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Mechanical properties play important roles at different scales in biology. At the 
level of a single cell, the mechanical properties mediate mechanosensing and 
mechanotransduction, while at the tissue and organ levels, changes in mechanical 
properties are closely connected to disease and physiological processes. Over the past 
three decades, atomic force microscopy (AFM) has become one of the most widely used 
tools in the mechanical characterization of soft samples, ranging from molecules, cell 
organoids and cells to whole tissue. AFM methods can be used to quantify both elastic 
and viscoelastic properties, and significant recent developments in the latter have been 
enabled by the introduction of new techniques and models for data analysis. Here, we 
review AFM techniques developed in recent years for examining the viscoelastic 
properties of cells and soft gels, describe the main steps in typical data acquisition and 
analysis protocols, and discuss relevant viscoelastic models and how these have been 
used to characterize the specific features of cellular and other biological samples. We 
also discuss recent trends and potential directions for this field.

 

1. Introduction

The mechanical properties of cells, biological tissues, and artificial tissue-
mimicking matrices have been found to be critical in physiological and pathological 
processes such as differentiation, transformation, and regeneration1–4. These biological 
materials have complex structure at both micro- and nano-scale levels, and are generally 
soft, exhibiting values of Young’s modulus from tens of Pa to several MPa. Owing to this, 
the biomechanical characterization of these materials normally requires both force and 
displacement at micro- and nano-scale resolutions. This challenge has been addressed 
by developments in biomechanical instruments, including micropipette aspiration5,6, 
atomic force microscopy (AFM), optical/magnetic tweezers and stretchers7,8, cell traction 
force microscopy9–11 and nanoindentation12. In particular, nanoindentation with AFM 
remains one of the most popular methods for probing the nanoscale properties of soft 
biological samples in physiological environments13–16. 

AFM methods provide a variety of tools for evaluating micromechanical properties 
by measuring the interactions between a microcantilever probe and the specimen 
surface. Precise control over the force applied to the probe allows us to study a wide 
variety of heterogeneous biological materials. The accuracy of piezo scanners provides 
AFM-based methods with the unique ability to both image the sample and to study its 
mechanical properties in different experimental configurations. The selection of the probe 
(a sharp tip versus a microbead attached to the microcantilever) provides the opportunity 
to adjust the spatial resolution, balancing precision mapping versus the fast acquisition of 
averaged properties. 

Since the earliest mechanical characterization experiments17–20, it has been 
noticed that biological materials have unusual properties that cannot be completely 
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described in the context of elastic (or “Hertzian”) contact. Even in the absence of active 
cellular responses, the behavior of biological material combines both solid- and liquid-like 
aspects. For such materials, also called viscoelastic, the relationship between stress and 
strain changes over time, giving rise to a whole range of specific phenomena. The 
important role of viscoelastic properties has been demonstrated in past experiments at all 
levels of biological organization21–26. The viscoelastic behavior of biomaterials is thought 
to originate from their complex structure, involving the composition of both solid and fluid 
components, and the existence of structural hierarchies, active dynamics and force 
generation (reviewed in 26–30). Special methods of characterization are required for 
viscoelastic (also referred to as rheological) properties, involving experiments in the time 
and frequency domains.

The present review is focused on the use of AFM techniques to characterize the 
viscoelastic properties of biological samples, and specifically animal cells. Despite the 
wide use of AFM for mechanical measurements of biological soft matter, the majority of 
prior studies use the framework of standard Hertzian contact mechanics, and thus only 
measure the apparent elastic modulus of the materials, disregarding viscoelastic effects. 
This review will help interested researchers to make a transition from a pure elastic 
description of the data to a viscoelastic one. We will focus on several aspects: a 
description of the current AFM protocols for viscoelastic measurements, data analysis 
and viscoelastic models, and the associated uncertainties and limitations. Although a 
large variety of protocols and models are available, a lack of standardization in the field 
of AFM-based viscoelastic characterization makes it difficult to compare data between 
different studies. We will also discuss trends and potential directions for future research 
in the field. 

2. AFM setup and basics

Fig. 1. AFM basics. (A) The main elements of an AFM setup. The tip, which 
usually has a conical, pyramidal, spherical or cylindrical shape, interacts with the 
sample, and the interaction forces cause the microcantilever to deflect (bend). The 
deflection is monitored via a laser beam reflected from the microcantilever onto a 
four-quadrant photodiode. A set of piezoelectric translators allows nanometer-
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scale movement of the microcantilever with respect to the sample. In a typical AFM 
indentation experiment, the microcantilever base moves with a constant vertical 
speed, which is the same for the approach and retraction phases, while the force 
is recorded. (B) Example of the F-Z curve obtained on a 3T3 fibroblast with the 
spherical indenter. The contact point is marked with an arrow. (C) The contact 
point (Z0) is usually identified as part of the post-processing of data, and the 
acquired F-Z curve is transformed into the force-indentation coordinates. The 
equivalent Young’s modulus  is calculated with Hertz’s model. Hysteresis HertzE
between the approach and retraction curves is clearly seen. Inset: scheme of a 
spherical probe indenting a half-space. B and C are adapted from ref. 31, CC-BY-
4.0, published by Springer Nature.

In AFM, a microcantilever is used as a force sensor to measure interactions 
between the probe (a sharp microcantilever tip or bead) and the sample surface (Fig. 
1A). The deflection of the microcantilever deflection is measured with an optical system 
that involves a laser spot reflected from the microcantilever and detected by a quadrant 
photodiode. Piezoelectric translators allow movement of the probe relative to the sample, 
and are used to perform scanning and indentation experiments. While sharp 
microcantilever tips are usually used in scanning in order to obtain a high spatial 
resolution, colloidal beads (microspheres) are often preferred in indentation experiments 
for qualitative measurements32–34. In a classical AFM indentation experiment, the piezo 
translator moves the microcantilever base toward the sample with a predefined vertical 
speed. At a certain point (the contact point, ), the microcantilever probe contacts the 0Z
sample and starts to indent it until the prescribed interaction force (trigger force) is 
reached, and the microcantilever base is then moved upward with the same speed. The 
force is calculated from the microcantilever tip deflection  as . The data from q  *F k q
this experiment form the so-called force-displacement curve (F-Z curve, or just force 
curve) representing force vs. piezo displacement (Fig. 1B). These data are further 
processed to obtain the force vs. indentation (F-δ curve) dependency (Fig. 1C), as 
follows. Since the microcantilever deflects during indentation, the indentation depth is 
related to the scanner displacement as , where is the location of the    0Z Z q 0Z
contact point. Due to this relation, the indentation typically changes nonlinearly during the 
AFM experiment for a linear scanner displacement. The framework of Hertz’s contact 
mechanics35,36 is generally used to process the AFM force curves further. These 
equations describe the  dependencies for different shapes of the AFM probe tip ( )F
(cylinder, cone, pyramid, blunted pyramid, and an arbitrary axisymmetric shape)36,37. For 
example, for a spherical indenter, the original Hertz’s model is traditionally used 35:

, (1)    





3
2

2

4
3 1

HertzERF

Page 4 of 41Soft Matter



5

where  is the effective radius of curvature of the probe-sample system, R
 . On a flat sample surface,  is simply the radius of the  1/ 1/ 1/probe sampleR R R R

spherical probe. This equation also holds for a paraboloidal indenter, and is applicable 
for a spherical indenter when , while the correct equation for the spherical   R
indenter is more complex and less convenient to use 36:

, (2)   2

2 2

ln ; ln
2 21

Hertz a R R a a R aaR
R a R a

EF 





    
    

where a is the contact radius. A correction factor can be used to decrease the 
computational error 38.  is the Young’s modulus and  is the Poisson’s ratio of the HertzE 
sample; these two parameters are sufficient to characterize the properties of the “ideal” 
elastic sample. The Poisson’s ratio can be determined from the volume change during 
indentation,39 and is usually assumed to be close to 0.5 for cells and most hydrogels 
(preserved volume during indentation). An alternative parameter that can be used is the 
shear modulus G, which is related to the Young’s modulus as ; however,  2 / (1 )G E
the Young’s modulus is a more relevant parameter for AFM experiments, since the load 
is applied normal to the surface. For other geometries, Equation (1) can be generalized 
as:

, (3)    



 21

nHertz
n

EF C

where  and  are constants related to the indenter shape as follows: ,  n nC  1n 1   2 сC R
for a cylindrical punch (where  is the radius of cylinder); ,  for  сR  2n   2   2  /C tan

conical indenter (where α  is the semi-included angle of the cone);  and 2n
 for a pyramidal indenter (where α  is the semi-included angle  2  1 .4906 *  / 2C tan

between the faces of the pyramid40); and ,  for both paraboloid and   3 / 2n 3   4 / 3C R
spherical indenters (where  is the radius of sphere). The probe is generally assumed to R
be infinitely rigid in comparison to soft samples such as cells. In Hertz’s framework, the 
following assumptions are implied: the sample is homogeneous, isotropic, linearly elastic 
and sufficiently large to be approximated as an infinite half-space, and there are no 
attractive or adhesive forces between the sample and the probe. 

The Hertz model predicts that the approach and retraction force curves coincide, 
and that there is no hysteresis in the indentation cycle; however, this is clearly not the 
case for living cells and most other biological materials. Hysteresis indicates the 
presence of energy dissipation during the indentation process, and the main source of 
hysteresis in liquid environments is the viscoelasticity of the sample. Thus, it has been 
suggested that the hysteresis area of the force curve can be used to estimate the 
viscoelastic properties of a sample in a liquid. A simple means of quantifying this 
hysteresis is to numerically calculate the area enclosed by the approach and retraction 
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curves, and to divide this by the area under the approach curve7,41,42. In this way, 
normalized hysteresis is obtained, i.e. the relative amount of energy lost during the 
indentation cycle. The apparent viscosity of the sample can be calculated numerically 
using additional assumptions43. Although these parameters cannot determine the 
viscoelastic constitutive parameters directly, they can be useful in a comparison of 
different samples, since a larger hysteresis area (usually normalized by the total area 
under the approach curve) corresponds to a larger energy loss and viscoelastic 
contribution.

Solutions to the viscoelastic counterpart of Hertz’s model have been presented in 
several works44–46. The use of these models to extract viscoelastic properties from 
experiment is not straightforward. In a simple case in which the microcantilever is much 
stiffer than the sample, an analytical solution can be obtained for specific viscoelastic 
functions to fit either the complete curve (both the approach and retraction parts)47,48 or 
only the approach part49. A numerical solution can be used for a more general case31. 
Fig. 2 shows a set of curves that are numerically constructed for materials that behave 
according to different viscoelastic models at different times, together with some 
experimental curves. Ting’s viscoelastic solution captures the approach-retraction 
hysteresis well, but the viscoelastic function needs to be preselected for this type of 
analysis. Partly due to these challenges, Ting’s model has only recently been applied31,48 
to extract viscoelastic data directly from conventional AFM force curves.

In this review, we will describe the AFM techniques that have been developed in 
recent years to examine the viscoelastic properties of cells and soft gels in the time and 
frequency domains, and will describe the main steps in typical data acquisition and 
analysis protocols. We discuss the basic theoretical concepts of viscoelasticity in relation 
to the indentation experiments and review relevant viscoelastic models, showing how 
they might be used for specific samples and tasks.
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Fig. 2. Force curves numerically modeled with Ting’s model for different 
viscoelastic models and indentation times: (A) the standard linear solid (SLS) 
viscoelastic model (relaxation time τ = 0.1 s); (B) the power-law rheology (PLR) 
model (power-law exponent α = 0.15). The SLS model predicts most of the 
viscoelastic relaxation at times close to the relaxation time, as can be seen from 
the hysteresis area in the curves. For the PLR model, the amount of relaxation 
(hysteresis area) does not substantially vary with indentation time. (C) 
Experimental F-δ curves obtained on PAAm hydrogel and (D) NIH 3T3 fibroblast 
for different indentation times. The offset is added to the force for clarity. The 
black lines show the fits to the (C) SLS and (D) PLR models. Adapted from ref. 31, 
CC-BY-4.0, published by Springer Nature.

3. Experimental techniques

A distinctive property of viscoelastic materials is the relationship between the 
stress and strain and the strain rate. The following phenomena can be observed in 
experiments with viscoelastic materials: (i) the effective (apparent) stiffness depends on 
the rate of application of the force (indentation speed)7,50,51; (ii) viscoelastic energy loss 
leads to hysteresis between the approach and retraction curves7,41,42; (iii) if the force 
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(stress) is held constant, the indentation (strain) increases with time (creep)52–55; (iv) if 
the indentation (strain) is held constant, the force (stress) decreases with time 
(relaxation)56–58; and (v) if cyclic loading is applied, a phase lag occurs between force 
and indentation33,59. Viscoelastic (rheological) characterization of the sample with AFM 
can be performed based on any of these phenomena, due to the high versatility of the 
device (Fig. 3). On the other hand, a quantitative comparison between viscoelasticity 
measurements from different studies is complicated by the wide variety and lack of 
standardization of AFM-based techniques for viscoelasticity characterization. 

Fig. 3. AFM protocols for measurement of viscoelastic behavior, exemplary 
displacement and force versus time data: (A) conventional force curve, time 
representation; (B) stress relaxation; (C) creep experiment; (D) oscillatory 
indentation (force modulation). Force modulation also can be applied over the 
whole indentation cycle or during scanning.

Before continuing to a description of AFM techniques for viscoelastic 
measurements, a few words should be said about the concept of viscoelasticity. For 
viscoelastic materials, a time-dependent function is used instead of a single value of 
Young’s modulus, and this is called the Young’s relaxation modulus . The ( )E t
corresponding relaxation function for shear stress can be obtained as 

. The creep compliance function  is used to describe creep  ( ) ( ) / 2 / (1 )G t E t v ( )J t
behavior and can be related to both the Young’s modulus ( ) and shear modulus (( )EJ t

). The Young’s relaxation modulus and the creep compliance are not explicitly ( )GJ t
inverse in the time domain; however, in the Laplace domain, , and in the  2( ) ( ) 1/EE s J s s

frequency domain,  (where the “*” symbol denotes a complex quantity). * ( ) * ( ) 1EE J  
A “reduced” form of the relaxation (creep) function can be obtained that represents the 
function normalized by its initial value:  ( ). ( ) ( ) / (0)t E t E  ( ) ( ) / (0)t J t J

A naïve implementation of viscoelasticity would be to simply substitute Young’s 
modulus with the Young’s relaxation modulus in Eq. (1). This is an incorrect approach, 
except in the specific case of an instantaneous load and subsequent stress relaxation 
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(see below). When linearity is assumed, superposition should be applied to segments of 
the indentation (strain) history, as stated by the Boltzmann superposition principle. This 
gives rise to a convolution integral known as the Boltzmann hereditary integral60,61. 
Moreover, for a range of viscoelastic problems, the correspondence principle states that 
the solution can be obtained based on the corresponding linearly elastic problem: each 
quantity that depends on time is replaced by its Laplace transform multiplied by the 
transform variable, and this is then transformed back to the time domain. Although the 
general indentation of the viscoelastic body presents a more complicated problem, as it 
has time-varying boundary conditions, Lee and Radok46 have found that the 
correspondence principle still works when the contact area does not decrease with time 
(i.e. the approach phase of the force curve and step-hold experiments):

, (4)        



 


0

),  (t

n

n

F t t C E t d

where  is the Young’s relaxation modulus and  is the dummy time variable ( )E t 
required for the integration. In the alternative form, this is:

. (5)       



 


0

1 ( ),  
t

n
E

n

Ft F t J t d
C

Although cases with a decreasing (retraction part of the force curve) or non-
monotonically changing contact area are more complicated, solutions were found in 
subsequent works, with Ting’s solution being one of these44,45. Both the Lee-Radok and 
Ting solutions can be applied to the processing of indentation data, as shown in the next 
section.

The versatility of AFM comes from its ability to precisely measure and control 
force (~stress) and indentation (~strain), meaning that a large variety of experimental 
protocols can be implemented (Fig. 3). Moreover, AFM allows for the mapping of the 
viscoelastic properties of the cell with high spatial resolution. Methods for measuring 
viscoelastic properties with AFM can be separated in the time domain (sometimes 
referred to as static experiments) and the frequency domain (referred to as dynamic 
experiments), and we will review these in the following sections. All methods described 
here have certain benefits and shortcomings, and there is currently no technique that is 
best overall. We therefore hope this part of the review will help the reader to identify the 
techniques best suited for addressing a particular task (Table 1).

3.1. Time domain experiments

 For viscoelastic characterization in the time domain, experiments are generally 
performed in a step-hold fashion. They can be seen as an extension of the usual 
indentation experiment, in which the approach phase is conducted at high piezo speed 
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and a “hold” phase is then applied before retraction. During this hold phase (also called 
the clamp or dwell phase), either the force or indentation is held constant, while the time-
dependence of the other is measured and analyzed.

When the indentation is kept constant, a continuous decay in the interaction force 
is observed during stress relaxation56–58. In the newer generation of AFMs, the feedback 
mechanism can keep the true indentation depth constant, while in older devices the Z-
displacement of the piezo is usually kept constant. This leads to an increase in the 
indentation depth during the hold phase, since the force and therefore the 
microcantilever deflection are decreasing. Depending on the experimental conditions and 
the properties of the sample, this relative increase in depth may be small or large, and 
can be accounted for57. To simplify the equations, the approach phase has often been 
considered to be instantaneous (approximated using the Heaviside step function), and 
thus the straightforward analytical solution of the Lee-Radok equation can be used:

. (6)
 02

( )( )
(1 )

n
n

E tF t C
v

In this specific case, the force history retains the mathematical form of the Hertz model, 
although the fixed value of  is replaced by Young’s relaxation function. However, in HertzE
an actual experiment, the approach phase cannot be instantaneous, as hydrodynamic 
and inertial effects limit the maximal loading speed, and true step-loading conditions are 
impossible to implement. Since the approach phase has a finite rate and a finite time 
duration (a ramp rather than a step), not only are the data for the initial relaxation 
process missing but an error may also be introduced into the analysis, depending on the 
duration of the ramp62,63. Processing of the total ramp-hold curve57,64,65 can be used to 
improve this analysis, when the approach region is fitted with the Lee-Radok equation 
together with the hold region. Corrections to the analysis have been suggested to 
account for the finite ramp time in indentation experiments12. The effect of the ramp 
period on the analyzed data is an example of the prehistory effect on the viscoelastic 
material, since the relaxation in a specimen is a function of the entire loading history. 
This means that complex loading histories (e.g. consecutive ramps or step-holds applied 
during the hold period) make quantitative analysis more difficult but might provide 
additional information about the sample.

In the second type of step-hold experiment for creep relaxation, the feedback 
circuit keeps the force constant, and the indentation is recorded52–55. The instantaneous 
approach approximation can be used with Eq. (5) to give:

 (7)2
0

1( ) ( )(1 ) ;n
E

n

t J t v F
C

  

Again, the instantaneous approximation can introduce error into the analysis, and 
processing of the complete indentation history (the approach and hold phases) is 
preferable55. Since the indentation depth increases throughout the experiment, the 
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effects of nonlinearity and heterogeneity associated with the depth will be more 
pronounced; otherwise, data from these two types of experiments should agree with 
each other when performed on the same sample (Fig. 4)54.

Fig. 4. Example of relaxation and creep in the same cell. Linear plot of (A) 
the averaged stress relaxation and (B) the creep curve for NIH3T3 cells on a 
microarray. The insets show the corresponding relaxations on logarithmic axes. 
The solid lines represent the fit to the power-law function. Reproduced with 
permission from ref. 54, copyright 2009 The Japan Society of Applied Physics.

As described in Section 2, the conventional force curves can also be used to 
extract the viscoelastic parameters of the sample, as the growth in the apparent Hertz’s 
elastic modulus with an increase in indentation rate yields important viscoelastic 
information. The value of  is indirectly proportional to the value of Young’s relaxation HertzE
function (more precisely, to its time-averaged value) at the indentation time. Hence, by 
conducting indentation measurements at several indentation rates/times, an idea of the 
relaxation function can be obtained. The dependency of the apparent elastic modulus on 
indentation rate has been used to obtain the power-law exponent7,50,51 or relaxation 
time66 of cells. Thus, when the Hertzian mechanics model is applied to the force curves, 
the piezo displacement speed should be mentioned in order to allow an adequate 
comparison between the data from different studies; instead, authors often give the 
acquisition frequency (in Hz), which can be quite misleading. Firstly, the piezo 
displacement generally takes the form of a triangle, rather than a sinusoidal movement. 
Secondly, and most importantly, the frequency is related to the complete piezo cycle, 
while contact takes place only during a certain part of this cycle. A more reasonable 
frequency can be obtained by accounting for the duration of only the contact part of the 
force cycle47,67. 

3.2. Frequency domain experiments
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When the sample is subjected to oscillatory deformations with a controlled 
frequency  and a constant (small) amplitude, the frequency-dependent Young’s 
modulus can be obtained within the framework of linear viscoelasticity. In the AFM setup 
(also referred to as AFM microrheology, force/indentation modulation mode), the 
microcantilever is oscillated relative to the sample with a small fixed amplitude at several 
frequencies, either during the period of indentation2,59,68–73 or during the scanning 
process74,75. The indentation can generally be described as a sine function of time, 

, occurring around an operating indentation , . The force     0( ) sinAt t 0  = 0A

typically has both sine and cosine components: . The     0( ) sin cosF t F F t F t
elastic (storage) modulus of the material, , is proportional to the in-phase (sine) ( )E
component of the frequency-dependent indentation, and the viscous (loss) modulus, 

, is proportional to the out-of-phase (cosine) component. Together, these comprise ( )E 

the complex Young’s modulus  of the material, where . If     *( ) ( ) ( )E E iE  1i
the material is an elastic solid, the force is exactly in phase with the input deformation 
and , while if the material is a viscous liquid, the induced stress is out of phase  ( ) 0E
with the input deformation and . The loss tangent  can therefore be  ( ) 0E   ( ) / ( )E E
used as an index of the solid-like or liquid-like behavior. For typical biological materials 
such as cells and tissues, the complex Young’s modulus shows a pronounced 
dependency on the frequency of the strain. The frequency-dependent complex modulus 
and the relaxation Young’s moduli in the time domain are related via the following 
transformation61:

. (8)          
  

  
   

 
  *

0 0 0

( ) ( ) ( )sin( ) ( )cos( )iE i E e d E d i E d

During the holding period, sinusoidal oscillations can be applied as discrete 
frequencies33,59,73,76 (Fig. 5). Alternatively, to reduce the time required for the experiment, 
multi-frequency signals can be applied that are composed of several sine waves68,77 or a 
sweep (chirp) signal in which frequency continuously increases with time2,78,79. Oscillation 
can be applied to the Z-piezo or directly to the specially designed microcantilever using 
magnetic forces75,80,81. When the applied frequencies are much lower than the 
microcantilever or the piezo resonance frequency, the analysis is simplified due to the 
nearly invariant amplitude and phase transfer function of the microcantilever. The 
analysis generally involves Fourier transforms of the force and indentation signals,  ( )F
and  respectively. For low-amplitude, off-resonance oscillations of the spherical  ( )
indenter around an operating indentation , an expression can be obtained for the 0

complex Young’s modulus33,59 as follows:

, (9)
 

 
 

  
 

2

0

(1 ) ( )* ( ) (0)
( )2

v FE i b
R
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where  is the drag coefficient, included to account for the hydrodynamic drag force. (0)b
This force is caused by the viscous friction between the moving microcantilever and the 
surrounding liquid, and may contribute significantly to the total measured force. The drag 
force is directly proportional to the oscillation frequency, and in a more complicated way 
to the probe-surface distance. The drag coefficient at zero distance, , is estimated (0)b
by extrapolation of the noncontact measurements taken at different distances from the 
sample surface. Most of the hydrodynamic contribution arises from the interactions of the 
microcantilever beam, rather than the tip, with the surrounding fluid, since the former has 
a much larger effective area. The hydrodynamic drag force can therefore be reduced 
using a microcantilever with longer tips (beads attached to the end of the tip, as opposed 
to beads attached to the tipless microcantilever) or a smaller beam area (rectangular 
instead of V-shaped microcantilevers). 

When the microcantilever is directly excited at the resonance frequency, the signal 
is greatly enhanced. Moreover, a high frequency (usually in the kHz range in liquid) 
enables mechanical measurements to be made during fast scanning, since there is 
enough residence time at each pixel to obtain the amplitude and phase signal. A lock-in 
amplifier is generally used to obtain these quantities74,75. The amplitude and phase 
changes are then analyzed using linear vibration theory (e.g. simple harmonic oscillator 
theory) and the viscoelastic parameters are extracted (Fig. 6J-L)82. Monitoring of the 
higher harmonic modes and bimodal excitation can be used to obtain data at even higher 
frequencies74,83. The local stiffness, stiffness gradients and viscoelastic dissipation can 
be measured at a high spatial and temporal resolution; however, the physiological 
relevance of such high frequencies remains questionable.

The AFM-based characterization of biological samples is an actively developing 
area, and new experimental techniques for viscoelasticity measurements are often 
introduced. These include techniques based on an analysis of the thermal fluctuations of 
the AFM microcantilever above and in contact with the sample84, estimation of 
viscoelastic parameters from the frequency dependence of the phase lag between the 
oscillating microsphere and the driving piezo at various heights above the sample85, and 
contact resonance-based techniques86. These are not commonly used, however. 
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Fig. 5 Experiments in the frequency domain: (A) example of the force-time trace at 
an oscillation of 1 kHz, obtained on a living cell; (B) force–indentation loops (also 
called Lissajous figures) obtained from the contact region of the force curves at 
different oscillation frequencies, showing increased slope and hysteresis with 
frequency; (C) frequency dependence of the complex shear modulus of 3T3 cells, 
fitted with a double power law (the arrowhead shows the transition frequency). 
Reproduced from ref. 76, with permission from Springer Nature, copyright 2017.

3.3. AFM mapping of viscoelastic properties

Since the primary purpose of AFM is sub-micron imaging, a natural extension of 
the techniques mentioned above is the acquisition of images (maps) of the viscoelastic 
properties of the sample (mapping). The force volume technique is commonly used for 
elastic mapping, and involves point-by-point acquisition of the force curves over the 
sample area87,88. By adding an oscillation (Fig. 6A-C)68,69 or a hold phase (Fig. 6D-
I)55,89,90 into each force curve, the viscoelastic properties can be measured at each point. 
The shortcoming of this technique is its low acquisition speed (up to several hours); this 
is caused by the point-by-point movement of the microcantilever, which performs an 
approach-retract cycle at each point. A hold or oscillation phase can be added for 
viscoelastic analysis, or Ting’s solution-based analysis can be applied to the standard 
force cycle. Recent improvements to instruments (fast force volume, PeakForce QNM) 
allow for much faster acquisition speeds (within minutes)67. It should be noted that a 
faster acquisition speed means that only high-frequency properties are measured, while 
low-frequency content is cut off from the analysis. Corrections to the hydrodynamic drag 
forces also become more important at higher acquisition speeds67.

There have recently been several advances in viscoelastic property mapping 
techniques that utilize resonant microcantilevers oscillating at high frequencies, allowing 
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the average amplitude (several nm), deflection, and phase to be obtained at each point 
as the microcantilever scans the surface (Fig 6J-L)74,75,82. During a scan performed either 
in tapping or contact mode, the microcantilever indents the soft cell to depths of about 
100 nm. Thus, the contact mechanics model can be applied to extract the complex 
Young’s modulus with proper accounting for the microcantilever dynamics and 
hydrodynamic drag. Although this method is orders of magnitude faster than force-curve-
based techniques for the same image resolution, again, only high-frequency data are 
obtained.

The spatial resolution of viscoelastic mapping is mainly determined by the tip–
sample contact area91, and thus may be adjusted by varying the tip shape and the 
applied force. Another parameter affecting the spatial resolution is the number of 
lines/points in the map (or the size of a pixel in nm). Since a larger number of points 
means a longer acquisition time, this value is selected as a compromise between the 
spatial and temporal resolution. The maps reveal large spatial variations in the 
viscoelastic parameters across the cell surface; the spatial dependence of the 
viscoelastic properties over the cell has been studied in several works, and no clear 
pattern in the properties of an on-center (over nucleus) versus off-center (over cell 
periphery) location have been found55,68. In general, stiff subcellular components such as 
actin cytoskeleton fibers can be resolved on high-resolution maps82. Advances based on 
a combination of AFM with optical techniques allow the matching of heterogeneities in 
local mechanical properties with fluorescent images of the different structures in living 
cells (Fig 6C, L).
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Fig 6. Mapping of the viscoelastic properties of a cell with AFM: (A-C) multi-
frequency force modulation68; (D-F) force clamp force mapping55,89; (G-I) stress 
relaxation microscopy90; (J-L) multi-harmonic dynamic AFM with directly excited 
microcantilevers74,82. (A, B) show the power-law rheological parameters G0 (scaling 
parameter) and α mapped for a NIH 3T3 fibroblast (a description of these 
parameters is provided in Section 4.2); (C) immunofluorescence image of the 
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nucleus (blue), actin filaments (red), and microtubules for the same cell region; (D) 
map of contact height and an optical phase contrast image (inset) for a mouse 
embryonic fibroblast (the nucleus position is marked by a dashed circle, 
cytoskeletal fibers are marked with arrows); (E, F) maps of the modulus scaling 
parameter E0 and the power-law exponent β for this cell; (G) height map at 
constant force (1 nN) for MCF7 cells; (H, I) corresponding maps for slow and fast 
relaxation times; (J, K) storage and loss moduli maps mapped over an NIH 3T3 
fibroblast using direct excitation of the microcantilever at the resonance frequency 
(several kHz); (L) the actin cytoskeleton structure in the same living cell, with well-
developed stress fibers (perinuclear actin cap). Panels A-C are adapted from ref. 68 
with permission from AIP Publishing, copyright 2015. Panels D-F are adapted from 
ref. 55, CC-BY-3.0, published by The Royal Society of Chemistry. Panels G-I are 
adapted from ref. 90 with permission from Elsevier, copyright 2010. Panels J-L are 
adapted from ref. 82 with permission from Springer Nature, copyright 2018.

4. Viscoelastic constitutive models 

The variety of experimental techniques reviewed in the previous section provide 
data that can be compared, systematized, and related to the viscoelastic properties of 
the sample, and a range of viscoelastic constitutive models has been created and used 
for these tasks. Constitutive modeling is a mathematical description that links the states 
of stress and strain with strain rates; however, it should be noted that a single 
viscoelastic model with a finite number of parameters cannot describe the behavior of 
any material over a full time/frequency range, due to the use of different relaxation 
mechanisms at different time/frequency scales. At very short time/high frequency scales, 
essentially no structural motions can occur during the measurement time, and the 
material behaves as an elastic or plastic solid, while at long timescales the material 
behavior is determined by passive natural decay processes. In living systems, on the 
other hand, cellular processes are active during the measurement time, and there is a 
constant turnover of cellular components. These time scales range from microseconds 
(molecular movements), minutes, and hours (cell migration) to days (multicellular 
rearrangements). Intermediate timescales (10-3 to 103 s) are of great interest, given their 
physiological relevance and relation to the object’s mesoscale structure. 

Many different mathematical forms have been suggested and used for an 
analytical description of the viscoelastic behavior. Often, these models have an empirical 
origin that is based on ease of mathematical use, and a minimum number of parameters 
are required. To be physically meaningful, the relaxation functions  should ( )E t
monotonically decrease with time (in the same way, the creep function should 
monotonically increase). Viscoelastic models with an analytic expression for  can be ( )E t
divided into models with discrete or continuous relaxation spectra. Models based on a 
bottom-up approach, which are focused on the properties and interactions of individual 
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molecular components, usually do not have analytical expressions on a whole-cell level, 
but are still able to provide valuable predictions of the sample behavior.

4.1. Spring-dashpot models

The simplest analytic viscoelastic constitutive models are obtained by combining 
spring and dashpot elements. The spring element represents ideal elastic behavior, in 
which the stress is proportional to the strain: , while the dashpot element  ( ) ( )t k t
represents the behavior of an ideal Newton liquid in which the stress is proportional to 
the strain rate:  (where  is the viscosity). The two simplest   ( ) ( ) /t d t dt 
combinations, i.e. a spring and dashpot in parallel and in series, are known as the 
Kelvin–Voigt and Maxwell elements. The former can be used to describe the stress 
relaxation behavior, and the latter the creep behavior, but not vice versa. The simplest 
combination with both behaviors is a spring in parallel with a Maxwell element, known as 
standard linear solid (SLS) model or a Zener model (Fig. 7A-C). The relaxation modulus 
and creep compliance for this model are, respectively61:

, , (10)    


   0
r

t

E t E E E e     


   00 )(1 c

t

J t J J J e

where the subscript ‘‘0’’ is used to denote the instantaneous material properties (
; stiffness of the single spring ) and the subscript ‘‘ ’’ is used to denote 0 (0)E E 0 1E k 

the long-term properties ( , average stiffness of two springs    ( )E E t

). /  is the characteristic relaxation/creep (retardation) time   1 2 1 2/ ( )E k k k k  r  c

(relaxation time is related to the parameters of the spring and dashpot as ).   1/r k
Notably, the characteristic time is different in creep and relaxation experiments for the 
SLS model, and these are related as , as can be shown from the    0( / )c r E E
relationship between functions in the Laplace domain, while  and . 0 01/J E   1/J E
The relaxation strength can be designated as  and characterizes how     0 /E E E

much the material can relax61. Generally, if , the material is considered a   0E
viscoelastic fluid; otherwise, it is a viscoelastic solid. 

Due to the properties of the exponential function, most of the relaxation/creep 
occurs during one time decade (a factor of ten) (Fig. 7B, Fig. 2), and following this, the 
function returns rapidly to its long-term value. However, most biological materials relax or 
creep over many time decades, and this is better represented on a logarithmical scale. 
Although several authors have used the SLS model to obtain a characteristic relaxation 
time for the cell56,92, this approach is contradictory since it can be shown that when the 
SLS model is applied to describe a continuous relaxation process, the result (relaxation 
time) depends on the duration of the experiment (Fig. 7J)24. The SLS model gives the 
following complex Young’s modulus frequency behavior (Fig. 7C):
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(11)
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where the shape of the  curve is referred to as a Debye peak, which is usually not  E

observed in experiments on living cells and tissues.

The SLS model can be extended by the addition of more Maxwell elements (the 
so-called generalized Maxwell model), thus giving several relaxation times:

. (12)  


   i

t

i
i

E t E E e

This function is often referred to as the Prony series (Fig. 7D-F). Models with two53,90 or 
three93 relaxation times have been used, where each relaxation time was presumably 
assigned to different cell structural elements (membrane+cortex, 
cytoplasm+cytoskeleton, nucleus). The addition of elements, however, leads to an 
increase in the number of fit parameters: there are a total of seven fitting parameters for 
a model with three Maxwell elements. This makes the fitting procedure less reliable, 
since the converged solutions may be non-unique due to the presence of local minima. In 
the words of John von Neumann: “With four parameters, I can fit an elephant, and with 
five I can make it wiggle its trunk”94,95. In the frequency domain, broader Debye peaks 
are observed when elements have close relaxation times; several discrete Debye peaks 
are observed for distant relaxation times, and a “wavy” shape of the  curve is  E 

observed in the general case for moderately spaced relaxation times (Fig. 7F). The latter 
has not yet been confirmed in experiments on cells.

The number of Maxwell elements/relaxation times can be increased indefinitely, 
leading to a generalization of the expression for the Young’s relaxation modulus 96:

; (13)  
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which is more commonly expressed in terms of the log relaxation-time, as follows:

; (14)      


  

     0 0
(l )g( ) )o (

t t

E t E H e dH ed E

where  is called the relaxation spectrum (“distribution function of the relaxation ( )H
times”). It allows for the introduction of a continuous relaxation spectrum as opposed to 
discrete relaxation times, still based on the assumption that the governing relaxation 
mechanisms give rise to exponential components. For the generalized Maxwell model, 
the spectra are composed of sums of Dirac distributions, but for other systems, the 
spectra may be continuous functions. In practice, the relaxation spectrum cannot be 
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determined directly from experiment, but can be obtained from the analytical relaxation 
functions. Spectral representation is useful for a comparison of different viscoelastic 
models, since models with similar spectra will provide similar relaxation behavior.

Fig 7. Different representations of viscoelastic constitutive models: (A-C) standard 
linear solid (SLS); (D-F) three-term Prony series: (G-I) power-law rheology (PLR) 
model. (A, D, G) and , linear scale; (B, E, H) and , log-log scale.  E t  J t  E t  J t

The dashed line in (I) represents the loss modulus with the contribution from 
Newtonian viscosity. (J) PLR relaxation function (solid line) with three (dashed 
lines) SLS relaxation functions aligned to show the principal difference between 
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the models. (K) Relaxation functions for several models with continuous relaxation 
spectra: PLR, fractional SLS, stretched exponent, and Fung’s relaxation function. 
Except for shortest timescales, the functions are quite close to each other when 
parameters are adjusted.

4.2. Viscoelastic models with continuous relaxation spectra

One way to obtain a relaxation model with a continuous relaxation spectrum is by 
introducing an element that depends on an α-order time derivative of the strain history 

, where  is a fractional viscous coefficient with the units Pa*sα  
 ( ) ( ) /t K d t dt K

60,97,98. In this equation, for  we obtain the linear elastic one-dimensional   0
constitutive equation, and for  we obtain a Newtonian dashpot (the symbol β is used   1
instead of α in some works). For a value of  between zero and one, this fractional 
element (the so-called spring-pot element) can be realized physically through hierarchical 
arrangements of springs and dashpots such as ladders, trees or fractal structures. 
Importantly, for a single spring-pot element, the Young’s relaxation function is a power 
law (Fig. 7G-I): 

. (15)  
     1/ )(E t t E tK

In this case, it is normalized with a prefactor , which is the value of the Young’s 1E
relaxation modulus at  s. The value of the power-law exponent measured with AFM  1t
for cells is within the range 0.05–0.42,31,59,89,99.

The spring-pot element can be substituted into any other spring-dashpot model by 
replacing the spring, the dashpot element or both. For the spring-pot element in parallel, 
with a spring ( ) or a dashpot ( ), the power-law   

   1 ( )EE E t Et      1 )(E t E t t
behavior will be still preserved. The former is also known as a fractional-derivative 
Kelvin–Voigt (KVFD) model100. Although the power-law rheology (PLR) model provides 
good results in terms of describing the relaxation behavior of cells,2,31,48,62,89,96 equations 
that are more complex than a simple power law will be obtained when another element is 
placed in series with it. For example, for the SLS model with a single spring-pot element 
instead of the dashpot element, the Young’s relaxation function becomes (Fig. 7K):
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where  is the gamma function and  is the fractional relaxation time.  
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At , exponential decay is recovered, while at  the material is purely elastic,   1   0
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and at intermediate values, the decay is close to the power law. The fractional SLS 
model was used in AFM studies of cells102, where  values of close to 0.5 were 
obtained, and hydrogels47, where higher  values of ~0.8–0.9 were measured. However, 
the requirement for numerical calculation of the Mittag–Leffler function and the presence 
of the two parameters  and  with a complicated interrelation make this model less  
appealing than a simple power law. 

A pure power-law description (single spring-pot) of relaxation is not completely 
physically realistic, since it predicts an infinite modulus at time zero. A modified power-
law function has therefore been suggested98:

, (18)   


 
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t

where a small time offset  is added to remove the zero-time singularity. Thus, the t
function has finite values at  ( ) and  ( ), and a power-law decay at .  0t 0E  t E t t

In experiments on cells, has been shown to be close to zero, and the values are E t

small (< 1 ms), meaning that the function is basically reduced to the simple power law; in 
experiments on polymers, and represent the glassy and rubbery moduli, 0E E
respectively. It has been shown that the modified power law and fractional SLS model 
have similar relaxation spectra, and thus both describe the same relaxation process 
relatively well98. 

In several works on cells, a stretched exponential function known as the 
Kohlrausch–Williams–Watts (KWW) function103 has been employed for step-hold data 
analysis (Fig. 7K):
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where the exponent  is empirically employed to represent the dispersion processes of 
the relaxation times in the system, and  is the characteristic relaxation time. The  r

stretching exponent parameter was ~0.5 for cells, indicating that the relaxation observed 
in NIH 3T3 cells consisted of multiple relaxation processes99,104,105.

Another relaxation function with a continuous spectrum within a defined range was 
suggested by Neubert106 and has been successfully applied to biological samples by 
Fung24 (the expression without  is also known as Fung’s reduced relaxation function) 0E
(Fig. 7K):
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where C is a unitless constant representing a relative measure of damping;  and  are 1  2

the characteristic times of relaxation; and  is the exponential integral. The model iE
assumes a continuous relaxation spectrum in the interval between two relaxation times 

 and , below which the response comes to the instantaneous value and above which 1  2

it comes to the long-term value. This model is extensively used to describe the 
mechanical properties of tissues, hydrogels57, and sometimes cells107. However, the four 
parameters of this function can be difficult to estimate and have low sensitivity108.

Although all the relaxation functions presented here with a continuous spectrum 
are clearly different from the function with a single relaxation time (Fig. 7J), they are not 
very different from each other at the relevant time scales (Fig. 7K) and can therefore 
describe continuous relaxation almost equally well. It may be hard to select one of these 
models based on experimental data alone (which may also be noisy) so that a close fit 
can be obtained for all the models. Of these models, however, the simple power-law 
rheology model is most widely used in practice to describe cell properties. One of its 
advantages is that it has only two parameters with intuitive meaning:  provides an idea 1E
of the stiffness of the object, while the power-law exponent  reflects its closeness to a 
solid-like or liquid-like state. One surprising aspect, is that the power-law model was 
developed not only based on the fractional calculus, but also from a completely different 
background that is related to material molecular97 or mesoscopic composition109. This is 
the soft glassy rheology (SGR) model developed by Sollich110,111 for soft disordered 
materials like foams, gels, and slurries. The theory assumes that the observed scale-free 
behavior is a natural consequence of the disorder and metastability of the internal 
structure of the material, which consists of many disordered elements that are held 
together by weak attractive forces and, as a result, are trapped in energy wells. Scale-
free (power-law) rheology arises from a wide distribution of energy well depths and 
element lifetimes. The power-law exponent α is related to the effective temperature of the 
material (i.e. the amount of agitation energy in the system), which determines the 
probability of elements jumping between the energy wells and reflects the dynamics of 
the system. This jumping of elements between wells is the origin of the fluid-like 
behavior, and a higher effective temperature (power-law exponent) leads to more 
pronounced fluid-like features of the material. Thus, in the limit α = 0, soft glassy 
materials behave like elastic solids (elements are trapped in the walls) and in the limit α = 
1 behave like viscous liquids (elements jump freely between the walls). The cytoskeleton 
of a cell may represent such a structure28. SGR theory implies that changes in the level 
of internal disorder and the effective temperature associated with contraction or 
remodeling of the cytoskeleton can modulate the rheological behavior of the cell, and 
thus can provide a conceptual framework for processes such as cell migration, wound 
healing, invasion, metastasis and embryonic development28.

The power-law function has been successfully used to describe cell behavior in 
both the time54 and frequency domains2,59,73,112. In the frequency domain, the equation 
for the complex Young’s modulus is:
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where  is the hysteresivity or structural damping coefficient of the model (at    / 2tan

low frequencies, this is close to the loss tangent ), and µ is the Newtonian viscous  /E E
damping coefficient, which is added to account for the viscous contribution from the liquid 
cell phase (the model of a spring-pot in parallel with a dashpot). 

The loss tangent2 and power-law exponent31,71 are sensitive factors used to 
describe the cell condition. Moreover, the elastic modulus and the power-law exponent 
have been shown to be related to each other in cells: cells in the stiffest group displayed 
the lowest power-law exponent , whereas cells in the softest group displayed the 
highest power-law exponent. After treatment of the cell with actin cytoskeleton-disturbing 
drugs, softening is accompanied by an increase in . Based on the correlation between 
the elastic modulus and the power-law exponent, the existence of the master curve onto 
which all data can be collapsed has been postulated, originating from a fundamental 
relation between the prestress, stiffness and power-law exponent; however, the 
consistency and variability of these observations need to be investigated further. For 
further details, interested readers may refer to the related publications 25,28,113.

At higher frequencies (above several hundred Hz), PLR with a higher exponent 
was observed (Fig. 5), and the viscoelastic behavior of cells was closely described by a 
sum of two power laws76. Viscous dissipation of the thermally driven bending fluctuations 
of the cytoskeletal filaments with different levels of tension is thought to dominate the 
system’s frictional response at high frequencies114. 

4.3. Other models 

An alternative approach to describe hydrogels is based on poroelasticity theory, 
which attributes the time-dependence of the mechanical properties to the flow of a fluid 
through a porous solid network. The characteristic relaxation time constant predicted by 
poroelasticity theory ( ) depends on both the characteristic contact length   2 /poro a D
scale (e.g., contact radius) and the effective diffusivity  of the solvent through the D
network, which in turn depends on the properties of the solvent and the solid phase 
(viscosity, pore size, etc.). An approximate solution was obtained by finite-element 
simulations for force-relaxation experiments115:

 ; (22)
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and recently also for oscillatory experiments116. In most hydrogels, viscoelasticity (arising 
from the rearrangements of the the polymer chains) and poroelasticity coexist. Since the 
poroelastic relaxation time scales quadratically with contact diameter, while viscoelastic 
relaxation times are independent of this quantity, experiments with different contact 
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length scales can be performed to distinguish between them; for example, indentation 
depth and/or probe size can be varied. Generally, when small AFM probes and low 
depths are used, the poroelastic effects will be greatly diminished. Poroelasticity has 
been applied to describe the properties of hydrogels116, cells117 and cell nuclei118. 
However, cells have a wide distribution of particle sizes within the cytoplasm, the links 
forming the cytoskeleton networks have a transient nature, and the internal structure has 
a high level of overall heterogeneity. The diffusion and rearrangements are therefore 
highly convoluted, and the poroelastic and viscoelastic behaviors (as explained by the 
SGR model, for example) can be virtually indistinguishable. 

A wide range of models based on a bottom-up approach can be used to provide 
predictions about time-dependent material behavior. Most of these models utilize the fact 
that fibrous networks promote mechanical strength and support integrity, at the level of 
both the cell and the tissue. The properties of these networks arise from the organization 
and behavior of their constituent filaments and crosslinks. Comprehensive models have 
been developed for individual semiflexible filaments, such as a worm-like chain (WLC) 
model and more complicated models (glassy WLC, inelastic glassy WLC, prestressed 
semiflexible chain, and others, as reviewed in 28,119). These models have been found to 
be useful in describing  reconstructed actin gels with a controlled number of components. 
However, quantitative prediction of the mechanical parameters of the cell is difficult due 
to the high levels of heterogeneity and variability in the structural parameters of the 
cytoskeleton (mesh size, filament length, cross-link strength).

Given the wide range of available viscoelastic models, it can be difficult to select 
the most appropriate one for a specific sample. Moreover, the use of different models for 
the same types of samples (e.g., cells) can make a comparison of data from different 
studies more complicated. For example, Fig. 6 shows the viscoelastic parameters 
obtained for cells using three different models: power-law rheology (Fig. 6A-F), the 
generalized Maxwell model (Fig. 6G-I), and the Kelvin-Voight model (Fig. 6J-L). 
Standardization of the measured viscoelastic parameters will help to enable data 
comparison in the future.

It should be noted that most of the viscoelastic models can describe viscoelastic 
behavior equally well within a narrow range31,107. Thus, the applicability of a model to a 
specific sample should be confirmed by conducting experiments over a wide range of 
times/frequencies (Fig. 2). However, when the applicability of a particular model is 
confirmed, the acquisition of further data can be limited to a narrow range for higher 
throughput analysis. Information about these models is summarized in Table 2.

5. Challenges and Limitations

Numerous factors create uncertainties in mechanical measurements made using 
AFM, and these can lead to large variations in the results acquired with different 
instruments, laboratories, and operators. These factors include the tip geometry, 
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determination of the spring constant and the deflection sensitivity. Studies devoted to the 
analysis and minimization of uncertainties have resulted in the development of 
standardized procedures for data acquisition and analysis, leading to a significant 
improvement in the consistency and reproducibility of the elastic modulus extracted using 
AFM120–122. For viscoelastic analysis, no such standardization or uncertainty 
quantification currently exists, although general agreement between different techniques 
has been shown in several studies31,54,62.

Although continuous attempts are being made to link the observed viscoelastic 
parameters with specific biological structures, the overall task still remains challenging. 
Biological samples have a very complex structure with a large number of constituents. In 
the case of cells, the most important structure that determines the viscoelastic behavior 
is the actin cytoskeleton. This is evidenced by a comparison of data obtained on cells 
and reconstructed actin gels28, as well as by studying cells with naturally (e.g., cancer 
cells58,89,123) or experimentally (e.g., treated with inhibitors49,53,107) modified cytoskeletons. 
The SGR model described above currently provides one of the best predictions relating 
the observed state of the cytoskeleton to the viscoelastic properties of different cell types 
and experimental treatments28. However, the roles of other cellular components (e.g., the 
nucleus, microtubules and intermediate filaments) and overall cellular heterogeneity still 
need to be established, and this will require deeper knowledge of the internal cell 
structure and combined use of cell imaging, mechanical measurements and modeling.

The actin cytoskeleton is distributed non-homogenously throughout the cell; it is 
concentrated in the layer under the plasma membrane (cortex) and forms stress fibers in 
some types of cells. These stress fibers can often be seen on viscoelastic maps as more 
solid-like structures55,67. The presence of an actin cortex leads to inhomogeneity of the 
cell properties over its depth. This may be another source of the depth-dependency of 
the measured modulus, and also a possible reason for the effect of tip size on the 
measured properties. As has been shown in several studies48,67,124, the measured 
stiffness (e.g., the effective elastic modulus or the scaling factor of the PLR model) is 
higher when sharp tips are used, and lower when larger microspheres are used. 
Simulations have shown that the sharp tip is mostly probing a response from the stiff 
cortex in the surface layer, while strains arising from the large spherical probe are 
distributed more evenly throughout the deeper, softer layers (cytoplasm)124.

In AFM experiments, linear viscoelastic behavior of the sample is commonly 
assumed, and this is justified by the usage of low indentation depths. This can be 
experimentally confirmed by varying the indentation depths, as the extracted viscoelastic 
parameters should not depend on the indentation depth within reasonable limits69. In 
oscillatory experiments, the Lissajous figures should be symmetric and elliptical (Fig. 5), 
although nonlinearity may be shown at large deformations. One approach that can be 
used to treat this is quasi-linear viscoelasticity (QLV) theory, which was developed by 
Fung24. The main hypothesis of this theory is that the relaxation function can be 
separated into a time-dependent part, i.e. the reduced relaxation function , and a ( )t
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strain (indentation depth)-dependent part, i.e. an instantaneous non-linear elastic 
response  24:( )( )eT

. (23)   ( )( , ) ( ) ( )eK t T t

As mentioned earlier, a reduced relaxation function can be obtained by normalizing the 
relaxation functions; this is a unitless function with value one at . The nonlinear  0t
elastic response can have different forms, for example the Mooney-Rivlin, Neo-Hookean, 
Ogden, and Fung functions125–127. Different combinations of elastic response functions 
and the reduced relaxation function can be tested, and this is an interesting subject for 
future work. A simpler related example is a nonlinearity that arises not from the material 
properties but from geometric nonlinearities, due to large deformations in the presence of 
an underlying stiff substrate effect. Due to this effect, the thin material at large indentation 
depth (>10–20% of the thickness) seems stiffer than expected. It has been shown using 
finite element modeling that this effect depends on the indentation depth but not the 
time128. Thus, the correction factor can be applied as a function of indentation depth only, 
allowing an analysis of the thin parts of cells and thin gels 129.

In some cases, the applied force causes irreversible deformation (plasticity) in the 
cell structure. In particular, incomplete cell recovery was observed after repeated 
indentation (10 times) of the cells with high force (10 nN)52. It is believed that this 
irreversible deformation originates from bond ruptures within the cytoskeleton130. 
Complete recovery of the cell’s shape was observed at smaller forces (1–2 nN)105,131. 
The application of force, especially prolonged, can lead to an active response from the 
cell, and may for example cause an increase in indentation depth instead of the expected 
decrease during the creep experiments132. Mechanosensing responses may also be 
activated in the cell due to the action of the microcantilever133, but even without this 
activation, active cell behavior (such as moving) can affect the experiment.

Adhesion may play a significant role at the scale of AFM experiments due to the 
effects of interfacial energies. In indentation experiments, adhesion is usually revealed as 
the additional tensile force required to separate the surfaces, and adhesion hysteresis is 
frequently observed, i.e., more work is required to separate the surfaces than is gained 
when creating the contact. Adhesion therefore creates an additional source of hysteresis, 
and separating the contributions from adhesion and viscoelasticity can be a nontrivial 
task134–137. In oscillatory experiments, adhesion forces can keep the contact area 
constant, since the load is cycled at small amplitudes. The model therefore needs to be 
modifed, and the dynamic punch model (constant contact area during cycling) has been 
found to capture the observed viscoelastic behavior more accurately80. Stress relaxation 
and creep experiments should be less affected by the adhesion since neither of them 
involve surface separation. The JKR (Johnson–Kendall–Roberts) model is generally 
applicable to soft samples in a liquid environment138. More complicated models are 
required in which the bulk and interfacial viscoelasticities are distinguished, and the 
adhesion itself is dependent on the indentation time and rate131. It is possible, however, 

Page 27 of 41 Soft Matter



28

to reduce the adhesive force between the probe and the cell surface by proper cleaning 
and hydrophobic modification of the probe54 or by the addition of interaction-screening 
molecules in the medium. Using criteria suggested by Johnson139, adhesion can be 
safely ignored when the ratio of the maximum adhesive force to the maximum loading 
force is below 5%.

6. The AFM technique and other methods of viscoelastic characterization

AFM is an active microrheology method, in which force and deformation are 
applied to the cell to take measurements140. Other active methods include magnetic 
twisting cytometry (MTC)141, optical traps7, microplate manipulation142 and micropipette 
aspiration143. While the latter two of these are usually used to probe mechanics at the 
whole cell level, the other techniques mentioned here are designed to allow for analysis 
at the subcellular level. AFM can be used both at the level of the whole cell (with tipless 
microcantilevers or large spheres attached) and for the high-resolution mapping of 
mechanical properties. Compared to other methods, AFM also has one of the largest 
available ranges of forces and frequencies. The basic principles of viscoelastic 
characterization using AFM are close to those of techniques using micro- and 
nanoindenters144,145. Thus, many concepts associated with viscoelastic analysis could be 
shared between these techniques, especially in relation to data processing.

In passive methods, the ability of a cell to generate forces and deform its 
environment is monitored, typically by tracking the movement of marker particles, which 
may be part of the cell or the substrate (including laser tracking microrheology (LTM)146, 
traction force microscopy (TFM)9) In principle, AFM can be combined with most passive 
techniques to obtain a more complete picture of the cell biomechanics. For example, a 
combination of AFM and TFM has allowed a correlation to be revealed between the 
viscoelastic properties and contractile prestress of living cells147.

It should be remembered that AFM is an external technique, meaning that it probes 
the surface of the sample. In this sense, AFM results are usually different from those of 
methods measuring the intracellular rheology, such as LTM, but are in typically in 
agreement with those of methods measuring surface response, such as MTC146. While 
the surface response is mostly governed by the actin cytoskeleton, including the cortex 
and stress fibers, the intracellular response is dependent on the rheological properties of 
the deeper cytoplasm.

7. Perspectives

While significant progress has been made in recent years in the understanding of 
cell mechanics, many fundamental questions remain unanswered, for example, are the 
assumptions underlying the mechanical models used here actually valid? How do the 
anisotropy and inhomogeneity of the cell structure affect the indentation and the 
physiological behavior of the cell? How do the cytoskeleton and other cell components 
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interact to produce the observed viscoelastic behavior? Being able to fully answer these 
questions requires a systematic approach in order to correlate the cell structure with local 
physical properties. There is a clear trend towards combining AFM with other methods 
such as confocal microscopy, where the results obtained for the same object can 
complement each other effectively39,148. A combination with finite element modeling is 
one of the promising approaches to data analysis149,150.

Mining and extracting knowledge of the physical properties of a cell from these 
multi-dimensional data requires a deep understanding of the physics of the cell and the 
measurement process. At the same time, the simplest models, such as Hertz’s contact 
model, are still mostly used by the AFM community for interpretation of the experimental 
data, due to the complicated data processing steps in viscoelastic analysis. This issue 
may be resolved by the dissemination of computational tools and the implementation of 
established experimental protocols in AFM software.

A more complete data analysis will help in the understanding of physiological and 
pathological processes such as differentiation, transformation, and regeneration, and 
potentially in the development of new diagnostic techniques, biomedical devices, and 
consumer products.

8. Conclusions

AFM techniques are versatile, and allow for a wide range of time/frequencies, 
forces, and spatial resolutions, making them very suitable for the viscoelastic 
characterization of biological samples, especially at the single-cell level. While a large 
amount of data on the viscoelastic properties of cells has been collected, the choice of an 
appropriate viscoelastic model for a particular sample continues to be a topic of debate. 
This is related to the complex nature of the cell, including effects arising from 
heterogeneity, anisotropy, and active cell responses. A combination of AFM with optical 
imaging techniques and passive rheological methods can provide a valuable tool for the 
development and testing of cell viscoelastic models that can be further used in diagnosis, 
treatment, and regenerative medicine. 
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Table 1. AFM-based techniques for viscoelastic measurements of soft 
biological samples

Experimental 
technique

Benefits and shortcomings

Conventional 
force curves
31,47,48

Indentation experiment, in which the tip first moves 
down and then up while indenting the sample.
+ A simple technique available in the most of AFMs
-  Rigorous computational processing is required

Force 
relaxation
56–58

Time 
domain

Creep52–55

Fast loading is applied, after which the indentation 
depth (force relaxation) of the force (creep) is held 
constant.
+ Relatively simple techniques; simple processing step
- The assumptions underlying this method 
(instantaneous step) are not always valid

Off-
resonance 
oscillations 
2,33,59,68–73,76

The microcantilever oscillates with a small amplitude at 
several frequencies while indenting the sample
+ Adjustable range of frequencies (below the cantilever 
resonance frequency)
+ Complex setup that requires additional calibrations 
and a skilled experimenter
- The processing step is relatively complicated

Frequency 
domain

Resonance 
oscillations 
74,75,83

The microcantilever is directly excited at the resonance 
frequency (one or several for a multimodal setup), and 
the signal (amplitude, phase) is measured at several 
harmonic modes.
+ High operational frequencies allow the study of fast 
processes
- Frequencies are limited by the type of cantilever, and 
special cantilevers may be required
- Requires special hardware for direct excitation of the 
cantilever

Table 2. Viscoelastic models for soft biological samples

Model Description
Kelvin-Voight 
and Maxwell 
models49

The two simplest viscoelastic models.  The Maxwell 
model can describe the stress relaxation behavior, and 
the Kelvin-Voight model can describe the creep 
behavior. These have limited applicability to real 
materials.
+ Simplicity

Spring-
dashpot 
models

Standard 
linear solid 
(SLS) model 
56,92

Describes exponential relaxation, and can be 
described with three parameters: instantaneous 
modulus, long-term modulus, and relaxation time. The 
material manifests viscoelastic behavior only at 
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times/frequencies which are close to this relaxation 
time.
+ Simplicity
- Most of the biological samples show viscoelastic 
behavior over a wide range of times/frequencies

Generalized 
Maxwell 
model53,90,93

A model with several relaxation times
+ Can potentially describe any experimental data
- Uses a large number of fit parameters, which 
decreases the reliability of the fit

Power-law 
rheology and 
related 
models (also 
soft glassy 
rheology) 
2,31,48,62,89,96

A factional element (spring-pot) element (single or in 
parallel combination with a spring or dashpot) 
provides the power-law relaxation. The main 
parameters are the power-law exponent and the 
modulus scaling parameter (e.g., modulus at t = 1 s).
+ Simplicity
+ Can closely describe the experimental data obtained 
for cells

More 
complex 
fractional 
models102

A factional element in different combinations with 
spring/dashpot elements and other fractional elements
+ Can describe different types of viscoelastic behavior 
and transitions from one type to another with a 
relatively small number of fit parameters
- Complex

Stretched 
exponential
function 
104,105

The exponent is empirically employed in the SLS 
model to represent the dispersion processes of the 
relaxation times in the system
+ Relatively simple
- Empirical

Models 
with 
continuous 
relaxation 
spectrum

Fung’s 
reduced 
relaxation 
function57,107

Continuous relaxation spectrum in the interval 
between two relaxation times.
+ Can closely describe the experimental data obtained 
on tissues
- The parameters of the function show low sensitivity

Poroelasticity 
116–118 

The model attributes the time-dependence of 
mechanical properties to the flow of a fluid through a 
porous solid network. The main parameter 
(characteristic relaxation time constant) depends on 
the characteristic contact length scale (e.g., the 
contact radius) and the effective diffusivity of the 
solvent through the pores of the solid phase
+ Can closely describe  experimental data obtained on 
hydrogels
- In biological samples, poroelasticity and 
viscoelasticity coexist.

Other 
models

Worm-like 
chain (WLC) 

Describes the viscoelastic behavior of systems 
consisting of semiflexible filaments
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and related 
models28

+ Can closely describe experimental data obtained on 
the reconstructed actin gels
- Has difficulty with quantitative predictions for 
complex biological samples such as cells
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