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Quantum and Classical IR Spectra of (HCOOH)2,
(DCOOH)2 and (DCOOD)2 using Ab Initio Potential En-
ergy and Dipole Moment Surfaces

Chen Qu and Joel M. Bowman∗

The accurate quantum mechanical description of the vibrational dynamics and IR spectra of
molecules is illustrated here for the formic acid dimer, (HCOOH)2 and isotopologues (DCOOH)2
and (DCOOD)2 in full dimensionality. The calculations make use of recent full-dimensional ab
initio potential energy and dipole moment surfaces and are done with the code MULTIMODE. IR
spectra are reported for the three dimers and also compared to available experimental spectra.
In addition, standard classical and “semiclassially prepared” quasiclassical molecular dynamics
calculations of the IR spectra of these complexes are reported and compared to the quantum
spectra and also experiment. These comparisons indicate good accuracy of the MD spectra for
sharp bands but not for the complex O-H stretch band, where the complex molecular dynam-
ics band is upshifted from experiments by roughly 300 cm−1. For the the fully deuterated dimer
(DCOOD)2, the quantum spectral band for O-D stretch sharpens relative to the O-H spectral
bands in (HCOOH)2 and (DCOOH)2; however, the molecular dynamics OD stretch band does not
exhibit this sharpening.

1 Introduction
The accurate quantum treatment of vibrational, ro-vibrational en-
ergies and IR spectra of small molecules, i.e., 3–5 atoms, has
seen major progress in the past decade or so. Recent reviews
have appeared,1–5 which can be consulted for the breadth of this
progress, which is most substantial for tetratomic molecules and
non-covalent complexes. Accurate quantum calculations of the vi-
brational energies of methane have also been reported4; however,
in general 5-atom molecules and complexes are still a challenge
for “exact” quantum treatments.

The terms “exact” and “accurate” used above deserve at least
some brief discussion, as there are no universally accepted def-
initions of these terms. Here is what we mean in the present
context. The components of an accurate, first-principles compu-
tational treatment of vibrational dynamics are, an accurate po-
tential energy surface (PES), an “exact” or nearly “exact” solution
of the “exact” Schroedinger equation and, for the IR spectrum,
an accurate dipole moment surface (DMS). There are challenges
associated with each of these ingredients.

Starting with the potential, it is now generally accepted that
the coupled cluster method, with at least a perturbative treat-
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ment of triple excitations, is needed for accurate energies. These
energies are needed at a sufficient number of nuclear configura-
tions to obtain a fit that is precise, at least at the expected level
of the accuracy of the electronic energies themselves. These days
this level is of the order of 1-10 cm−1 and generally closer to the
upper end of this range. The direct use of electronic energies in
vibrational calculations, that is without the use of fitted poten-
tial energy surface, is of course possible; however, rarely feasible,
without also making some approximation to the size of the grids
needed to solve the Schroedinger equation. There has been great
progress in developing highly precise, high-dimensional repre-
sentation of tens of thousands of electronic energies, and a re-
cent review we wrote on this can be consulted for further de-
tails of this progress.6 Predating this approach, ab initio-based
force-fields, i.e., multinomial, direct-product representations of
potentials, have been widely used very effectively. These and
sophisticated variations of force fields, now referred to a “sum-
of-products” representation are most effective in representing a
limited region of configuration space, e.g., the region around a
minimum on the potential.

Less attention has been paid to representing the dipole moment
surface, which is a vector quantity of course and which is in prin-
ciple the same dimensionality as the corresponding PES. We have
proposed and used permutationally invariant representations of
the dipole moment surface.7,8
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Finally, there is the matter of solving the nuclear Schroedinger
equation, once the PES (and DMS) is in hand. There are
numerous approaches for this and the reviews mentioned in
the first paragraph described most of these. Another fam-
ily of methods is the so-called dynamical approach that uses
the autocorrelation function from dynamics simulations to
compute the spectrum.9–12 Here we use the vibrational self-
consistent field/vibrational configuration interaction (VSCF/VCI)
method13,14 implemented in the code MULTIMODE15–17 and
classical molecular dynamics (MD) for this purpose and relevant
details of these two approaches are given below for the subject
application of this paper, the vibrational dynamics and IR spec-
trum of the formic acid dimer (FAD).

The FAD (and isotopologues) is the smallest example of a car-
boxylic acid dimer, and therefore is one of the mostly intensively
studied hydrogen-bonded dimers. However, with 10 atoms, it
still presents a formidable challenge to theory, due to the high di-
mensionality for rigorous quantum approach to solve the nuclear
Schroedinger equation. In addition, there are two equivalent
double hydrogen-bond minima, connected by a transition state
of the double-hydrogen transfer, and this signals possible com-
plex vibrational dynamics. In fact, this double-hydrogen transfer
gives rise to a small tunneling splitting, which is only about 0.015
cm−1,18,19 and possibly contributes, at least indirectly, to some
complex bands in the IR (and Raman) spectrum.18–29

The tunneling splitting and the dynamics of the double-proton
transfer have been studied theoretically.30–48 Recently, major
progress has been made in the calculation of the ground-state
tunneling splitting in full dimensionality,48 using our recent full-
dimensional ab initio PES.47 The calculated splitting, 0.014 cm−1,
is in good agreement with experimental value of roughly 0.015
cm−1, and this demonstrates the accuracy of our PES. In this
work, this PES is used in calculations of vibrational energies and
IR spectra of FAD and its isotopologues, with the focus on the
complex O-H(D) stretch bands.

The experimental IR spectrum has been reported numerous
times, notably in the C-O, C-H and O-H stretch regions of the
spectrum.20–24 Theoretical work on the vibrational spectrum is
also extensive, beginning with ab initio double-harmonic calcula-
tions in 1987.49 Other early work used reduced-dimensionality
calculations, due to the large degree-of-freedom (dof) of the
molecule.30,32,34 Recent theoretical work focused on C-H and O-
H stretch regions of the IR spectrum, owing to the extreme com-
plexity of this experimental band. Vener et al.34 carried out a
3-dof study of the double proton transfer, and reported that the
splitting of the IR-active antisymmetric OH stretch fundamental
is 70 cm−1, and this may be responsible for the width of the O-H
stretch band. Florio et al.26 developed full and reduced dimen-
sionality cubic force fields expanded around one minimum, using
B3LYP density functional. These cubic force constants, together
with linear dipole moments, were used to simulate the spec-
trum of FAD. When forces constants that couple the CH and OH
stretches with low-frequency modes were included, theory could
be brought into reasonable agreement with experiment. More
recently, Matanović and Došlić50 used both second-order pertur-
bative treatment and 2- and 3-mode vibrational configuration in-

teraction calculations based on B3LYP method. The conclusions
were that coupling to low-frequency dimer and rocking modes
and Fermi resonances contributed to the width of the band, but
had only a minor effect on the frequency of the band maximum,
while coupling to the symmetric OH stretch causes the red-shift
of the band. Pitsevich et al.51 performed VPT2 calculations of
the fundamentals of FAD and developed extended 1d and 2d po-
tential energy surfaces using B3LYP/cc-pVTZ calculations to study
anharmonic effects in the C-H and O-H stretches. However, the IR
spectrum was not simulated in these calculations. All of these cal-
culations have made compromises in both the electronic structure
theory and the degree of mode coupling. In addition, these cal-
culations were restricted to a single minimum, with the exception
of the work by Vener et al.

As noted above, we recently reported a full-dimensional PES,47

which was based on CCSD(T)-F12a electronic energies. More re-
cently, we reported a full-dimensional MP2-based DMS, which
was used with the PES in 15-dof VSCF/VCI calculations of the
IR spectrum of FAD.52 Here, we use these potential and dipole
moment surfaces in full-dof (24 modes) VSCF/VCI calculations of
the IR spectrum of FAD and its isotopologues. In addition, we
assess and report the accuracy of “ab initio molecular dynamics”
(AIMD) calculations of these spectra. In the present case “ab ini-
tio” refers to the direct evaluation of the potential, the gradient
of the potential, and the dipole moment “on the fly.” Given that
a single CCSD(T)-F12 calculation of the FAD using haTZ basis
(aVTZ for C and O, and VTZ for H) takes roughly 40 minutes on
an 8-core cpu, a “direct” approach is unfeasible. Nevertheless,
with the help of our PES and DMS, these MD simulations become
feasible.

We are motivated to perform these MD calculations for gen-
eral and specific reasons. The general motivation is that AIMD is
widely used to obtain the IR spectra of larger molecules, clusters,
etc., owing to the difficulties in accurate quantum calculations for
such systems. Therefore, it’s necessary to access the accuracy of
the MD approach in the calculation of IR spectrum, by comparing
the results with more rigorous quantum calculations and the ex-
periment. The specific motivation is that MD simulations of the
IR spectra of (HCOOH)2 and (DCOOH)2, using model potential
and dipole moment surfaces, were recently reported.24 The PES
is an example of the “MMPT” force field for proton transfer, devel-
oped by Meuwly and co-workers, in which limited ab initio data
is used to determine some of the parameters in the functional
form of the PES. For FAD, MMPT-MP2 and MMPT-B3LYP force
fields were developed. The DMS is a fixed charge model, using
B3LYP atomic charges at the double proton barrier configuration.
Molecular dynamics simulations of the location of the complex
OH band using these produced results that were upshifted from
experiment by several hundred wavenumbers (in fact in agree-
ment with the present MD results, see Section 3). Interestingly,
the MMPT-MP2 PES has a barrier height of 8.2 kcal/mol, in good
agreement with the barrier height of 8.2 kcal/mol of the present
PES. Then these authors adjusted the PESs, mainly by changing
the barrier of double-proton transfer, to produce a position of this
band in good agreement with experiment. The “optimized” bar-
rier for the MMPT-B3LYP force field equals 5.1 kcal/mol and the
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one for the MMPT-MP2 force field equals 7.2 kcal/mol. The au-
thors thus concluded that the barrier for the double proton trans-
fer is between 5 and 7 kcal/mol. (Even with this adjustment to
the barrier height, it is worth noting that the fixed-charged dipole
model produced intensities for a number of sharp bands that are
in poor agreement with experiment.) This procedure to bring the
MD spectrum in the complex O-H stretch region into agreement
with the room-temperature experimental spectra by varying the
barrier height assumes that the MD description of this band is
sufficiently accurate to provide a reliable estimate of the barrier
height. We examine this assumption specifically here. However,
the fact that the “optimized” barrier is significantly lower than di-
rectly calculated CCSD(T) one already raises some doubts about
this assumption.

The VSCF/VCI calculations were done with the code MUL-
TIMODE,16,17 which uses the exact Watson Hamiltonian53 and
an efficient n-mode representation of the potential energy (and
dipole moment) surface.15 These calculations just considered
one single minimum so they do not describe the proton transfer.
We discuss the possible influence of this double-proton transfer,
which we conclude is negligible for the present comparison with
experiments, later.

The MD simulations are standard constant-energy (NVE) ones,
where the total energy corresponds to a temperature of 300 K,
and additional ones in which harmonic zero-point energy is given
to each of the normal modes. The latter follows the “semi-
classically prepared molecular dynamics” approach suggested and
tested on trans-HONO.10 But we denoted it as “quasiclassical
molecular dynamics” (QCMD) in a recent paper on small pro-
tonated water clusters.54 Since the procedure is semiclassical, it
is subject to the well-known “zero-point energy leak,” which can
cause artificial broadening of spectral bands. However, the hope
is that this semiclassical approach is able to capture the anhar-
monic effects much better than the NVE one.

Section 2 briefly describes the PES and DMS, and provides the-
ories and computational details of the VSCF/VCI and MD calcula-
tions. Section 3 presents the results of the computations and dis-
cussions on these results. A summary and conclusions are given
in Section 4.

2 Computational Details

2.1 Potential Energy and Dipole Moment Surfaces

The PES and DMS are linear least-squares fits to 13475 ab initio
CCSD(T)-F12a electronic energies and MP2 dipole moments, us-
ing permutationally invariant polynomials as the fitting basis, so
that the PES and DMS are invariant when two atoms of the same
type are permuted. The details of the fit and the properties of
them can be found in refs. 47 and 52. It is worth mentioning that
the barrier height of the double proton transfer is 8.2 kcal/mol in
the fitted PES, and it agrees well with the CCSD(T)/aV5Z bench-
mark45 value of 8.3 kcal/mol.

2.2 MULTIMODE calculations

The VSCF/VCI calculations were performed with the MULTI-
MODE software,16,17 which determines the eigenvalues and

eigenfunctions of the Watson Hamiltonian53 in normal coordi-
nates QQQ with J = 0 in the present calculations. Calculations with J
> 0 are computationally very demanding compared to those for J
= 0, reported here. This would certainly be a goal for the future;
however, for the present, our goal is to locate the major bands in
the IR spectra.

The kinetic energy operator of the Watson Hamiltonian for J =

0 is given by

T̂ =
1
2 ∑

α,β

π̂α µαβ π̂β −
1
8 ∑

α

µαα −
1
2

N

∑
k=1

∂ 2

∂Q2
k
, (1)

where N is the number of normal modes in the molecule, µαα is
the inverse of the effective moment of inertia tensor, and

π̂α =−i
N

∑
k,l=1

ζ
α
k,lQk

∂

∂Ql
(2)

are vibrational angular momentum terms and ζ α
k,l are Coriolis

coupling constants.
One key aspect of the code is the n-mode representation (nMR)

of the potential and the inverse of the effective moment of inertia
tensor.15 In the n-mode representation the potential V (QQQ) is given
by

V (QQQ)=V (0)+∑
i

V (1)
i (Qi)+∑

i j
V (2)

i j (Qi,Q j)+∑
i jk

V (3)
i jk (Qi,Q j,Qk)+· · ·

(3)
MULTIMODE currently truncates this representation at a maxi-
mum value of n = 6. Based on many applications, we have deter-
mined that a four-mode representation is generally sufficient to
obtain converged eigenvalues to one wavenumber or less. This
level of mode representation leads to at most four-dimensional
numerical quadratures. There are N!/(N−n)!n! sets of grids for a
given n. So for example of FAD, where N = 24, there are 24 sets
of one-mode grids, 276 two-mode grids, 2024 three-mode grids,
and 10626 four-mode grids.

In the VSCF step, the total vibrational wavefunction is assumed
to be a direct product of one-mode functions, and the optimal
one-mode functions are found using the standard self-consistent
field scheme. A VSCF ground state and a series of virtual states
can be obtained from the VSCF calculation, and these states are
used as basis functions for the VCI calculation. The VCI wave-
function can be expressed as

ψL =
K

∑
i=1

c(L)i φi, (4)

where the basis, {φ}, consists of direct-product, virtual states of
the VSCF Hamiltonian and K is the size of the basis. The CI coef-
ficients, ci, can be used for the assignment of the spectrum.

For the VCI calculation, the size of the full-CI Hamiltonian ma-
trix is mN , where m is the number of basis functions per mode,
and N is the number of modes. So constraints must be added to
the excitation space in order to reduce the size of the matrix. First
MULTIMODE restricts the number of modes that can be excited
simultaneously. The maximum allowed value is 6, but we found
that 4 is adequate in most cases to achieve good convergence. In
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addition, the maximal quanta of excitation for each mode and the
sum of quanta are also restricted. With these constraints, the size
of the final CI matrix is of order ∼10000. When the molecule
has symmetry, it can also be exploited so that the matrix becomes
block-diagonal, and each block is of smaller size.

The IR intensities were calculated using

I f←i =
8π3NA

3hc(4πε0)
ν f←i ∑

α=x,y,z

∣∣∣∣∫ ψi(QQQ)µα (QQQ)ψ f (QQQ)

∣∣∣∣2 , (5)

where NA is the Avogadro’s number, h is the Planck constant, c
is the speed of light, ε0 is the vacuum permittivity, ν f←i is the
wavenumber of the transition, and the wavefunctions ψi(QQQ) are
obtained from the VSCF/VCI calculations. Since the absolute in-
tensities of the experiments are not available, we just scale each
spectrum so that the height of the most intense line (the C=O
stretch at about 1750 cm−1) is 1. The absolute intensities can be
calculated using eqn. 5 and these are available to the interested
reader by contacting the authors.

We were not aiming at high-resolution spectra of FAD and its
isotopologues, so we did not consider the small tunneling ef-
fect and the VSCF/VCI calculations were performed at one of the
equivalent minima. This will be discussed in Section 3. The cal-
culations were similar to the ones we recently reported,52 except
that we coupled all the normal modes (24 modes) in the current
calculation. To make the calculations computationally feasible,
a 4-mode representation of the FAD potential and a 3-mode rep-
resentation of the dipole moment were used in order to evaluate
the matrix elements efficiently. We also constrained the excitation
space in the VCI calculation, in order to limit the size of the final
Hamiltonian matrix. We only allowed simultaneous excitation of
at most 4 modes, and the excitation cannot exceed 6 quanta for
each mode, and furthermore, the sum of quanta of all the modes
cannot exceed 6. This is a relatively small excitation space, but
for a 24-mode system, increasing the excitation space further is
almost infeasible. In addition to the restrictions on excitation in
VCI, the C2h point-group symmetry was exploited to set up a 4-
block Hamiltonian matrix, each of which is of order 20,000.

Many standard convergence tests, including the n-mode rep-
resentation of the potential, the size of basis functions, and
the excitation space in the VCI calculation, were performed
and we estimate that the calculated spectra (for a given num-
ber of coupled modes) shown are converged to within roughly
10 cm−1 or less. As an additional evidence for good conver-
gence of the VSCF/VCI calculations, the ground state energies in
these calculations, 15340 cm−1 for (HCOOH)2, 13947 cm−1 for
(DCOOH)2, and 12469 cm−1 for (DCOOD)2, agree very well with
the zero-point energies of the three isotopologues obtained from
diffusion Monte Carlo calculations, which are 15337± 7 cm−1

for (HCOOH)2, 13944± 9 cm−1 for (DCOOH)2, and 12470± 6
cm−1 for (DCOOD)2, respectively. Thus, we believe the spec-
tra obtained using the full 24 modes should be reasonably well-
converged, at least for the purpose of graphical comparison to
experimental spectra.

2.3 Molecular dynamics calculations

The IR absorption coefficient is given by

α(ω) = Q(ω)
4π2ω

3cV h̄

(
1− e−β h̄ω

)
I(ω), (6)

where V is the volume, c is the speed of light, and β = 1/kBT . I(ω)

is the spectral line shape function, which is the Fourier transform
of the dipole-dipole autocorrelation function:

I(ω) =
1

2π

∫ +∞

−∞

e−iωt〈µµµ(t) ·µµµ(0)〉dt, (7)

where the “〈. . .〉” means the ensemble average. This dipole-dipole
autocorrelation function can be obtained using classical dynamics
simulations. Q(ω) is the quantum correction factor, and a typical
choice is

Q(ω) =
β h̄ω

1− e−β h̄ω
, (8)

which makes the line shape function satisfy the detailed balance
condition. Therefore, the final expression to calculate the spectra
using dipole autocorrelation function is given by

α(ω) =
2πβω2

3V c

∫ +∞

−∞

e−iωt〈µµµ(t) ·µµµ(0)〉dt. (9)

Note that Eq. 9 is based on MD simulations using thermostats, but
in this work, as we will show next, it should be ω rather than ω2

in the prefactor, due to the method of initial condition sampling
we employed.

In this work, a special type of classical NVE simulations was
used. In these calculations, instead of distributing energy ran-
domly to each atom as the initial condition, we assigned energy
to each normal mode based on its harmonic frequency. To be spe-
cific, normal mode i receives α h̄ωi as its initial energy, where α is
a factor that depends on the target total energy of the molecule,
and ωi is the harmonic frequency of that mode. Here we consider
two target total energies: the energy that corresponds to 300 K
(the room temperature, at which most of the classical MD is per-
formed), and the harmonic zero-point energy of the molecule.10

The latter is termed as “QCMD” in this article, and in this case, α

is 0.5.

Because of this sampling method, the energy in each normal
mode is proportional to its harmonic frequency, in contrast to
thermostat MD, where the energy in each normal mode is the
same (kBT after equilibration), according to equipartition theo-
rem. Therefore, an ω weight is already carried by the dipole-
dipole autocorrelation function in our method, so it should be ω

rather than ω2 in the prefactor in Eq. 9. The standard procedures
of normal mode sampling, described in ref. 55, were used to pre-
pare the initial conditions for the MD simulations. Briefly, the
momentum (Pi) and position (Qi) in normal-mode coordinates
are generated based on

Qi =
(√

2Ei/ωi

)
cosφ , (10)

Pi =−
√

2Ei sinφ , (11)

where Ei is the energy to be deposited into mode i, and φ is a
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random number drawn from a uniform distribution on (0,2π].
For QCMD, Ei =

1
2 h̄ωi, while for trajectories at 300 K, Ei = α h̄ωi,

where α is 0.161 for (HCOOH)2, 0.177 for (DCOOH)2, and 0.198
for (DCOOD)2, so that the total energy in the molecule is 5004
cm−1, corresponding to the 300 K temperature.

One hundred trajectories were performed for the 300 K simula-
tions, and 600 trajectories for QCMD. In some QCMD trajectories
the dimer dissociates so these were not included when calculating
the spectrum, and trajectories in which the double-proton transfer
occurred were not included, either. In total, 293 QCMD trajecto-
ries were used to compute the IR spectrum of (HCOOH)2, 439 for
(DCOOH)2, and 522 for (DCOOD)2. Each trajectory was propa-
gated for 12 ps, and the velocity Verlet integrator with a time step
of 0.06 fs was used for all the trajectories. The standard dipole-
dipole autocorrelation function C(t) = 〈µµµ(t) · µµµ(0)〉 was recorded
for each, then averaged over the set of trajectories, and finally
Fourier transformed to obtain the spectra.

3 Results and Discussion

Fig. 1 Double harmonic spectra of the three isotopologues of the FAD.

Fig. 2 The intense O-H(D) stretch mode of the formic acid dimer.

To begin, consider the double harmonic spectra of (HCOOH)2,
(DCOOH)2, and (DCOOD)2, obtained from our PES and DMS, in
Figure 1. The stick locations are of course just the harmonic nor-
mal mode frequencies. The intense O-H stretch in (HCOOH)2 and
(DCOOH)2 is at 3325 cm−1 and for (DCOOD)2 the corresponding
line for the O-D stretch is at 2425 cm−1, and this mode is shown
in Figure 2. We focus on these intense features in this spectrum

because they emerge as complex bands in the calculated spectra
reported below. Even at this simple level of treatment of the O-H
stretch there is a hint of strong coupling of this mode. This comes
from noting that in isolated formic acid the experimental, and
thus anharmonic, O-H stretch is at 3570 cm−1,56 more than 200
cm−1 higher than the harmonic O-H stretch in the dimer. Clearly,
the double hydrogen bonding in the dimer strongly perturbs the
O-H stretch, as has been noted previously in the FAD literature.

Fig. 3 Comparison of the IR spectrum of (a) (HCOOH)2, (b) (DCOOH)2,
and (c) (DCOOD)2 from quantum VSCF/VCI and indicated classical MD
calculations.

Figure 3 shows the comparison between the VSCF/VCI spec-
trum with the AIMD one for (HCOOH)2, (DCOOH)2, and
(DCOOD)2, respectively. For transitions below 1800 cm−1, the
quantum and AIMD spectra agree very well, on both positions
and intensities, while for the C-H(D) and O-H(D) stretch bands,
the AIMD method overestimates the frequency by 200–300 cm−1.
This upshift of the stretch band in the AIMD spectra is well un-
derstood. In classical simulations, 300 K corresponds to 208 cm−1

per dof, which is a small amount of energy for the high-frequency
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modes. As a consequence, the MD trajectories basically just sam-
ple the harmonic part of the potential. So the positions of the
stretch bands are close to their harmonic frequencies. Interest-
ingly, when QCMD is applied, we don’t observe any down-shifts
of the stretch bands, which is not expected. In general, when
the energy deposited in the molecule becomes high enough, as
in QCMD, the downshifts could be captured, at least partially, be-
cause the trajectories start to sample the anharmonic region of
the potential energy surface, as was shown in the QCMD spec-
trum of HONO in ref. 10. A possible explanation is that due to
the strong coupling, the energy leakage from the high-frequency
stretches is very fast, and so the actual energy in these stretches
is still small even in QCMD. Note that while the MD O-H band is
centered at the harmonic frequency, the band is broadened com-
pared to the double harmonic stick shown in Figure 1, whereas
other MD bands remain sharp. We speculate that this is due to
strong perturbations of the O-H motion from the intermolecular
modes.

Fig. 4 Comparison of the room-temperature experimental spectrum, the
jet-cooled spectrum, and the theoretical one, for (a) (HCOOH)2 and (b)
(DCOOH)2.

In QCMD calculations, double-proton transfer was observed for
(HCOOH)2 and (DCOOH)2, but these are relatively rare (about
10% of the trajectories). In addition, when we included those
proton transfer trajectories for the computations of the spectrum,
the spectra are basically the same as the ones shown in Figure
3 that were obtained using all the trajectories. These observa-
tions indicate that the complexity of the band is not due to the
proton transfer motion that visits both wells. In addition, our
VSCF/VCI calculations (see below) also support this conclusion,

since the complexity of the O-H stretch band can be well repro-
duced by these calculations that were restricted in a single mini-
mum well. Finally, we note the 7-mode wavepacket calculations
by Luckhaus,44 who determined the splitting for vibrationally ex-
cited states of FAD and reported values much less than 1 cm−1,
which clearly indicates localization of the wavefunctions. So, at
the level of resolution of both theory and experiment shown here,
neglecting double-proton transfer is justified.

Fig. 5 Comparison between the jet-cooled and theoretical IR spectra of
(HCOOH)2 and (DCOOH)2 for the O-H stretch band.

Fig. 6 Theoretical IR spectrum of (DCOOD)2 for the C-D and O-D
stretch bands.

Next we compare the quantum spectra with the experimen-
tal ones. Figure 4 shows the room-temperature, jet-cooled, and
the VSCF/VCI spectra of (HCOOH)2 and (DCOOH)2. Although
the spectra produced from VSCF/VCI calculations are at 0 K and
J = 0, they still agree well with the room-temperature survey
spectra. For the stretch bands, the experimental spectra at room
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temperature have low resolution, so we compare our theoretical
stretch bands with the jet-cooled experiments instead, which is
shown in Figure 5. According to our VSCF/VCI calculations, the
O-H stretch bands of the (HCOOH)2 and (DCOOH)2 are complex,
due to the strong coupling. A detailed analysis of this band will
be given below. For (HCOOH)2, our VSCF/VCI spectrum aligns
reasonably well with the jet-cooled experiment, with the most in-
tense transition at about 2950 cm−1, which is the C-H stretch, but
strongly coupled with the O-H stretch that carries large intensity.
For (DCOOH)2, the C-D stretch moves to around 2250 cm−1, so
only the O-H stretch band is in this spectral range. Yet we find this
band still very complex, owing to the coupling between the OH
stretch with many low-frequency modes. The experimental jet-
cooled spectrum for this isotopologue is very noisy, making it dif-
ficult to compare our theory with experiment. Nevertheless, the
agreement is reasonably good. The VSCF/VCI calculation is able
to reproduce the correct spectral shift (about 300 cm−1) and the
complexity and width of this O-H stretch band, though quantita-
tive agreement with experiment is not achieved. For (DCOOD)2,
the IR spectrum in the C-D and O-D stretch region is shown in Fig-
ure 6; however, only the Raman spectrum has been measured ex-
perimentally25 so that there would not be direct comparison be-
tween our theory and the experiment. Similar to the Raman spec-
trum, the O-D stretch band of (DCOOD)2 is significantly sharper
than the OH bands of (HCOOH)2 and (DCOOH)2, but it is still
more complex than the double harmonic spectrum, which only
has two transitions in this spectral range.

The assignment of this complex O-H stretch band is clearly
problematic because of the massive coupling in this spectral
range. In order to further characterize the eigenstates obtained
in the VSCF/VCI calculations, we analyzed the CI coefficients for
the three isotopologues. The VSCF/VCI calculations provide the
CI coefficients of the basis for each molecular eigenstate (see eqn.
4). In the usual approach, we examine the dominant CI coeffi-
cient for each bright state and thereby make the “assignment.”
However, in the present 24-mode calculations, since many zeroth
order states contribute to a molecular eigenstate and there is not
a dominant coefficient, such an analysis is not illuminating, ex-
cept to note that these coefficients are all relatively small. There-
fore, we present a graphical representation of this analysis for the
three isotopologues instead. Specifically, in Figure 7, we plot the
sum of the squares of the VCI coefficients of the C-H(D) and O-
H(D) stretches in 20 cm−1-windows, as a function of eigenenergy
across the band. One can immediately see that for (HCOOH)2
(panel a), the OH stretch coefficients are widely spread all over
the band, and all these coefficients are small. Therefore, it’s es-
sentially impossible to assign a certain range to the OH stretch.
On the other hand, in (HCOOH)2, though there are also several
states with significant coefficient for the C-H stretch, it is less di-
luted, and most of them cluster between 2900 and 3000 cm−1, so
we could assign this range to the C-H stretch, which agrees with
the conclusion from isotopic substitution experiment.21 Note that
the zeroth order O-H stretch mixes with these states, and this ex-
plains the large intensity of the band at about 2950 cm−1 in the
VSCF/VCI spectrum. In (DCOOH)2 (panel b), the C-D stretch
shifts to about 2240 cm−1 due to deuteration, and it looks like a

Fig. 7 Square of the VCI coefficients of the C-H(D) and O-H(D)
stretches as a function of energy across the O-H stretch band for: (a)
(HCOOH)2, (b) (DCOOH)2, and (c) (DCOOD)2.

pure state. However, in fact there is a doublet due to the coupling
between the C-D fundamental and the combination mode of the
C-O single-bond stretch and C-D in-plane bend; in our histogram
graph that utilized a window of a 20 cm−1 width, this cannot be
resolved. The O-H stretch, however, still spreads across the band,
even though it does not couple with the CD stretch. The O-H
stretch in both (HCOOH)2 and (DCOOH)2 couples strongly with
the low-frequency modes. A visualization of the normal modes
of FAD can be found in the supplementary material of ref. 47.
Specifically, the modes that can strongly perturb the hydrogen
bonds such as the dimer stretch (mode 4), the out-of-plane wag
of the dimer (mode 3, 5), the O–C=O bend (mode 7, 8), and
in-plane rock of the dimer (mode 2, 6), contributes a lot in those
overtones and combination modes that directly couple with the
OH stretch. Lastly, for (DCOOD)2 (panel c), both C-D and O-D
stretch bands are relatively less complex: the transition at about
2230 cm−1 is the C-D stretch, and the transition at about 2270
cm−1 is the O-D stretch. The peak at about 2190 cm−1 is a
strongly mixed one, but with significant contribution from both
the zeroth order C-D and O-D stretches.
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4 Summary and Conclusions

We reported quantum and molecular dynamics calculations of
the IR spectra of formic acid dimer, (HCOOH)2, and two iso-
topologues, (DCOOH)2 and (DCOOD)2 using recent full dimen-
sional, ab initio potential energy and dipole moment surfaces.
The quantum calculations considered all 24 normal modes; this
was made feasible by using a 4-mode representation of the full
potential and a 3-mode representation of the dipole moment sur-
face. The three IR spectra are all display a complex band in the
nominally assigned O-H or O-D stretch region, in accord with
experimentally measured bands in the IR spectra of (HCOOH)2
and (DCOOH)2 and the Raman spectrum of (DCOOD)2. In the
case of (DCOOD)2 the band is sharper than the higher-energy O-
H stretch band. Other calculated bands are relatively “simple”
and easily assigned. Indeed, the double harmonic approxima-
tion, using the PES and DMS, accounts reasonably well for these
low-frequency experimental bands. Overall, the comparison be-
tween the quantum and experimental spectra is of unprecedented
accuracy, although quantitative differences exist. This may be
due to some deficiencies in the PES. For example, the harmonic
frequency of the IR-active O-H stretch differs from the bench-
mark one57 by 20 cm−1. The MD calculations of the IR spec-
tra of (HCOOH)2 and (DCOOH)2 show good agreement with the
quantum ones and experiment, with the exception of the com-
plex bands mentioned already. While the MD band is complex,
the band center is upshifted by roughly 300 cm−1 relative to ex-
periment and also the quantum band centers for (HCOOH)2 and
(DCOOH)2. We ascribe this the usual difficulty in MD simula-
tions to fully capture the positive anharmonicity of X-H stretches.
Nevertheless, it may appear that the MD method is correct in cap-
turing the complexity of this band. However, this conclusion has
to be made with caution. Complexity in MD bands is not nec-
essarily correct. The evidence for this is the comparison of the
0 K QCMD (which we remind the reader these authors term as
“semi-classically prepared MD”) IR spectrum of HONO with the
accurate quantum one using a realistic PES and DMS.10 In this
case the quantum band for the O-H stretch is essentially a stick
located at 3590 cm−1 while the 0 K QCMD band is broad (roughly
100 cm−1 width) with the band center at approximately 3670
cm−1. No analysis of the cause of this broadening was made in
that paper, so we can only speculate that perhaps some of inter-
nal energy may have “leaked” to the isomerization coordinate.
In general though it is known that intensities from MD calcula-
tions are often not reliable, quoting from ref. 10 “The present
results highlight the difficulty of calculating accurate intensities
from molecular dynamics, even with trajectories longer than 100
ps.”

The present calculations also have important conclusions about
the recent the MD calculations of the IR spectrum of (HCOOH)2
and (DCOOH)2 described in the Introduction by the theoretical
group of Meuwly and co-workers.24 As noted already, this pro-
cedure assumes that the MD approach to calculate at least the
position of the complex O-H stretch is accurate and thus can be
used to modify a PES to obtain a presumably reliable estimate of,
in this case, the barrier to double proton transfer. Based on the

results of the comparison of the MD and quantum spectra here
for FAD, we conclude that this assumption is not valid. Thus, the
reported estimate of the barrier heights is not reliable. Indeed, th
barrier height of the PES used here, 8.2 kcal/mol, and reported in
earlier CCSD(T) calculations of Marx and co-workers45 is the reli-
able one. We speculate that the decrease in barrier height actually
results in a significant decrease of the O-H harmonic frequency,
which then can tune the resulting MD O-H stretch band to agree
with experiment.
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