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Design, System, Application Statement

For manuscript “Tuning the Molecular Weight Distribution from Atom Transfer
Radical Polymerization Using Deep Reinforcement Learning”

Haichen Li, Christopher R. Collins, Thomas G. Ribelli, Krzysztof Matyjaszewski,
Geoffrey J. Gordon, Tomasz Kowalewski, and David J. Yaron

The molecular weight distribution (MWD) of polymer chains can have substantial impact on
the mechanical and other properties of the resulting material. Atom transfer radical polymerization
(ATRP) provides a means to control the MWD, but most work has focused on creating samples
with narrow MWDs. Here, we consider synthetic strategies to achieve more flexible control of the
MWD. The design and optimization strategy uses recent advances in reinforcement learning (RL)
to train a controller that, by adding reagents at multiple points throughout the reaction, guides the
reaction to a target MWD. The target MWDs include Gaussian distributions with varying widths
and a number of more complex shapes.

The current work investigates the use of RL to control MWD within a simulation of the ATRP
reaction. The future application potential lies in transferring a controller trained in this way from
a simulation environment to the real laboratory. The current manuscript evaluates this potential
by investigating the degree to which the controller can achieve MWD near the target distribution
when noise is added to both the kinetic parameters used in the simulation and to the observations
passed from the simulation to the controller.
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We devise a novel technique to control the shape of polymer molecular weight distributions

(MWDs) in atom transfer radical polymerization (ATRP). This techniqgue makes use of recent
advances in both simulation-based, model-free reinforcement learning (RL) and the numerical
simulation of ATRP. A simulation of ATRP is built that allows an RL controller to add chemical
reagents throughout the course of the reaction. The RL controller incorporates fully-connected
and convolutional neural network architectures and bases its decision upon the current status of
the ATRP reaction. The initial, untrained, controller leads to ending MWDs with large variability,
allowing the RL algorithm to explore a large search space. When trained using an actor-critic
algorithm, the RL controller is able to discover and optimize control policies that lead to a variety
of target MWDs. The target MWDs include Gaussians of various width, and more diverse shapes
such as bimodal distributions. The learned control policies are robust and transfer to similar but
not identical ATRP reaction settings, even under the presence of simulated noise. We believe this
work is a proof-of-concept for employing modern artificial intelligence technigques in the synthesis
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of new functional polymer materials.

1 Introduction

Most current approaches to development of new materials fol-
low a sequential, iterative process that requires extensive human
labor to synthesize new materials and elucidate their properties
and functions. Over the next decades, it seems likely that this in-
herently slow and labor intensive approach to chemical research
will be transformed through the incorporation of new technolo-
gies originating from computer science, robotics, and advanced
manufacturing. -2 A central challenge is finding ways to use these
powerful new technologies to guide chemical processes to desired
outcomes. > Recent advances in reinforcement learning (RL) have
enabled computing systems to guide vehicles through complex
simulation environments,* and select moves that guide games
such as Go and chess to winning conclusions.>8 For chemical
problems, RL has been used to generate candidate drug molecules
in a de novo manner, %19 and to optimize reaction conditions for
organic synthesis. ! This work investigates the benefits and chal-
lenges of using RL to guide chemical reactions towards specific
synthetic targets. The investigation is done through computa-
tional experiments that use RL to control a simulated reaction sys-
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tem, where the simulation models the chemical kinetics present
in the system.

In this work, the simulated reaction system is that of atom
transfer radical polymerization (ATRP).12-15 ATRP is among the
mostly widely used and effective means to control the polymer-
ization of a wide variety of vinyl monomers. ATRP allows the syn-
thesis of polymers with predetermined molecular weights, narrow
molecular weight distributions (MWDs), 16 and adjustable poly-
dispersity. 17-23 The high degree of control allows the synthesis of
various polymeric architectures 24 such as block copolymers, 2528
star polymers, 2931 and molecular brushes.32 Temporal and spa-
tial control has also been applied in ATRP to further increase
the level of control over the polymerization.33-3¢ More recently,
chemists have been working on ways to achieve MWDs with more
flexible forms, 23-37 as this may provide a means to tailor mechan-
ical and processability of the resulting plastics. 38

In addition to its importance, ATRP is well suited to the com-
putational experiments carried out here. The chemical kinetics of
ATRP are shown schematically in Fig. 1. Control of the polymer-
ization process is related to the activation, k,, and deactivation,
kg4, reactions which inter-convert dormant chains, P Br, and ac-
tive, free radical chains, P;. The active chains grow in length
through propagation reactions, k,. The equilibrium between dor-
mant and active chains can be used to maintain a low concen-
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Fig. 1 Reaction mechanism of ATRP. Polymer species include
radical chains Pj and dormant chains P,Br with reduced chain
length n and chains that terminated through recombination P,—P,,.
L/Cu' and L/Cu"'—Br are ATRP catalysts, where L represents the ligand.
kp, kq, kg, and k; are Kkinetic rate constants for chain propagation, activa-
tion, deactivation, and termination, respectively.

tration of active chains, leading to more controlled growth and
a reduction in termination reactions, k;, that broaden the final
MWD. These kinetics are sufficiently well understood3%4° that
simulations provide reliable results. #1#9 It is also computation-
ally feasible to carry out a large number of simulated reactions.
Fig. 2 shows how the MWD evolves in a single reaction simula-
tion, which finishes in about 1 minute on a 2.4 GHz CPU core.
MWDs will be shown as the fraction of polymer chains (vertical
axis) with a specific reduced chain length (horizontal axis), where
the reduced chain length refers to the number of monomers in-
corporated into the chain.

Final MWD

Fraction of polymer chains

0 10 20 30 40 50
Reduced chain length

Fig. 2 Evolution of polymer MWD in a simulated ATRP reaction.

ATRP reactions can also be manipulated in a large variety of
ways because of the multiple interacting chemical reactions, and
the shape of the MWD provides a diverse set of targets. This
makes the system a good choice for evaluating the degree to
which RL can guide a chemical process to a desired synthetic tar-
get. ATRP reactions are typically carried out by creating an initial
mixture of chemical reagents and keeping the temperature and
other reaction conditions steady. However, a greater diversity of
MWDs can be obtained by taking actions, such as adding chemi-
cal reagents, throughout the polymerization process.?® Here, we
use RL to decide which actions to take, based on the current state
of the reaction system. In this manner, it is analogous to having
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a human continuously monitor the reaction and take actions that
guide the system towards the target MWD. This use of a state-
dependent decision process is a potential advantage of using RL.
Consider an alternative approach in which the simulation is used
to develop a protocol that specifies the times at which to perform
various actions. Such a protocol is likely to be quite sensitive to
the specific kinetic parameters used in the simulation. The RL
controller may lower this sensitivity by basing its decisions on the
current state of the reaction system. Below, the current state upon
which the RL controller makes its decisions includes the current
MWD. The controller is then expected to succeed provided the
correct action to take at a given time depends primarily on the dif-
ference between the current MWD and the target MWD (Fig. 2),
as opposed to the specific kinetic parameters. Ideally, an RL al-
gorithm trained on a simulated reaction may be able to succeed
in the real laboratory with limited additional training, provided
the simulated reaction behaves like the actual one. Such trans-
fer from simulated to real-world reactions is especially important
given the potentially large number of reaction trials needed for
training, and the inherent cost of carrying out chemical experi-
ments. In our computational experiments, we assess the sensitiv-
ity to the simulation parameters by including noise in both the
kinetic parameters used in the simulation and in the states of the
current reaction system.

- [Action probabilities|

|

Reactor

012345

[Policy network|

Fig. 3 Flow chart showing how the policy network of the RL controller
selects actions to apply to the simulated ATRP reactor.

Fig. 3 provides a schematic view of the RL controller. The cur-
rent state is fed into the RL controller (policy network), which
produces a probability distribution for each of the available ac-
tions. An action is then drawn from this probability distribu-
tion, and performed on the reactor. The design of the RL con-
troller is inspired by recent advances in deep reinforcement learn-
ing, >9-52 which use neural networks for the policy network and
other components. The combination of modern deep learning
models, represented by convolutional neural networks, 3336 and
efficient RL algorithms®7-38 such as deep Q-learning, 3-°9%° prox-
imal policy methods,®! and asynchronous advantage actor-critic
(A3C)®283 has lead to numerous successful applications in con-
trol tasks with large state spaces.:%%%% The computational ex-
periments presented here examine the use of modern deep rein-
forcement learning techniques to guide chemical synthesis of new

This journal is © The Royal Society of Chemistry [year]
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materials.

2 Related works

There have been many studies that control the state and dynamics
of chemical reactors based on classical control theory.®® Model-
based controllers,®” some of which employ neural networks, %8
have been developed for a number of control tasks involving
continuous stirred tank reactors, %74 batch processes,”>~77 hy-
drolyzers,7® bioreactors,’?81 pH neutralization processes, 828>
strip thickness in steel-rolling mills,8¢ and system pressure.8”
Model-free controllers trained through RL also exist for control-
ling chemical processes such as neutralization®® and wastewater
treatment® or chemical reactor valves. %°

Due to its industrial importance, polymer synthesis has been
a primary target for the development of chemical engineering
controllers.”! Some of these make use of neural networks to
control the reactor temperature in the free radical polymeriza-
tion of styrene.%2 McAfee et al. developed an automatic poly-
mer molecular weight controller®® for free radical polymeriza-
tion. This controller is based on online molar mass monitoring
techniques?* and is able to follow a specific chain growth trajec-
tory with respect to time by controlling the monomer flow rate
in a continuous flow reactor. Similar online monitoring tech-
niques have recently enabled controlling the modality of free rad-
ical polymerization products, > providing optimal feedback con-
trol to acrylamide-water-potassium persulfate polymerization re-
actors, % and monitoring multiple ionic strengths during the syn-
thesis of copolymeric polyelectrolytes. %’ However, none of these
works attempted to control the precise shape of polymer MWD
shapes, nor did they use an artificial intelligence (AI) driven ap-
proach to design new materials. The significance of this work
lies in that it is a first trial of building an Al agent that is trained
tabula rasa to discover and optimize synthetic routes for human-
specified, arbitrary polymer products with specific MWD shapes.
Another novel aspect of the current work is the use of a simu-
lation to train a highly-flexible controller, although the transfer
of this controller to actual reaction processes, possibly achievable
with modern transfer learning ®-192 and imitation learning tech-
niques, 193:104 is Jeft to future work.

3 Methodology

3.1 Simulating ATRP

We select styrene ATRP as our simulation system. Simulation of
styrene ATRP may be done by solving the ATRP chemical kinetics
ordinary differential equations (ODEs) in Table 1,41,42.105,106 1y
method of moments, 197 or by Monte Carlo methods. 198113 This
work directly solves the ODEs because this allows accurate track-
ing of the concentration of individual polymer chains while being
more computationally efficient than Monte Carlo methods.

In the ODEs of Table 1, M is monomer; P}, P Br, and T,
represent length-n radical chain, dormant chain, and terminated
chain, respectively. P;Br is also the initiator of radical polymer-
ization. kp, ka4, kg, and k; are propagation, activation, deactiva-
tion, and termination rate constants, respectively. N is the maxi-
mum allowed dormant/radical chain length in the numerical sim-
ulation. Consequently, the maximum allowed terminated chain
length is 2N, assuming styrene radicals terminate via combina-
tion. 114 We set N = 100 in all ATRP simulations in this work.
This number is sufficiently large for our purpose as the lengths
of dormant or terminated chains do not exceed 75 or 150, re-
spectively, in any of the simulations.
established rate constants based on experimental results of the
ATRP of bulk styrene at 110 °C (383.15 K) using dNbpy as the
ligand 13115-117: k= 1.6 x 103, k, = 0.45, kg = 1.1 x 107, and
k, = 10® (units are M~ 's™1). It was assumed the reactor remained
at this temperature for the duration of the polymerization. Al-
though the rate constants depend on the degree of polymeriza-
tion, 118 we assumed the same rate constants for polymer chains
with different lengths. This assumption does not bias the nature
of ATRP qualitatively and has been practiced in almost all pre-
vious ATRP simulation research.41:4%105.106,119 1 some of our
simulations, we altered the rate constants by up to +30% to ac-
count for possible inaccuracies in the measurement of these val-
ues and other unpredictable situations such as turbulence in the
reactor temperature. We employed the VODE 120-124 integrator
implemented in SciPy 0.19 using a maximum internal integration
step of 5000, which is sufficient to achieve final MWDs with high
accuracy. We chose the “backward differentiation formulas” inte-
gration method because the ODEs are stiff.

In practice, styrene ATRP is close to an ideal living polymeriza-
tion, 116:117 with termination playing only a small role in estab-
lishing the final MWD. Excluding termination from the simula-

We used a set of well-

Table 1 ATRP kinetics equations. Cu' and Cu'" stand for the ATRP activator and deactivator L/Cu' and L/Cu''—Br, respectively.

Monomer M) = —k,[M] XX, [Pf]
Activator [Cul]) = ky[Cu"] XN, [P?] — ko [Cul]| X, [P;Br]
Deactivator [Cull) = k,[Cul] XY | [PBr] — ky[Cull] XV | [P?]

Dormant chains
Smallest radical
Other radicals

Terminated chains

[P,Br] = ky[Cull][PS] — k,[Cul][P,Br], 1 <n <N

[P}] = —kp [M][P}] + ka[Cu'] [P, Br] — ky[Cu""] [P] — 2k [P}] LV [P}]

[Pe]' = kp[MI([P5_;] — [Pg]) + ka[Cu'][P, Br] — ky[Cu"|[P}] — 2/ [PRI XN [P, 2<n <N
[T,) =X &[P)[Pe ], 2<n<2N

This journal is © The Royal Society of Chemistry [year]
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tion reduces the the total number of ODEs by about 2/3 and sub-
stantially reduces the computer time needed for the simulation.
Therefore, in most of the cases, we train the RL agents on no-
termination environments to save computational cost. Note that
we still evaluate their performance on with-termination environ-
ments. Moreover, this strategy allows us to test the transferability
of control policies learned by the RL agent onto similar but not
identical environments, which could be of great importance in
later works where we need to apply control policies learned with
simulated environments to real, physically built reactors.

We assume that the volume of the system is completely
determined by the amount of solvent and the number of
monomer equivalents (including monomers incorporated in poly-
mer chains). To calculate the system volume, we use a bulk
styrene density of 8.73 mol/L as reported in early works*! and
a solvent density of 1.00 mol/L.

3.2 Using RL to control the ATRP reactor simulation

A reinforcement learning problem is usually phrased as an agent
interacting with an environment (Fig. 4). In our case, the agent
is an RL controller and the environment is the ATRP reactor sim-
ulator. The agent interacts with the simulation at times separated
by constant intervals, #sep. The interaction between the agent
and the environment consists of three elements, each of which is
indexed by the timestep (shown as a subscript 7):

Environment
(reactor)

State

(some target MWD)
(concentrations, etc.)

Value network
Policy network

Agent

Fig. 4 A schematic diagram of applying deep reinforcement learning in
the ATRP reactor control setting.

State (s;) At each timestep, the agent is given a vector, s;, that is
interpreted as the current state of the reaction system. The
state vector is used by the agent to select actions. Here,
st includes: (i) the concentrations of the non-trace species:
monomer, dormant chains (P;Br, ---, PyBr), and Cu-based
ATRP catalysts, (ii) the volume of the solution, and (iii)
binary indicators of whether each of the addable reagents
has reached its budget. Note that we include the monomer
quantity into the state vector by adding it onto the quantity
of the initiator, or the shortest dormant chain.

Action (a;) The agent is given a set of actions, <7, from which
to select an action, a;, to apply at timestep ¢. The set of
actions is fixed and does not change throughout the simula-
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tion. Here, the actions correspond to the addition of a fixed
amount of a chemical reagent. The set of actions, </, also
includes a no-op, selection of which means that no action is
taken on the reaction simulation environment. The addable
reagents are listed in Table 2, along with the amount that is
added when the action is selected and the budget. When a
reagent reaches its budget, the agent may still select the cor-
responding action, but this action becomes a no-op and does
not alter the reaction simulation environment. Although the
simulation allows addition of solvent, the effects of this ac-
tion are not examined here. A very small amount of solvent
is, however, used to initialize the simulation with a non-zero
volume of a non-reactive species. Inclusion of other actions,
such as changes in temperature, are possible but these are
also not examined here.

Reward (r;) At each timestep, the agent is given a reward, r,
that indicates the degree to which the agent is succeeding at
its task. In many RL problems, rewards may accrue at any
time point. Here, however, the reward is based on the final
MWD and so the agent receives a reward only when the reac-
tion has run to completion. In practice, we allow the agent to
interact with the simulation until all addable reagents have
reached their budgets. The simulation then continues for
a terminal simulation time of #,,ing = 10° seconds. The
simulation environment then provides a reward to the agent
based on the difference between the ending dormant chain
MWD and the target MWD. This reward is defined in a two-
level manner: when the maximum absolute difference be-
tween the normalized ending MWD and target MWD is less
than 1 x 1072 the agent obtains a reward of 0.1, and when
this difference is less than 3 x 1073, the agent obtains a re-
ward of 1.0. This two-level reward structure was determined
empirically, with the lower first-level reward helping guide
the agent in the early stages of training.

Table 2 The initial amounts, addition unit amounts, and budget limits used
for simulating styrene ATRP in this work. All quantities are in units of mol.

Addable reagents Initial Addition unit Budget limit
Monomer 0 0.1 10.0
Activator 0 0.004 0.2

Deactivator 0 0.004 0.2
Initiator 0 0.008 0.4
Solvent 0.01 0 0

A single simulated ATRP reaction corresponds, in RL, to a sin-
gle episode. Each episode begins with a small amount of solvent
(Table 2) and iterates through steps in which the agent is given
the current state, s;, the agent selects an action a; that is applied
to the simulation, and the simulation then runs for a time #sep.
When all addable reagents have reached their budgets, the sim-
ulation continues for #;ppinq = 10° seconds and returns a reward
based on the difference between the ending dormant chain MWD
and the target MWD.

This journal is © The Royal Society of Chemistry [year]
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To train the agent, we use the A3C algorithm, a recent advance
in actor-critic methods!2> that achieved state-of-the-art perfor-
mance on many discrete-action control tasks. 126 Actor-critic 127
algorithms are a subclass of RL algorithms based on simultaneous
training of two functions:

Policy (g, (s+)) The policy is used to select actions, e.g., which
chemical reagent to add at time 7. As shown schematically
in Fig. 3, actions are drawn from a probability distribution.
The policy function generates this probability distribution,
Ty, (at|s:), which specifies, given the state of the ATRP reac-
tor s;, the probability that action @, should be selected. The
subscript 6, represents the set of parameters that parame-
terize the policy function. In A3C, where a neural network
is used for the policy, 6, represents the parameters in this
neural network, 128,129

Value (Vg (s;)) Although the policy function is sufficient for use
of the RL controller, training also involves a value function,
Ve, (s:). Qualitatively, this function is a measure of whether
the reaction is on track to generate rewards. More precisely,
we define a return R, = Y1 _, ¥'~'r, which includes not only
the reward at the current state, but also future states up to
timestep T. This is especially relevant here, as rewards are
based on the final MWD and so are given only at the end
of a reaction. A factor y, which is greater than 0 and less
than 1, discounts the reward for each step into the future,
and is included to guarantee convergence of RL algorithms.
The value function, Vj,(s;), approximates the expected re-
turn, E[R;|s], from state s;. A3C uses a neural network for
the value function, and 6, represents the parameters in this
network.

Below, we compare results from two different neural network ar-
chitectures, labeled FCNN and 1D-CNN (see Section 3.3).

During training, A3C updates the parameters, 6, and 6,,
of the policy and value functions. The actor-critic aspect of
A3C refers to the use of the value function to critique the pol-
icy’s ability to select valuable actions. To update 6,, policy
gradient steps are taken according to the direction given by
Vg, log g, (a:[s;) (R — Ve, (s:)). Note that the current value func-
tion, Vjp, (s;), is used to update the policy, with the policy gradient
step being in a direction that will cause the policy to favor actions
that maximize the expected return. This may be viewed as using
the value function to critique actions being selected by the pol-
icy. Moreover, the policy gradient becomes more reliable when
the value function estimates the expected return more accurately.
To improve the value function, the parameters 6, are updated to
minimize the ¢ error E (R, — Vj, (s,))2 between the value function,
Ve, (s:), and the observed return, R;. The observed return is ob-
tained by using the current policy to select actions to apply to the
reaction simulation environment.

The training therefore proceeds iteratively, with the current
value function being used to update the policy and the cur-
rent policy being used to update the value function. The pa-
rameter updates occur periodically throughout the course of an
episode, or single polymerization reaction. The current policy

This journal is © The Royal Society of Chemistry [year]

is first used to generate a length-L sequence of state transitions
{st,ar, ey Se41, A1, Fe1s -+, e+ }- This length-L sequence is re-
ferred to as a rollout. At the end of each rollout, the informa-
tion generated during the rollout is used to update 6, and 6,. To
take advantage of multi-core computing architectures, the train-
ing process is distributed to multiple asynchronous parallel learn-
ers. A3C keeps a global version of 6, and 6,. Each learner has
access to a separate copy of the reaction simulation environment
and a local version of 6, and 6,. After a learner performs a rollout,
it generates updates to 6, and 6,. These updates are then applied
to the global versions of 6, and 6,, and the learner replaces its
local version with the global version. In this manner, each learner
periodically incorporates updates generated by all learners.

3.3 Additional implementation details

The neural networks used for the policy and value functions share
a common stack of hidden layers, but use separate final output
layers. We compare results from two different network archi-
tectures for the hidden layers. The first architecture, FCNN, is
a simple fully-connected neural network with two hidden layers
containing 200 and 100 hidden units, respectively. The second
architecture, 1D-CNN, is convolutional. In 1D-CNN, the input
feature vector is fed into a first 1D convolutional layer having 8
filters of length 32 with stride 2, followed by a second 1D con-
volutional layer having 8 filters of length 32 with stride 1. The
output of the second 1D convolutional layer is then fed into a
fully-connected layer with 100 units. All hidden layers use rec-
tifier activation. The final layer of the value network produces
a single scalar output that is linear in the 100 units of the last
hidden layer. The final layer of the policy network is a softmax
layer of the same 100 hidden units, with a length-6 output repre-
senting a probability distribution over the 6 actions. For a crude
estimate of model complexity, FCNN and 1D-CNN contain 42607
and 9527 trainable parameters, respectively.

We implemented the A3C algorithm with 12 parallel CPU
learners.%2 The discount factor in the return is y = 0.99, and
the maximum rollout length is 20. The length of a rollout
may be shorter than 20 when the last state in the sequence
is a terminal state. After a learner collects a length-L rollout,
{st,ar, v, Si41, Qi1 Fg15 -+, Si4L ), it generates updates for 6,
and 6, by performing stochastic gradient descent steps for each
t'e{t,---,t+L—1}. Define the bootstrapped multi-step return
R =L Y " Vo, (si4) + Xl ¥~ ry where I = 0 if 5,41 is the
terminal state and 1 otherwise. The prime on 6] in Vg, (s;+1) indi-
cates that the value function is evaluated using the local copy of
the network parameters. The update direction of 6, is set accord-
ing to

d6y =~V log g (ar|sy) (Ry — Ve, (sv)) + BV g, H (mgy (s11)).-

H (71:9;7 (si)) is the entropy of mg (si) and acts as a regularization
term that helps prevent Ty, (sy) from converging to sub-optimal
solutions. f is the regularization hyperparameter, for which we
use B =0.01. 6, is updated according to the direction of

d@v = Vg‘{ (R;/ - Vg‘{ (Str))z.

Journal Name, [year], [vol.], 1-13 |5
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Updates of the network parameters are done using the ADAM
optimizer '*° with a learning rate of 1 x 107*.

Additionally, after each action is drawn from the probability
distribution generated by the policy, the agent repeats the action
for 4 times before selecting the next action. This repetition short-
ens the length of a full episode by a factor of 4 from the RL agent’s
perspective and so prevents the value function from exponential
vanishing. 13!

4 Results and discussion

4.1 Targeting Gaussian MWDs with different variance

Our first goal is to train the RL controller against some MWDs
with simple analytic forms, for which Gaussian distributions with
different variances seem a natural choice. Seemingly simple,
Gaussian MWDs exemplify the set of symmetric MWDs the syn-
thesis of which requires advanced ATRP techniques such as acti-
vators regenerated by electron transfer (ARGET).?? Living poly-
merization produces a Poisson distribution with a variance that
depends only on the average chain length, which is set by the
monomer-to-initiator ratio. The variance from the ideal living
polymerization provides a lower limit to the variance of the MWD.
Here, we choose Gaussian distributions with variances ranging
from near this lower limit to about twice that limit. Increasing the
variance of the MWD can have substantial effects on the proper-
ties of the resulting material. 132

0.08 MWD from untrained agent,

— with tgep =100s

0.0

25 50 75 100
Reduced chain length

Fig. 5 Superposition of 1000 ending MWDs from untrained agents when
the time interval between actions is 100 seconds. Vertical axis is fraction
of polymer chains.

{b) Average MWDs 02=24
from trained agents 0?=28

i i — 02=32
L 5 — 0%2=36
0?=40

Ha) Target Gaussians

i I 02=44
L i — 02=48
._02=52

Fig. 6 Comparison of the human-specified target Gaussian MWDs with
the average ending MWDs given by trained 1D-CNN agents, with av-
eraging being over 100 episodes. The horizontal and vertical spacings
between dotied line grids are 25 and 0.02, respectively.

For this task, we set the time interval between two actions to
100 seconds. This setting was chosen for two main reasons. First,
due to the choice of the addition unit amounts and budget lim-
its of addable reagents, it typically takes 300~400 simulator steps
to finish one episode, and so this choice of time interval corre-
sponds to ~10 hours of real reaction time before the terminal

6| Journal Name, [year], [vol.],1-13
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step. More importantly, it allows an untrained RL controller to
produce a widely variable ending MWD, as illustrated by the 1000
MWDs of Fig. 5. A widely variable ending MWD is necessary for
RL agents to discover strategies for target MWDs through self-
exploration. 133,134

As specific training targets, we select Gaussian MWDs with vari-
ances (6%’s) ranging from 24 to 52, which covers the theoretical
lower limit of the variance to a variance of more than twice this
limit. Fig. 6(a) shows the span of these target MWDs. A summary
of the trained 1D-CNN agents’ performance on this task is shown
in Fig. 6(b). Each ending MWD is an average over 100 episodes,
generated using the trained 1D-CNN controller. Note that this
MWD averaging is equivalent to blending polymer products gen-
erated in different reactions,?> a common practice in both labo-
ratory and industrial polymerization. 13>-138 The trained 1D-CNN
agent used in these test runs is that which gave the best perfor-
mance in the training process, i.e., the neural network weights
are those that generated the highest reward during the training
process. During training, termination reactions are not included

394486 episodes 856962 episodes

580391 episodes 664281 episodes
988972 episodes [02 =44). 899127 episodes

M

834109 episodes [02 =52]..802597 episodes

Fig. 7 Learning curves for training FCNN agents on the target Gaussian
MWDs of Fig. 6. Horizontal axis is number of episodes, or simulated
reactions, with total number of episodes shown in legend. The vertical
axis is the instantaneous (light blue) or averaged (dark blue) reward, as
defined in the main text, on a 0 to 1 scale.

il

(07 =24) 654563 episodes

1015601 episodes

1069742 episodes

1075231 episode
o2 =44) 883980 episodes

o2=40]-8 16 _episodes

[02 =48] 832393 episodes [02 =52] 851896 epispdes

M A

Fig. 8 Learning curves for training 1D-CNN agents on the target Gaus-
sian MWDs of Fig. 6. Convention is as in Fig. 7.
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in the simulation, but during testing, these reactions are included.
For all 8 target Gaussian MWDs, the average ending MWDs are
remarkably close to the corresponding targets. The maximum
absolute deviation from the target MWD is an order of magni-
tude less than the peak value of the distribution function. These
results show that control policies learned on simulation environ-
ments that exclude termination transfer well to environments that
include termination. This is perhaps not surprising because ATRP
of styrene is close to an ideal living polymerization, with less than
1% of monomers residing in chains that underwent a termination
reaction. Tests on changing other aspects of the polymerization
simulation are given in the following sections.

4.1.1 Training process and learning curves

Fig. 7 and 8 compare the learning curves of FCNN and 1D-CNN
agents. The horizontal axis shows the number of ATRP experi-
ments (episodes) run by the agent during the training process.
The vertical axis shows the reward received by the agent, which
runs from 0.0 to the maximum possible reward of 1.0. The dark
blue lines average over a window of length 10000 and so reflects
the agents’ average performance during training. The light blue
regions average over a window of length 100 and so may be inter-
preted as the agents’ instantaneous performance. The transition
from low to high average reward partially reflects the two-level
reward structure, in which the reward is 0.1 for loose agreement
with the target MWD and 1.0 for tight agreement.

Two general trends emerge from these learning curves. The
first is that broader target MWDs require strategies that are
harder for the RL agents to learn. When the target MWD is a
Gaussian with variance 24, both FCNN and 1D-CNN can learn

a strategy in less than 10° training episodes. As the variance of
the target distribution increases, the number of required train-
ing episodes increases substantially. The second general trend is
that the 1D-CNN outperforms the FCNN. For the narrower target
distributions, both architectures obtain similar peak performance,
but the 1D-CNN trains faster and the performance is more steady.
For broader target distributions, only the 1D-CNN could achieve
the 1.0 tight-threshold reward consistently.

4.1.2 Transferability tests on noisy environments

To test the robustness of the learned control policies, the trained
1D-CNN agents were evaluated on simulation environments that
include both termination reactions and simulated noise, 139-141
We introduce noise on the states as well as actions. On states, we
apply Gaussian noise with standard deviation 1 x 10~ on every
observable quantity. (The magnitude of the observable quantities
range from 0.01 to 0.1.) In the simulation, we introduce three
types of noise. First, the time interval between consecutive ac-
tions is subject to a Gaussian noise, whose standard deviation is
1% of the mean time interval. Gaussian noise is also applied to
the amount of chemical reagent added for an action, again with
a standard deviation that is 1% of the addition amount. Lastly,
every kinetics rate constant used in non-terminal steps is subject
to Gaussian noise, with the standard deviation being 10% of the
mean value. Note that we crop the Gaussian noise in the simu-
lation at +30 to avoid unrealistic physics, such as negative time
intervals, addition of negative amounts, or negative kinetic rate
constants. Once all budgets have been met, the simulation enters
its terminal step and the RL agent no longer has control over the
process. During this terminal step, we do not apply noise.

One-run 7.5e-3
Average 2.3e-3

One-run 6.1e-3
Average 2.6e-3

02 =24 Max deviation: |02 = 28| Max deviation: |52 =732 Max deviation: ||o2 =36 Max deviation:
One-run 4.5e-3 _ One-run 2.3e-2 One-run 1.1e-2 | [ One-run 8.3e-3
Average 2.4e-3 A Average 5.0e-3 Average 3.2e-3 Average 3.9e-3
Full span
190% span
—Average
-—Target
02 =40 Max deviation: laz = 44| Max deviation: laz = 48| Max deviation: laz = 52] Max deviation:

One-run 7.6e-3
Average 2.2e-3

One-run 8.3e-3
Average 2.6e-3

Fig. 9 Performance of 1D-CNN agents trained on the target Gaussian MWDs of Fig. 6 on simulation environments that include both termination
reactions and noise. In each subplot, the horizontal axis represents the reduced chain length and runs from 1 to 75, and the vertical axis represents

fraction of polymer chains and runs from 0.0 to 0.11.

Max deviation:
One-run 7.4e-3
Average 2.4e-3

Max deviation:
One-run 5.9e-3
Average 2.3e-3
Full span
190% span
—Average
--Target

|az=24| |02=28|

Max deviation:
One-run 5.7e-3
Average 1.7e-3

Max deviation:
One-run 6.7e-3
Average 1.2e-3

|02=32| |02=36|

Max deviation:
One-run 7.0e-3
Average 2.1e-3

Max deviation:
One-run 5.9e-3
Average 2.3e-3

02=44

Max deviation:
One-run 8.5e-3
Average 2.2e-3

Max deviation:
One-run 7.6e-3
Average 2.2e-3

02=48 02=52

Fig. 10 Performance of 1D-CNN agents trained on noisy, with-termination environments targeting Gaussian MWDs of Fig. 6. Convention is as in Fig. 9.
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Performance of the 1D-CNN agents, trained against the target
Gaussian MWDs of Fig. 6, on noisy environments is shown in
Fig. 9. The trained agent is used to generate 100 episodes and
the statistics of final MWDs are reported in a variety of ways. The
average MWD from the episodes is shown as a solid dark blue
line. The light blue band shows the full range of the 100 MWDs
and the blue band shows, at each degree of polymerization, the
range within which 90 of the MWDs reside. The control policies
learned by 1D-CNN agents seem to be robust. The deviation of
the average MWD is an order of magnitude less than the peak
value of the MWD. Deviations of the MWD from a single episode
can vary more substantially from the target MWD, but the result-
ing MWDs are still reasonably close to the target MWD. On aver-
age, the maximum absolute deviation between a one-run MWD
and the target is still less than 5% of the peak MWD value.

4.1.3 Training directly on noisy environments

Training the RL agents on noisy environments can significantly
reduce the deviations of the single-run MWDs from the target
MWD, as shown in Fig. 10. Noticeably, on the 6> = 28 envi-
ronment, the “one-run” maximum absolute deviation is reduced
from 2.3 x 1072 to 7.4 x 1073, a reduction of over a factor of
3. These results are consistent with an expected advantage of
state-dependent control policies, where the agents can respond
to the real-time status of the reactor and autonomously choose
the proper action to perform. Even though the states may be
noisy, the RL agents are still able to detect patterns and use them
to form a probability distribution over actions that maximizes the
chance of reaching the target MWDs.

—— 1D-CNN training to 02 = 52, without noise
- —— 1D-CNN training to 0% =52, with noise

||

|

Fig. 11 Learning curves of the 1D-CNN agent targeting Gaussian MWD
with 62 = 52, trained on environments with and without simulated noises.
Convention is as in Fig. 7, with the horizontal axis having a range of
851896 episodes.

Another interesting finding is that performance collapses dur-
ing the training process may be alleviated by introducing noise to
the training environment. Fig. 11 compares the learning curve of
the 1D-CNN agent on the non-noisy environment with that on the
noisy environment, both targeting a Gaussian MWD with o2 = 52.
Although, on the non-noisy environment, the agent can learn a
high-reward strategy more quickly and achieve a slightly higher
peak performance, the learning curve on the noisy environment
is much steadier. Intuitively, exposing the agent to noisy states
increases its tolerance to abrupt changes in concentrations of ob-
servables and so may improve the generalization of the learned
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network. 42 Moreover, introducing noise may also be regarded as
a stochastic regularization technique. 143144 Overall, introducing
certain types of noise on the states and actions seems to have lit-
tle adverse effect on the training while helping the agents achieve
better generalization.

4.2 Targeting MWDs with diverse shapes

Beyond Gaussian MWDs, we also trained the 1D-CNN agent
against a series of diverse MWD shapes. We have chosen bimodal
distributions as a challenging MWD to achieve in a single batch
process. Such bimodal distributions have been previously stud-
ied as a means to controlling the microstructure of a polymeric
material, 145147

0.08 MWD from untrained agent,
— with tsep = 5005

25 50 75 100
Reduced chain length

Fig. 12 Superposition of 1000 ending MWDs from untrained agents
when the time interval between actions is 500 seconds. Vertical axis
is fraction of polymer chains.

To enable automatic discovery of control policies that lead to
diverse MWD shapes, it is necessary to enlarge the search space
of the RL agent, which is related to the variability in the ending
MWDs generated by an untrained agent. We found empirically
that a larger time interval between actions leads to wider varia-
tion in the MWDs obtained with an untrained agent. Throughout
this section, the time interval between actions f, is set to 500
seconds. Fig. 12 shows 1000 superimposed ending MWDs given
by the untrained agent with this new time interval setting, and
the span is much greater than in Fig. 5 where #5p = 100 seconds.

The target MWDs with diverse shapes are manually picked
from 1000 random ATRP simulation runs (i.e., episodes under
the control of an untrained agent). Agents trained on these tar-
gets have satisfactory performance. The average MWDs over 100
batch runs match the targets nearly perfectly. In addition, there is
a large probability (90%) that a one-run ending MWD controlled
by a trained agent falls into a thin band whose deviation from
the target is less than 1 x 1072 (Fig. 13). All these agents are
trained on noisy, no-termination environments and evaluated on
noisy, with-termination environments. The parameters specify-
ing the noise are identical to those used in the earlier sections.
The results indicate that a simple convolutional neural network
with less than 10* parameters can encode control policies that
lead to complicated MWD shapes with surprisingly high accu-
racy. Again, adding noise to the states, actions, and simulation
parameters does not degrade the performance of the RL agents
significantly. This tolerance to noise may allow transfer of control
policies, learned on simulated reactors, to actual reactors.

To further investigate the potential transferability of the state-
dependent control policies, we also evaluate the agents trained

This journal is © The Royal Society of Chemistry [year]
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|Bimoda||

Max deviation:
One-run 8.8e-3

|Tai|ing|

Max deviation:
One-run.1.9e-2

Average 1.0e-3 /\ Average 4.2e-3
Full span
90% span
—Average
——Target
i Max deviation: Max deviation:
Step right One-run.1.6e-2 Step left One-run.1.2e-2
Average 3.3e-3 Average 1.4e-3
N

Max deviation:
One-run 8.6e-3
Average 1.6e-3

|Flat-wide|

|Flat-narrow| Max deviation:
One-run.1.5e-2
Average 1.7e-3

Fig. 13 Performance of trained 1D-CNN agenis on noisy, with-
termination environments targeting diverse MWD shapes. In each sub-
plot, the horizontal axis represents the reduced chain length and runs
from 1 to 75, and the vertical axis is fraction of polymer chains and runs
from 0.0 to 0.08.

|Bimodal|

Max deviation:
One-run 2.6e-2
Average 3.0e-3

Max deviation:
One-run.1.1e-2
Average 9.8e-4
Full span
90% span
—Average
-—Target

|Tai|ing|

Max deviation:
One-run.1.2e-2
Average 9.1e-4

Max deviation:
One-run.8.9e-3
Average 1.4e-3

|Step right| |Step Ieft|

Max deviation:

|Flat-wide|
One-run 7.8e-3

Average 1.8e-3

~

|Flat-narrow| Max deviation:
One-run.7.5e-3
Average 1.3e-3

Fig. 14 Performance of trained 1D-CNN agenis on noisy, with-
termination environments targeting diverse MWD shapes, where the
chain propagation rate constant is increased by 100% relative to the envi-
ronments on which the agents were trained. Convention is as in Fig. 13.

above on environments where the propagation rate constant k,
is increased by 100%. The other rate constants (k,, k;, and
k) were held fixed, such that we are varying the relative time
scales of the two interacting chemistries, propagation versus acti-
vation/deactivation, in ATRP (Fig. 1). The increase in chain prop-
agation alters, for example, the average number of monomers
added to an active chain before it is converted back to a dor-
mant chain. In applying the agents, the time intervals g, and
trerminal are reduced by 50% so that the reactions have a similar
monomer conversion rate before and after the change to k,. As
shown by Fig. 14, this significant change in the ATRP reaction ki-
netics only slightly downgrades the agents’ performance, with the
average ending MWD remaining close to the target. The success-
ful transfer of agents trained on one set of kinetic parameters to
a simulation with a different set of kinetic parameters suggests
that having the agents base their decisions on the current state

This journal is © The Royal Society of Chemistry [year]

of the reaction leads to control policies that can transfer between
chemical systems.

5 Conclusion

This paper introduces a general methodology for using deep re-
inforcement learning techniques to control a chemical process in
which the product evolves throughout the progress of the reac-
tion. A proof-of-concept for the utility of this approach is ob-
tained by using the controller to guide growth of polymer chains
in a simulation of ATRP. ATRP was chosen because this reaction
system allows detailed control of a complex reaction process. The
resulting controllers are tolerant to noise in the kinetic rate con-
stants used in the simulation, noise in the states on which the
controller bases its decisions, and noise in the actions taken by
the controller. This tolerance to noise may allow agents trained
on simulations of the reaction to be transferred to the actual lab-
oratory without extensive retraining, although evaluation of this
aspect is left to future work. This approach, of carrying out ini-
tial training of a controller on a simulation, has been success-
fully applied in other domains such as robotics and vision-based
RL. 101,126,148 Additional work is also needed to better under-
stand the extent to which the controller can achieve synthetic
targets when decisions are based on less detailed information re-
garding the state of the reactor. The ability of the approach to
target multiple properties, %9150 such as targeting MWD and vis-
cosity simultaneously, or targeting more complex architectures,
such as gradient or brush polymers, also remains to be explored.
Our efforts to optimize the reinforcement learning methodology
is still ongoing, and we hope to apply similar approaches to guide
other chemical reactions.

A developmental open-source implementation of our ap-
proach is freely available on GitHub (https://github.com/
spring0l/reinforcement_learning_atrp) under the
GPL-v3 license.
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Combination of deep reinforcement learning and atom transfer radical
polymerization gives precise in silico control on polymer molecular weight
distributions.



