. Here, we consider synthetic strategies to achieve more flexible control of the
MWD. The design and optimization strategy uses recent advances in reinforcement learning (RL)
to train a controller that, by adding reagents at multiple points throughout the reaction, guides the
reaction to a target MWD. The target MWDs include Gaussian distributions with varying widths
and a number of more complex shapes.

The current work investigates the use of RL to control MWD within a simulation of the ATRP
reaction. The future application potential lies in transferring a controller trained in this way from
a simulation environment to the real laboratory. The current manuscript evaluates this potential
by investigating the degree to which the controller can achieve MWD near the target distribution
when noise is added to both the kinetic parameters used in the simulation and to the observations
passed from the simulation to the controller.
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Tuning the Molecular Weight Distribution from Atom

Transfer Radical Polymerization Using Deep Rein-

forcement Learning

Haichen Li,a,b Christopher R. Collins,a Thomas G. Ribelli,a Krzysztof Matyjaszewski,a

Geoffrey J. Gordon,b Tomasz Kowalewski,a and David J. Yaron∗a

We devise a novel technique to control the shape of polymer molecular weight distributions

(MWDs) in atom transfer radical polymerization (ATRP). This technique makes use of recent

advances in both simulation-based, model-free reinforcement learning (RL) and the numerical

simulation of ATRP. A simulation of ATRP is built that allows an RL controller to add chemical

reagents throughout the course of the reaction. The RL controller incorporates fully-connected

and convolutional neural network architectures and bases its decision upon the current status of

the ATRP reaction. The initial, untrained, controller leads to ending MWDs with large variability,

allowing the RL algorithm to explore a large search space. When trained using an actor-critic

algorithm, the RL controller is able to discover and optimize control policies that lead to a variety

of target MWDs. The target MWDs include Gaussians of various width, and more diverse shapes

such as bimodal distributions. The learned control policies are robust and transfer to similar but

not identical ATRP reaction settings, even under the presence of simulated noise. We believe this

work is a proof-of-concept for employing modern artificial intelligence techniques in the synthesis

of new functional polymer materials.

1 Introduction

Most current approaches to development of new materials fol-

low a sequential, iterative process that requires extensive human

labor to synthesize new materials and elucidate their properties

and functions. Over the next decades, it seems likely that this in-

herently slow and labor intensive approach to chemical research

will be transformed through the incorporation of new technolo-

gies originating from computer science, robotics, and advanced

manufacturing.1,2 A central challenge is finding ways to use these

powerful new technologies to guide chemical processes to desired

outcomes.3 Recent advances in reinforcement learning (RL) have

enabled computing systems to guide vehicles through complex

simulation environments,4 and select moves that guide games

such as Go and chess to winning conclusions.5–8 For chemical

problems, RL has been used to generate candidate drug molecules

in a de novo manner,9,10 and to optimize reaction conditions for

organic synthesis.11 This work investigates the benefits and chal-

lenges of using RL to guide chemical reactions towards specific

synthetic targets. The investigation is done through computa-

tional experiments that use RL to control a simulated reaction sys-

a Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
b School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

tem, where the simulation models the chemical kinetics present

in the system.

In this work, the simulated reaction system is that of atom

transfer radical polymerization (ATRP).12–15 ATRP is among the

mostly widely used and effective means to control the polymer-

ization of a wide variety of vinyl monomers. ATRP allows the syn-

thesis of polymers with predetermined molecular weights, narrow

molecular weight distributions (MWDs),16 and adjustable poly-

dispersity.17–23 The high degree of control allows the synthesis of

various polymeric architectures24 such as block copolymers,25–28

star polymers,29–31 and molecular brushes.32 Temporal and spa-

tial control has also been applied in ATRP to further increase

the level of control over the polymerization.33–36 More recently,

chemists have been working on ways to achieve MWDs with more

flexible forms,23,37 as this may provide a means to tailor mechan-

ical and processability of the resulting plastics.38

In addition to its importance, ATRP is well suited to the com-

putational experiments carried out here. The chemical kinetics of

ATRP are shown schematically in Fig. 1. Control of the polymer-

ization process is related to the activation, ka, and deactivation,

kd , reactions which inter-convert dormant chains, PnBr, and ac-

tive, free radical chains, P•
n. The active chains grow in length

through propagation reactions, kp. The equilibrium between dor-

mant and active chains can be used to maintain a low concen-

1–13 | 1
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materials.

2 Related works

There have been many studies that control the state and dynamics

of chemical reactors based on classical control theory.66 Model-

based controllers,67 some of which employ neural networks,68

have been developed for a number of control tasks involving

continuous stirred tank reactors,69–74 batch processes,75–77 hy-

drolyzers,78 bioreactors,79–81 pH neutralization processes,82–85

strip thickness in steel-rolling mills,86 and system pressure.87

Model-free controllers trained through RL also exist for control-

ling chemical processes such as neutralization88 and wastewater

treatment89 or chemical reactor valves.90

Due to its industrial importance, polymer synthesis has been

a primary target for the development of chemical engineering

controllers.91 Some of these make use of neural networks to

control the reactor temperature in the free radical polymeriza-

tion of styrene.92 McAfee et al. developed an automatic poly-

mer molecular weight controller93 for free radical polymeriza-

tion. This controller is based on online molar mass monitoring

techniques94 and is able to follow a specific chain growth trajec-

tory with respect to time by controlling the monomer flow rate

in a continuous flow reactor. Similar online monitoring tech-

niques have recently enabled controlling the modality of free rad-

ical polymerization products,95 providing optimal feedback con-

trol to acrylamide-water-potassium persulfate polymerization re-

actors,96 and monitoring multiple ionic strengths during the syn-

thesis of copolymeric polyelectrolytes.97 However, none of these

works attempted to control the precise shape of polymer MWD

shapes, nor did they use an artificial intelligence (AI) driven ap-

proach to design new materials. The significance of this work

lies in that it is a first trial of building an AI agent that is trained

tabula rasa to discover and optimize synthetic routes for human-

specified, arbitrary polymer products with specific MWD shapes.

Another novel aspect of the current work is the use of a simu-

lation to train a highly-flexible controller, although the transfer

of this controller to actual reaction processes, possibly achievable

with modern transfer learning98–102 and imitation learning tech-

niques,103,104 is left to future work.

3 Methodology

3.1 Simulating ATRP

We select styrene ATRP as our simulation system. Simulation of

styrene ATRP may be done by solving the ATRP chemical kinetics

ordinary differential equations (ODEs) in Table 1,41,42,105,106 by

method of moments,107 or by Monte Carlo methods.108–113 This

work directly solves the ODEs because this allows accurate track-

ing of the concentration of individual polymer chains while being

more computationally efficient than Monte Carlo methods.

In the ODEs of Table 1, M is monomer; P•
n, PnBr, and Tn

represent length-n radical chain, dormant chain, and terminated

chain, respectively. P1Br is also the initiator of radical polymer-

ization. kp, ka, kd , and kt are propagation, activation, deactiva-

tion, and termination rate constants, respectively. N is the maxi-

mum allowed dormant/radical chain length in the numerical sim-

ulation. Consequently, the maximum allowed terminated chain

length is 2N, assuming styrene radicals terminate via combina-

tion.114 We set N = 100 in all ATRP simulations in this work.

This number is sufficiently large for our purpose as the lengths

of dormant or terminated chains do not exceed 75 or 150, re-

spectively, in any of the simulations. We used a set of well-

established rate constants based on experimental results of the

ATRP of bulk styrene at 110 °C (383.15 K) using dNbpy as the

ligand13,115–117: kp = 1.6 × 103, ka = 0.45, kd = 1.1 × 107, and

kt = 108 (units are M−1s−1). It was assumed the reactor remained

at this temperature for the duration of the polymerization. Al-

though the rate constants depend on the degree of polymeriza-

tion,118 we assumed the same rate constants for polymer chains

with different lengths. This assumption does not bias the nature

of ATRP qualitatively and has been practiced in almost all pre-

vious ATRP simulation research.41,42,105,106,119 In some of our

simulations, we altered the rate constants by up to ±30% to ac-

count for possible inaccuracies in the measurement of these val-

ues and other unpredictable situations such as turbulence in the

reactor temperature. We employed the VODE120–124 integrator

implemented in SciPy 0.19 using a maximum internal integration

step of 5000, which is sufficient to achieve final MWDs with high

accuracy. We chose the “backward differentiation formulas” inte-

gration method because the ODEs are stiff.

In practice, styrene ATRP is close to an ideal living polymeriza-

tion,116,117 with termination playing only a small role in estab-

lishing the final MWD. Excluding termination from the simula-

Table 1 ATRP kinetics equations. CuI and CuII stand for the ATRP activator and deactivator L/CuI and L/CuII−Br, respectively.

Monomer [M]′ =−kp[M]∑N
i=1 [P

•
i ]

Activator [CuI]′ = kd [CuII]∑N
i=1 [P

•
i ]− ka[CuI]∑N

i=1 [PiBr]

Deactivator [CuII]′ = ka[CuI]∑N
i=1 [PiBr]− kd [CuII]∑N

i=1 [P
•
i ]

Dormant chains [PnBr]′ = kd [CuII][P•
n]− ka[CuI][PnBr], 1 ≤ n ≤ N

Smallest radical [P•
1]
′ =−kp[M][P•

1]+ ka[CuI][P1Br]− kd [CuII][P•
1]−2kt [P

•
1]∑

N
i=1 [P

•
i ]

Other radicals [P•
n]
′ = kp[M]([P•

n−1]− [P•
n])+ ka[CuI][PnBr]− kd [CuII][P•

n]−2kt [P
•
n]∑

N
i=1 [P

•
i ], 2 ≤ n ≤ N

Terminated chains [Tn]
′ = ∑

n−1
i=1 kt [P

•
i ][P

•
n−i], 2 ≤ n ≤ 2N
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To train the agent, we use the A3C algorithm, a recent advance

in actor-critic methods125 that achieved state-of-the-art perfor-

mance on many discrete-action control tasks.126 Actor-critic127

algorithms are a subclass of RL algorithms based on simultaneous

training of two functions:

Policy (πππθθθ ppp
(((sssttt)))) The policy is used to select actions, e.g., which

chemical reagent to add at time t. As shown schematically

in Fig. 3, actions are drawn from a probability distribution.

The policy function generates this probability distribution,

πθp
(at |st), which specifies, given the state of the ATRP reac-

tor st , the probability that action at should be selected. The

subscript θp represents the set of parameters that parame-

terize the policy function. In A3C, where a neural network

is used for the policy, θp represents the parameters in this

neural network.128,129

Value (VVV θθθ vvv
(((sssttt)))) Although the policy function is sufficient for use

of the RL controller, training also involves a value function,

Vθv
(st). Qualitatively, this function is a measure of whether

the reaction is on track to generate rewards. More precisely,

we define a return Rt = ∑
T
t ′=t γt ′−trt ′ which includes not only

the reward at the current state, but also future states up to

timestep T . This is especially relevant here, as rewards are

based on the final MWD and so are given only at the end

of a reaction. A factor γ, which is greater than 0 and less

than 1, discounts the reward for each step into the future,

and is included to guarantee convergence of RL algorithms.

The value function, Vθv
(st), approximates the expected re-

turn, E[Rt |st ], from state st . A3C uses a neural network for

the value function, and θv represents the parameters in this

network.

Below, we compare results from two different neural network ar-

chitectures, labeled FCNN and 1D-CNN (see Section 3.3).

During training, A3C updates the parameters, θp and θv,

of the policy and value functions. The actor-critic aspect of

A3C refers to the use of the value function to critique the pol-

icy’s ability to select valuable actions. To update θp, policy

gradient steps are taken according to the direction given by

∇θp
logπθp

(at |st)
(

Rt −Vθv
(st)

)

. Note that the current value func-

tion, Vθv
(st), is used to update the policy, with the policy gradient

step being in a direction that will cause the policy to favor actions

that maximize the expected return. This may be viewed as using

the value function to critique actions being selected by the pol-

icy. Moreover, the policy gradient becomes more reliable when

the value function estimates the expected return more accurately.

To improve the value function, the parameters θv are updated to

minimize the ℓ2 error E
(

Rt −Vθv
(st)

)2
between the value function,

Vθv
(st), and the observed return, Rt . The observed return is ob-

tained by using the current policy to select actions to apply to the

reaction simulation environment.

The training therefore proceeds iteratively, with the current

value function being used to update the policy and the cur-

rent policy being used to update the value function. The pa-

rameter updates occur periodically throughout the course of an

episode, or single polymerization reaction. The current policy

is first used to generate a length-L sequence of state transitions

{st , at , rt , st+1, at+1, rt+1, · · · , st+L}. This length-L sequence is re-

ferred to as a rollout. At the end of each rollout, the informa-

tion generated during the rollout is used to update θp and θv. To

take advantage of multi-core computing architectures, the train-

ing process is distributed to multiple asynchronous parallel learn-

ers. A3C keeps a global version of θp and θv. Each learner has

access to a separate copy of the reaction simulation environment

and a local version of θp and θv. After a learner performs a rollout,

it generates updates to θp and θv. These updates are then applied

to the global versions of θp and θv, and the learner replaces its

local version with the global version. In this manner, each learner

periodically incorporates updates generated by all learners.

3.3 Additional implementation details

The neural networks used for the policy and value functions share

a common stack of hidden layers, but use separate final output

layers. We compare results from two different network archi-

tectures for the hidden layers. The first architecture, FCNN, is

a simple fully-connected neural network with two hidden layers

containing 200 and 100 hidden units, respectively. The second

architecture, 1D-CNN, is convolutional. In 1D-CNN, the input

feature vector is fed into a first 1D convolutional layer having 8

filters of length 32 with stride 2, followed by a second 1D con-

volutional layer having 8 filters of length 32 with stride 1. The

output of the second 1D convolutional layer is then fed into a

fully-connected layer with 100 units. All hidden layers use rec-

tifier activation. The final layer of the value network produces

a single scalar output that is linear in the 100 units of the last

hidden layer. The final layer of the policy network is a softmax

layer of the same 100 hidden units, with a length-6 output repre-

senting a probability distribution over the 6 actions. For a crude

estimate of model complexity, FCNN and 1D-CNN contain 42607

and 9527 trainable parameters, respectively.

We implemented the A3C algorithm with 12 parallel CPU

learners.62 The discount factor in the return is γ = 0.99, and

the maximum rollout length is 20. The length of a rollout

may be shorter than 20 when the last state in the sequence

is a terminal state. After a learner collects a length-L rollout,

{st , at , rt , st+1, at+1, rt+1, · · · , st+L}, it generates updates for θp

and θv by performing stochastic gradient descent steps for each

t ′ ∈ {t, · · · , t +L−1}. Define the bootstrapped multi-step return

R′
t ′ = It+Lγt+L−t ′Vθ ′

v
(st+L)+∑

t+L
i=t ′ γ i−t ′ri where It+L = 0 if st+L is the

terminal state and 1 otherwise. The prime on θ ′
v in Vθ ′

v
(st+L) indi-

cates that the value function is evaluated using the local copy of

the network parameters. The update direction of θp is set accord-

ing to

dθp =−∇θ ′
p

logπθ ′
p
(at ′ |st ′)

(

R′
t ′ −Vθ ′

v
(st ′)

)

+β∇θ ′
p
H
(

πθ ′
p
(st ′)

)

.

H
(

πθ ′
p
(st ′)

)

is the entropy of πθ ′
p
(st ′) and acts as a regularization

term that helps prevent πθ ′
p
(st ′) from converging to sub-optimal

solutions. β is the regularization hyperparameter, for which we

use β = 0.01. θv is updated according to the direction of

dθv = ∇θ ′
v

(

R′
t ′ −Vθ ′

v
(st ′)

)2
.

1–13 | 5

Page 6 of 16Molecular Systems Design & Engineering



Page 7 of 16 Molecular Systems Design & Engineering



Page 8 of 16Molecular Systems Design & Engineering



Page 9 of 16 Molecular Systems Design & Engineering



Page 10 of 16Molecular Systems Design & Engineering



shelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,

N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel and D. Hassabis, Nature, 2016,

529, 484–489.

7 D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,

A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,

Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,

T. Graepel and D. Hassabis, Nature, 2017, 550, 354–359.

8 D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,

A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lil-

licrap, K. Simonyan and D. Hassabis, arXiv preprint, 2017,

arXiv:1712.01815.

9 M. Popova, O. Isayev and A. Tropsha, arXiv preprint, 2017,

arXiv:1711.10907.

10 M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen, Journal

of Cheminformatics, 2017, 9, 48.

11 Z. Zhou, X. Li and R. N. Zare, ACS Central Science, 2017, 3,

1337.

12 K. Matyjaszewski, Macromolecules, 2012, 45, 4015–4039.

13 K. Matyjaszewski and J. Xia, Chemical Reviews, 2001, 101,

2921–2990.

14 K. Matyjaszewski and N. V. Tsarevsky, Journal of the Ameri-

can Chemical Society, 2014, 136, 6513–6533.

15 C. J. Hawker, Journal of the American Chemical Society, 1994,

116, 11185–11186.

16 F. di Lena and K. Matyjaszewski, Progress in Polymer Science,

2010, 35, 959–1021.

17 A. Plichta, M. Zhong, W. Li, A. M. Elsen and K. Maty-

jaszewski, Macromolecular Chemistry and Physics, 2012,

213, 2659–2668.

18 N. A. Lynd and M. A. Hillmyer, Macromolecules, 2005, 38,

8803–8810.

19 N. A. Lynd and M. A. Hillmyer, Macromolecules, 2007, 40,

8050–8055.

20 N. A. Lynd, B. D. Hamilton and M. A. Hillmyer, Journal of

Polymer Science Part B: Polymer Physics, 2007, 45, 3386–

3393.

21 N. A. Lynd, M. A. Hillmyer and M. W. Matsen, Macro-

molecules, 2008, 41, 4531–4533.

22 J. Listak, W. Jakubowski, L. Mueller, A. Plichta, K. Maty-

jaszewski and M. R. Bockstaller, Macromolecules, 2008, 41,

5919–5927.

23 D. T. Gentekos, L. N. Dupuis and B. P. Fors, Journal of the

American Chemical Society, 2016, 138, 1848–1851.

24 K. Matyjaszewski and J. Spanswick, Materials Today, 2005,

8, 26–33.

25 K. Min, H. Gao and K. Matyjaszewski, Journal of the Ameri-

can Chemical Society, 2005, 127, 3825–3830.

26 A. Carlmark and E. E. Malmström, Biomacromolecules, 2003,

4, 1740–1745.

27 P. W. Majewski and K. G. Yager, ACS Nano, 2015, 9, 3896–

3906.

28 P. W. Majewski, A. Rahman, C. T. Black and K. G. Yager,

Nature Communications, 2015, 6, 7448.

29 Y. Miura, A. Narumi, S. Matsuya, T. Satoh, Q. Duan, H. Kaga

and T. Kakuchi, Journal of Polymer Science Part A: Polymer

Chemistry, 2005, 43, 4271–4279.

30 H. Gao and K. Matyjaszewski, Macromolecules, 2006, 39,

4960–4965.

31 Z. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer and T. P.

Lodge, Science, 2004, 306, 98–101.

32 H. Gao and K. Matyjaszewski, Journal of the American Chem-

ical Society, 2007, 129, 6633–6639.

33 Z. Wang, X. Pan, L. Li, M. Fantin, J. Yan, Z. Wang, Z. Wang,

H. Xia and K. Matyjaszewski, Macromolecules, 2017, 50,

7940–7948.

34 Z. Wang, X. Pan, J. Yan, S. Dadashi-Silab, G. Xie, J. Zhang,

Z. Wang, H. Xia and K. Matyjaszewski, ACS Macro Letters,

2017, 6, 546–549.

35 T. G. Ribelli, D. Konkolewicz, S. Bernhard and K. Maty-

jaszewski, Journal of the American Chemical Society, 2014,

136, 13303–13312.

36 S. Dadashi-Silab, X. Pan and K. Matyjaszewski, Macro-

molecules, 2017, 50, 7967–7977.

37 R. N. Carmean, T. E. Becker, M. B. Sims and B. S. Sumerlin,

Chem, 2017, 2, 93–101.

38 V. Kottisch, D. T. Gentekos and B. P. Fors, ACS Macro Letters,

2016, 5, 796–800.

39 A. Goto and T. Fukuda, Progress in Polymer Science, 2004,

29, 329–385.

40 W. Tang and K. Matyjaszewski, Macromolecules, 2006, 39,

4953–4959.

41 E. D. Weiss, R. Jemison, K. J. Noonan, R. D. McCullough and

T. Kowalewski, Polymer, 2015, 72, 226–237.

42 J. G. Preturlan, R. P. Vieira and L. M. Lona, Computational

Materials Science, 2016, 124, 211–219.

43 M. Drache and G. Drache, Polymers, 2012, 4, 1416–1442.

44 R. P. Vieira and L. M. Lona, Polymer Bulletin, 2016, 73,

1795–1810.

45 P. H. Van Steenberge, D. R. DâĂŹhooge, Y. Wang, M. Zhong,
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Combination of deep reinforcement learning and atom transfer radical

polymerization gives precise in silico control on polymer molecular weight

distributions.
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