

Barium ion adduct mass spectrometry to identify carboxylic acid photoproducts from crude oil-water systems under solar irradiation

Journal:	Environmental Science: Processes & Impacts
Manuscript ID	EM-ART-09-2020-000390.R1
Article Type:	Communication

ENVIRONMENTAL SIGNIFICANCE STATEMENT

Naphthenic acids (NAs) are widely present in crude oil and are being regulated due to their toxicity and persistence in the environment. NA's are a class of carboxylic acids (COOHs) defined by their structure and number of carbon atoms. Screening for COOHs in oil contaminated waters is important when tracking the harmful effects of water-soluble petroleum products formed from sunlight. It is well-known sunlight increases bioavailability and often toxicity of oil spilled in aquatic systems, but there is still much unknown about the composition of the photoproducts, including COOHs. Barium ion adduct chemistry offers an elegant way to screen for COOHs in petroleum polluted waters.

Barium ion adduct mass spectrometry to identify carboxylic acid photoproducts from crude oil-water systems under solar irradiation

3 Phoebe Zito^{1,2}*, Donald F. Smith³, Xian Cao¹, Rana Ghannam^{1,2}, and Matthew A. Tarr¹

¹Department of Chemistry, ²Pontchartrain Institute for Environmental Sciences, Chemical Analysis & Mass
 Spectrometry Facility, University of New Orleans, New Orleans, Louisiana 70148, United States

³National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United
 States

8 *Corresponding Author (pazito@uno.edu)
9

10 ABSTRACT

Petroleum derived dissolved organic matter (DOM_{HC}) samples were successfully cationized with barium, revealing many [M-H+Ba]⁺ peaks in both dark and simulated sunlight treatments. The DOM_{HC} samples generated after light exposure exhibited a greater number of [M-H+Ba]⁺ peaks compared to the dark control. Multiple $[M-H+Ba]^+$ peaks were investigated in the irradiated DOM_{HC} using low resolution MS/MS in order to confirm the presence of diagnostic fragment ions, m/z 139, 155 and 196 in each treatment. Due to the high complexity of the bariated DOM_{HC} mixture, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS/MS) was employed to obtain molecular level information for both irradiated and dark treatments. The irradiated DOM_{HC} treatments had more bariated oxygenated species over a wide range of H/C and O/C ratios when compared to the dark controls. Doubly bariated species were also observed in DOM_{HC} , which provides evidence that photochemistry transforms DOM_{HC} to even more complex mixtures with multiple oxygenations per molecule. This study provides evidence that barium adduct mass spectrometry can be successfully applied to DOM_{HC} screening for the presence of COOHs, both in dark samples and solar irradiated samples. Furthermore, direct evidence and molecular composition of aqueous phase crude oil photoproducts is provided by this technique.

25 INTRODUCTION

Petroleum derived naphthenic acids (NAs) are a class of carboxylic acid (COOHs) compounds known for their toxicity to aquatic life,¹⁻⁷ vegetation⁸⁻¹¹ and for their persistence in the environment.¹²⁻¹⁵ Headley and McMartin (2004) define NAs as alkyl substituted cycloaliphatic carboxylic acids (COOHs) with small amounts of acyclic aliphatic acids,¹⁴ Shepherd et al. (2010) defined NAs as derivatives of cyclohexane and cyclopentane homologues from petroleum containing carboxylic acid groups¹⁶ and many reports have defined them as having the formula $C_nH_{2n} + zO_2$.¹⁷⁻²² Naphthenic acids, widely found in crude oil,²³ are important due to their prevalence in oil contaminated sites,^{17, 24-26} chronic toxicity,^{1, 2, 9, 27-31} Page 3 of 18

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
19 20	
21	
21	
22 22 23	
23	
24	
25	
26	
27	
28	
29	
29	
30 31 32 33	
31	
32	
33	
34	
35	
26	
36 37	
37	
38	
39	
40	
41	
42	
43	
40	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	

60

persistence in the environment,²⁰ and their important role in biogeochemical cycles.^{24, 32} 33 Naphthenic acids are present in complex mixtures such as oil sands processed water.^{14, 15, 17, 33-36} 34 and petroleum.^{24, 37-41} and have be widely studied using fluorescence,^{25, 42} gas chromatography coupled 35 with mass spectrometry (GC-MS)^{43, 44} and Fourier transform ion cyclotron resonance mass spectrometry 36 37 (FT-ICR MS).^{10, 45-53} Targeted and non-targeted derivatization methods have been employed in order to 38 selectively detect NAs. Omari et al. (2019) utilized a charge tagging technique to detect NAs in petroleum 39 fractions.²³ Gutierrez-Villagomez et al. (2017) derivatized NAs and analyzed them using GC-MS.⁵⁴ A few notable studies utilized GC x GC-TOF MS to identify derivatized NAs in petroleum and tailing 40 41 waters.^{16, 55, 56} Duncan et al. (2016) developed a method which used barium ion chemistry for fatty acids (FAs)⁵⁷⁻⁵⁹ coupled with online membrane sampling to selectively ionize COOHs and FAs in wastewater 42 samples.⁶⁰ Isolation and cationization of COOHs and FAs using barium derivatization produces barium 43 adducts, which are selectively ionized in positive-ion electrospray ionization ((+) ESI).⁵⁷⁻⁶⁰ 44 It is well known that photochemistry plays a major role in the fate of petroleum spilled in areas 45 with sunlight exposure.⁶¹⁻⁶⁸ Recent work has shown that a wide array of photoproducts are generated by 46 natural photochemistry of crude oil under solar irradiation.⁶⁹⁻⁷³ In studying the photochemical 47 48 mechanisms of oil transformations, previous studies observed increased concentrations of aldehyde and 49 ketone photoproducts in the aqueous phase with solar irradiation time.⁷³ Given that oil sand processed waters (OSPW) from bitumen has been thoroughly characterized^{35, 43, 47, 74-77} and shown to contain up to 2 50 % weight of NAs per total bitumen,¹⁴ we hypothesize that a portion of photooxygenated petroleum which 51 52 has been previously shown to produce NAs,⁷⁸ contains NAs which eventually diffuse into the water once 53 petroleum is exposed to sunlight. Zito et al. (2019) have shown that after the first 24 hours of light 54 exposure, the DOM_{HC} exhibited bioluminescence inhibition to *Vibrio fischeri*.⁶⁹ This response may be 55 partially due to the presence of NAs produced from the petroleum after sunlight exposure as shown in previous reports on toxicity of oil sands processed water containing naphthenic acids.^{26, 27, 30, 34, 79-84} 56 57 However, more sophisticated toxicity studies are needed in order have a deeper understanding of the toxic 58 effects of DOM_{HC} on human and aquatic life. In order to characterize NAs and other COOHs in DOM_{HC} , 59 which is a complex mixture, we employed the use of barium ion chemistry known to work for NAs⁶⁰ and fatty acids $(FAs)^{57-59}$ to selectively identify COOHs present in the DOM_{HC} mixture. 60 61 This study presents a preliminary investigation on the barium cationization of DOM_{HC} generated in pure water from thin petroleum films exposed to simulated sunlight. We know that the composition of 62 DOM_{HC} is highly oxygenated,⁶⁹ however, it is unknown what portion of the oxygen containing 63 compounds is comprised of NAs or other COOHs. This study utilizes the methods employed by Duncan 64

et al. (2016) and FT-ICR MS to gain a deeper understanding of the presence of COOHs, which make up a
portion of DOM_{HC}. The use of barium ion chemistry provides an elegantly simple approach that is

67 selective to COOHs and eliminates contamination. Controlled laboratory studies of acid photoproducts
68 generated in DOM_{HC} from pure water are useful because they eliminate potential contamination from
69 background DOM sources and biota, which are known interferences and make NAs and COOHs hard to
70 characterize.⁸⁵⁻⁸⁷ The results obtained by using this approach provide insight into the composition of acids
71 present in DOM_{HC} and have important implications for understanding the fate and persistence of
72 hydrocarbons released by oil spills.

73 EXPERIMENTAL

75 Materials

 The oil used in this study was a surrogate Macondo oil (MC), (provided by BP August 2011, chain
of custody number 20110803-Tarr-072). All glassware was acid cleaned and combusted at 550 °C prior to
use. Nanopure water was collected from an Aeries nanopure system. Barium acetate was purchased from
Sigma Aldrich. Methanol was HPLC grade and purchased from Fischer Scientific.

80 Irradiation experiments

Photoirradiations were performed in batches of three at a single time point for dark and light samples using an Atlas CPS + solar simulator in nanopore water (refer to Zito et al. (2019) for experiment details).⁶⁹ Briefly, thin films of MC oil were prepared by pipetting 385 µL over 50 mLs of nanopore water. The beakers were subsequently covered with quartz lids to prevent evaporation and thermostatically controlled at 27°C. Dissolved organic carbon concentration (DOC) was measured on all samples, which were preconcentrated by the solid–phase extraction technique described in detail elsewhere.⁸⁸ Briefly, after DOC analysis, each sample was acidified to pH 2 prior to loading onto a Bond Elut PPL (Agilent Technologies) stationary phase cartridge. Each sample was eluted with methanol at a final concentration of μ gC mL⁻¹. The extracts were stored in the dark at 4°C in pre-combusted glass vials until analysis. Methanol extracts were subsequently mixed with 20 µL of 0.1 mM barium acetate prior to analysis in order to target carboxylate moieties per previously published methods for wastewater.⁶⁰ Elemental formulas of the barium adducts were obtained using (+) electrospray ionization (ESI) on a 9.4 T FT-ICR-MS using PetroOrg © software developed at the National High Magnetic Field Laboratory (NHMFL).⁸⁹⁻⁹¹ Molecular formulas were assigned within a tolerance of 1 ppm. Elemental constraints for each assignment iteration are listed Supporting Information (Table S1). Identification of molecular formulas using high resolution MS allows verification of barium adduct formation and determination of the number of oxygen molecules present in each photoproduced acid. Tandem mass spectrometry by infrared multiple photon dissociation (IRMPD; Synrad 48-2, $\lambda = 10.6 \mu m$, Mukilteo, WA) was used to confirm barium acetate derivatives. A single m/z at 302.9810, corresponding to a molecular formula of $C_6H_{13}O_5^{138}Ba_1$ (DBE = 1), was quadrupole isolated prior to high-resolution stored waveform inverse Fourier transform (SWIFT) isolation⁹² and

IRMPD. In addition, quadrupole isolation of $\sim 2 \text{ m/z}$ segments were followed by IRMPD to track diagnostic

bariated product ions (m/z 196.9186). The photon energy of the laser was fixed at 116.9 meV, using a total

energy of ~20 J (25 W with an irradiation time of 800 ms). Lower energy would yield only the most labile

losses, typically neutral loss. Experimental conditions were chosen to limit dimer formation. In addition,

107 RESULTS AND DISCUSSION

108Product ion scans using low resolution mass spectrometry (Figure S1) were performed, confirming109the presence of bariated compounds with product ions of m/z 155 [BaOH]⁺. The low-resolution MS-MS110technique allowed determination of nominal masses for the presence of COOHs in the DOM_{HC}. These111results also demonstrated an increased abundance of COOHs after exposure to simulated sunlight,112including the presence of higher molecular weight species in the aqueous phase. However, due to the113large number of peaks observed in both the dark and irradiated treatments, the use of FT-ICR MS was114necessary to provide detailed characterization of the DOM_{HC} photoproducts.

IRMPD experiments did not yield spectra indicative of multimer formation.

115 Samples analyzed by FT-ICR MS confirmed the presence of known bariated diagnostic product 116 ions, m/z 196 and m/z 139,⁶⁰ in the dark and irradiated DOM_{HC} . Figure 1 shows a heteroatom class graph 117 of the percent relative abundance of molecular formulas derived from FT-ICR MS data versus number of 118 oxygens per molecule (heteroatom class). Data for both dark (black) and irradiated (red and blue)

120 presented. The dark

5 121 (black) and irradiated (red)

DOM_{HC} samples are

- 5 IZI (black) and madiated
- $\begin{array}{ccc} 6 & 122 & DOM_{HC} \text{ samples both} \\ 7 & \end{array}$
- 8 123 contained O_x species
- ¹⁹ 124 cationized with one
- 1 125 barium atom, but only the
- $\frac{12}{3}$ 126 irradiated sample
- 44 127 contained O_x species
- $\frac{45}{46}$ **128** cationized with two
- $_{46}$ 128 cationized with two 47 129 barium atoms (blue).
- 4/ 129 barium atoms (blue).48
- 49 130 Notably, there is a shift to
- ⁵⁰
 131 higher oxygenated species

52132after irradiation from O_2 to O_{10} as observed in previous studies. $^{69, 72}$ Figure 1 also shows that the bariated53133acid species have a wide range of oxygen content. These data not only confirm that the barium55134derivatization was successful, but they also show the presence of two barium atoms complexed with the

O_x species. Because barium only forming adducts with COOHs.⁶⁰ the presence of two bound barium ions suggests that three acids are present in these species (two bariated and one free acid) to yield a singly charged species. Moreover, Duncan et al. (2016) confirmed that this technique was only selective to carboxylic groups containing hydrogen atoms located in the β and V positions,⁶⁰ Therefore, we can conclude with confidence that the compounds in the DOM_{HC} containing bariated adducts are indeed COOHs.

Figure 2 shows van Krevelen plots for all molecular formulas observed by FT-ICR MS (each dot on the plot) for the dark (a) and irradiated (b) DOM_{HC} bariated samples.

T20 Figure 2: van Krevelen plots derived from FT-ICR MS data for the

These data show that the bariated compounds span a large range of H/C and O/C. These data also show that there are more bariated compounds present in the irradiated versus the dark DOM_{HC} sample, confirming that more COOHs were present after sunlight

dark (left) and irradiated (right) DOM_{HC} bariated samples.

exposure. Therefore, we can conclude that sunlight exposure results in the production of COOHs that partition to the aqueous phase. This process can be problematic when the DOM_{HC} enters aquatic systems due to the persistence and toxicity of NAs^{26, 27, 34, 81} that are likely present among the carboxylated photoproducts. We also observed bariated compounds containing nitrogen and sulfur (Supporting S2), which have been previously reported for petroleum after light exposure.⁷⁸

Figure 3 compares dark and irradiated treatments as a function of DBE versus percent relative abundance

from the data derived from FT-ICR MS. There is a strong predominance of six to nine DBE heavily

represented in the irradiated treatment.

This result suggests that there are ring or aromatic species present in DOM_{HC} that are COOHs. Also, an increase in DBE was observed for the detected bariated species after irradiation. The increase in DBE after irradiation is for aqueous species and

occurs specifically because of oxygenation. The photoproducts become more water soluble due to the presence of carboxylic acids created by photochemistry. The higher DBE species in the oil are not very water soluble because of their large size and non-polar nature. These large molecules are susceptible to oxygenation, which results in solubilization in the aqueous layer. While photobleaching does occur, its time dependence is slower than that for the formation of the oxygenated species. The DBE data can help identify the different types of COOHs present in the samples before and after irradiated exposure. Figure 3 also shows the presence of DBE zero compounds, which may represent alcohols. Previous reports using this method with alcohols did not observe a signal for hydroxylated species;⁶⁰ however, the use of FT-ICR MS allows for ultra-high resolution enabling for these compounds to be resolved and detected. Since NAs are commonly identified by structure and Ba cationization is selective to COOHs⁶⁰ high resolution MS and MS-MS data can be used to postulate what possible NAs are produced in water from irradiated petroleum. Petroleum initially contains NAs that are predominantly alkyl substituted cycloaliphatic carboxylic acid with a mixture of acyclic aliphatic acids, olefinic, hydroxyl or dibasic acids.¹⁴ In addition to providing important new tools for assessing the behavior of oil in natural environments, this project also advances the understanding of barium adducts for analysis of COOHs in environmental, biological, and other samples.

Figure 4 shows the IRMPD data for the bariated DOM_{HC} after light treatment. IRMPD was used to verify the presence of m/z 196 which was the qualifier ion proposed by Duncan et al. (2016) for confirmation of the presence of COOHs in a sample.⁶⁰ Although m/z 196 was observed in low resolution MS so was m/z 197. FT-ICR MS was used to verify if the peaks observed at low resolution were correct. Figure 4 shows that when m/z 302.98108 with the formula $C_6H_{13}O_5Ba_1$, DBE = 1 was isolated, the

fragment m/z 196.9186 was observed. This mass corresponds to the formula $C_2H_3O_2^{138}Ba$ rather than $C_2H_2O_2^{137}Ba$ as reported by Duncan et al. (2016) for m/z 196, and represents a characteristic fragment of bariated COOHs. Figure S3 presents the m/z quad isolation vs. signal magnitude for m/z 196.918 for C₂H₃O₂¹³⁸Ba and shows all the precursor ions that yielded the fragment. These precursors are present over the whole mass range observed and represent carboxylic acid containing molecules formed by exposure of the oil to light.

Figure 4: IRMPD data from SWIFT isolation at m/z 302.98108 in bariated DOM_{HC} after light treatment showing the presence of m/z 196.9186.

CONCLUSION

NAs are regulated due to their toxicity and persistence in the environment. They are recalcitrant to biodegradation and photodegradation alone, making them persistent. This study provides a preliminary investigation into the presence of carboxylic acid photoproducts in DOM_{HC} generated from thin petroleum films first utilizing low resolution then verification using FT-ICR MS/IRMPD. Based on prior work, these photoproduced carboxylic acids likely contain naphthenic acids, which are known to be toxic. Other carboxylic acid photoproducts are also potentially toxic as their bioavailability is increased compared to their petroleum precursors. Data presented here show the existence of more bariated acid species in DOM_{HC} after solar treatment, demonstrating that photochemistry plays a role in the dissolution of petroleum derived COOHs. This transformation is an important factor to consider when petroleum comes in contact with sunlight and water, thereby making it bioavailable to surrounding ecosystems. The use of low-resolution MS to prescreen for COOHs provides a quick screening tool for water bodies contaminated by petroleum, and high-resolution MS can provide more compositional detail.

Acknowledgements

This work is supported by the National Science Foundation (CHE-1507295). PZ partially supported by Shell Global Solutions, Inc. A portion of this work was performed at the National High Magnetic Field Laboratory ICR User Facility, which is supported by the National Science Foundation Division of Chemistry through DMR-1644779 and the State of Florida. R. Ghannam was supported by the

1 2				
3	231	Underg	graduate Oscar J. Tolmas Scholar grant. Special thanks to the Chemical Analysis Mass	
4 5	232	Spectrometry (CAMS) Facility at the University of New Orleans.		
6	233	I		
7 8	234	Autho	r Contributions	
9				
10	235		anuscript was written through contributions of all authors. All authors have given approval to the	
11 12	236	final ve	ersion of the manuscript.	
13	237			
14 15	238	Confli	ict of interest	
16	239	There a	are no conflicts to declare.	
17 18	240			
19 20	241			
21	242	REFE	CRENCES	
22 23	243	1		
24	244 245	1.	W. T. Rockhold, <i>Toxicity of naphthenic acids and their metal salts</i> , <i>AMA Arch Ind Health</i> , 1955, 12 , 477-482	
25	245	2.	L. E. Peters, M. MacKinnon, T. Van Meer, M. R. van den Heuvel and D. G. Dixon,	
26 27	247	2.	Effects of oil sands process-affected waters and naphthenic acids on yellow perch (Perca	
28	248		flavescens) and Japanese medaka (Oryzias latipes) embryonic development,	
29	249		Chemosphere, 2007, 67, 2177-2183, 10.1016/j.chemosphere.2006.12.034	
30	250	3.	R. F. Young, W. V. Wismer and P. M. Fedorak, Estimating naphthenic acids	
31 22	251		concentrations in laboratory-exposed fish and in fish from the wild, Chemosphere, 2008,	
32 33	252		73 , 498-505, 10.1016/j.chemosphere.2008.06.040	
34	253	4.	R. J. Kavanagh, R. A. Frank, K. D. Oakes, M. R. Servos, R. F. Young, P. M. Fedorak, M.	
35	254		D. MacKinnon, K. R. Solomon, D. G. Dixon and G. Van Der Kraak, Fathead minnow	
36	255		(Pimephales promelas) reproduction is impaired in aged oil sands process-affected	
37	256		waters, Aquat. Toxicol., 2011, 101, 214-220, 10.1016/j.aquatox.2010.09.021	
38 39	257	5.	R. F. Young, L. M. Michel and P. M. Fedorak, Distribution of naphthenic acids in tissues	
40	258		of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in	
41	259		Alberta, Canada, Ecotoxicol. Environ. Saf., 2011, 74 , 889-896,	
42	260	C	10.1016/j.ecoenv.2010.12.009	
43	261	6.	B. Sansom, N. T. K. Vo, R. Kavanagh, R. Hanner, M. MacKinnon, D. G. Dixon and L. E.	
44 45	262 263		J. Lee, Rapid assessment of the toxicity of oil sands process-affected waters using fish cell lines, In Vitro Cell. Dev. Biol.: Anim., 2013, 49, 52-65, 10.1007/s11626-012-9570-4	
46	265	7.	K. Petersen, M. T. Hultman, S. J. Rowland and K. E. Tollefsen, <i>Toxicity of organic</i>	
47	265	7.	compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes,	
48	266		Aquat Toxicol, 2017, 190 , 150-161, 10.1016/j.aquatox.2017.06.007	
49 50	267	8.	S. S. Leung, M. D. MacKinnon and R. E. H. Smith, <i>The ecological effects of naphthenic</i>	
50 51	268	0.	acids and salts on phytoplankton from the Athabasca oil sands region, Aquat. Toxicol.,	
52	269		2003, 62 , 11-26, 10.1016/S0166-445X(02)00057-7	
53	270	9.	ML. Gentes, C. Waldner, Z. Papp and J. E. G. Smits, <i>Effects of Exposure to Naphthenic</i>	
54 55 56	271		Acids in Tree Swallows (Tachycineta bicolor) on the Athabasca Oil Sands, Alberta,	
57 58				
59				

2			
3	272		Canada, J. Toxicol. Environ. Health, Part A, 2007, 70, 1182-1190,
4	273		10.1080/15287390701252709
5	274	10.	J. V. Headley, K. M. Peru, S. A. Armstrong, X. Han, J. W. Martin, M. M. Mapolelo, D.
6 7	275		F. Smith, R. P. Rogers and A. G. Marshall, <i>Aquatic plant-derived changes in oil sands</i>
8	276		naphthenic acid signatures determined by low-, high- and ultrahigh-resolution mass
9	277		spectrometry, Rapid Commun. Mass Spectrom., 2009, 23, 515-522, 10.1002/rcm.3902
10	278	11.	L. A. Phillips, S. A. Armstrong, J. V. Headley, C. W. Greer and J. J. Germida, <i>Shifts in</i>
11	279	11.	root-associated microbial communities of Typha latifolia growing in naphthenic acids
12	280		and relationship to plant health, Int. J. Phytorem., 2010, 12 , 745-760,
13	280		10.1080/15226510903535106
14	281	12.	S. J. Rowland, A. G. Scarlett, D. Jones, C. E. West and R. A. Frank, <i>Diamonds in the</i>
15 16		12.	
16 17	283		Rough: Identification of Individual Naphthenic Acids in Oil Sands Process Water,
18	284	10	Environ. Sci. Technol., 2011, 45 , 3154-3159, 10.1021/es103721b
19	285	13.	A. S. Abdalrhman, S. O. Ganiyu and M. Gamal El-Din, <i>Degradation kinetics and</i>
20	286		structure-reactivity relation of naphthenic acids during anodic oxidation on graphite
21	287		electrodes, Chem. Eng. J. (Amsterdam, Neth.), 2019, 370 , 997-1007,
22	288		10.1016/j.cej.2019.03.281
23	289	14.	J. V. Headley and D. W. McMartin, A Review of the Occurrence and Fate of Naphthenic
24	290		Acids in Aquatic Environments, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst.
25 26	291		Environ. Eng., 2004, A39, 1989-2010, 10.1081/ESE-120039370
26 27	292	15.	J. V. Headley, K. M. Peru and M. P. Barrow, Mass spectrometric characterization of
28	293		naphthenic acids in environmental samples: a review, Mass Spectrom. Rev., 2009, 28,
29	294		121-134, 10.1002/mas.20185
30	295	16.	A. G. Shepherd, V. van Mispelaar, J. Nowlin, W. Genuit and M. Grutters, Analysis of
31	296		Naphthenic Acids and Derivatization Agents Using Two-Dimensional Gas
32	297		Chromatography and Mass Spectrometry: Impact on Flow Assurance Predictions [†] ,
33	298		<i>Energy & Fuels</i> , 2010, 24 , 2300-2311, 10.1021/ef900949m
34 25	299	17.	M. P. Barrow, M. Witt, J. V. Headley and K. M. Peru, Athabasca Oil Sands Process
35 36	300		Water: Characterization by Atmospheric Pressure Photoionization and Electrospray
37	301		Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Anal. Chem.
38	302		(Washington, DC, U. S.), 2010, 82, 3727-3735, 10.1021/ac100103y
39	303	18.	J. V. Headley, M. P. Barrow, K. M. Peru, B. Fahlman, R. A. Frank, G. Bickerton, M. E.
40	304		McMaster, J. Parrott and L. M. Hewitt, Preliminary fingerprinting of Athabasca oil sands
41	305		polar organics in environmental samples using electrospray ionization Fourier transform
42	306		ion cyclotron resonance mass spectrometry, Rapid Communications in Mass
43 44	307		Spectrometry, 2011, 25, 1899-1909, 10.1002/rcm.5062
44 45	308	19.	J. V. Headley, K. M. Peru, M. H. Mohamed, R. A. Frank, J. W. Martin, R. R. O.
46	309		Hazewinkel, D. Humphries, N. P. Gurprasad, L. M. Hewitt, D. C. G. Muir, D. Lindeman,
47	310		R. Strub, R. F. Young, D. M. Grewer, R. M. Whittal, P. M. Fedorak, D. A. Birkholz, R.
48	311		Hindle, R. Reisdorph, X. Wang, K. L. Kasperski, C. Hamilton, M. Woudneh, G. Wang,
49	312		B. Loescher, A. Farwell, D. G. Dixon, M. Ross, A. D. S. Pereira, E. King, M. P. Barrow,
50	313		B. Fahlman, J. Bailey, D. W. McMartin, C. H. Borchers, C. H. Ryan, N. S. Toor, H. M.
51	314		Gillis, L. Zuin, G. Bickerton, M. McMaster, E. Sverko, D. Shang, L. D. Wilson and F. J.
52 53	315		Wrona, Chemical fingerprinting of naphthenic acids and oil sands process waters. A
53 54	316		review of analytical methods for environmental samples, J. Environ. Sci. Health, Part A:
55	510		i chen of unarguear memous for environmental samples, J. Environ. Set. Heatin, I and A.
56			
57			

1			
2 3	a		
4	317		<i>Toxic/Hazard. Subst. Environ. Eng.</i> , 2013, 48 , 1145-1163,
5	318	• •	10.1080/10934529.2013.776332
6	319	20.	M. P. Barrow, K. M. Peru, B. Fahlman, L. M. Hewitt, R. A. Frank and J. V. Headley,
7	320		Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and
8	321		the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier
9	322		Transform Ion Cyclotron Resonance Mass Spectrometry, J. Am. Soc. Mass Spectrom.,
10	323		2015, 26 , 1508-1521, 10.1007/s13361-015-1188-9
11 12	324	21.	D. d. O. Livera, T. Leshuk, K. M. Peru, J. V. Headley and F. Gu, Structure-reactivity
12	325		relationship of naphthenic acids in the photocatalytic degradation process,
14	326		Chemosphere, 2018, 200, 180-190, 10.1016/j.chemosphere.2018.02.049
15	327	22.	A. S. Pereira, S. Bhattacharjee and J. W. Martin, Characterization of Oil Sands Process-
16	328		Affected Waters by Liquid Chromatography Orbitrap Mass Spectrometry, Environ. Sci.
17	329		Technol., 2013, 47, 5504-5513, 10.1021/es401335t
18	330	23.	I. Omari, H. Zhu, G. B. McGarvey and J. S. McIndoe, Acid-selective mass spectrometric
19	331		analysis of petroleum fractions, International Journal of Mass Spectrometry, 2019, 435,
20 21	332		315-320, 10.1016/j.ijms.2018.10.029
21	333	24.	M. P. Barrow, L. A. McDonnell, X. Feng, J. Walker and P. J. Derrick, <i>Determination of</i>
23	334		the Nature of Naphthenic Acids Present in Crude Oils Using Nanospray Fourier
24	335		Transform Ion Cyclotron Resonance Mass Spectrometry: The Continued Battle Against
25	336		Corrosion, Anal. Chem., 2003, 75 , 860-866, 10.1021/ac020388b
26	337	25.	R. J. Kavanagh, B. K. Burnison, R. A. Frank, K. R. Solomon and G. Van Der Kraak,
27	338		Detecting oil sands process-affected waters in the Alberta oil sands region using
28	339		synchronous fluorescence spectroscopy, Chemosphere, 2009, 76 , 120-126,
29 30	340		10.1016/j.chemosphere.2009.02.007
30 31	341	26.	R. A. Frank, K. Fischer, R. Kavanagh, B. K. Burnison, G. Arsenault, J. V. Headley, K.
32	342	20.	M. Peru, G. Van Der Kraak and K. R. Solomon, <i>Effect of Carboxylic Acid Content on the</i>
33	343		Acute Toxicity of Oil Sands Naphthenic Acids, Environ. Sci. Technol., 2009, 43, 266-271,
34	344		10.1021/es8021057
35	345	27.	J. S. Clemente and P. M. Fedorak, A review of the occurrence, analyses, toxicity, and
36	346	21.	biodegradation of naphthenic acids, Chemosphere, 2005, 60 , 585-600,510.1016,
37	347		10.1016/j.chemosphere.2005.02.065
38 39	348	28.	R. F. Young, E. A. Orr, G. G. Goss and P. M. Fedorak, <i>Detection of naphthenic acids in</i>
40	349	20.	fish exposed to commercial naphthenic acids and oil sands process-affected water,
41	349		<i>Chemosphere</i> , 2007, 68 , 518-527, 10.1016/j.chemosphere.2006.12.063
42	351	29.	C. Li, L. Fu, J. Stafford, M. Belosevic and M. Gamal El-Din, <i>The toxicity of oil sands</i>
43		29.	
44	352		process-affected water (OSPW): A critical review, Sci. Total Environ., 2017, 601-602, 1785, 1802, 10, 1016/i agitatemy, 2017, 06, 024
45	353	20	1785-1802, 10.1016/j.scitotenv.2017.06.024
46	354	30.	A. J. Bartlett, R. A. Frank, P. L. Gillis, J. L. Parrott, J. R. Marentette, L. R. Brown, T.
47 48	355		Hooey, R. Vanderveen, R. McInnis, P. Brunswick, D. Shang, J. V. Headley, K. M. Peru
49	356		and L. M. Hewitt, <i>Toxicity of naphthenic acids to invertebrates: Extracts from oil sands</i>
50	357		process-affected water versus commercial mixtures, Environ. Pollut. (Oxford, U. K.),
51	358	01	2017, 227 , 271-279,210.1016, 10.1016/j.envpol.2017.04.056
52	359	31.	B. Kilgour, A. Mahaffey, C. Brown, S. Hughes, C. Hatry and L. Hamilton, Variation in
53	360		toxicity and ecological risks associated with some oil sands groundwaters, Sci. Total
54	361		Environ., 2019, 659, 1224-1233, 10.1016/j.scitotenv.2018.12.287
55 56			
50 57			
58			

1			
2 3	262	22	
4	362	32.	D. C. Podgorski, P. Zito, J. T. McGuire, D. Martinovic-Weigelt, I. M. Cozzarelli, B. A.
5	363		Bekins and R. G. M. Spencer, <i>Examining Natural Attenuation and Acute Toxicity of</i>
6	364		Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy, Environ. Sci.
7	365	22	<i>Technol.</i> , 2018, 52 , 6157-6166, 10.1021/acs.est.8b00016
8	366	33.	J. M. E. Ahad, H. Pakdel, M. M. Savard, A. I. Calderhead, P. R. Gammon, A. Rivera, K.
9 10	367		M. Peru and J. V. Headley, <i>Characterization and Quantification of Mining-Related</i>
11	368		Naphthenic Acids in Groundwater near a Major Oil Sands Tailings Pond, Environ. Sci.
12	369	2.4	<i>Technol.</i> , 2013, 47 , 5023-5030, 10.1021/es3051313
13	370	34.	M. E. Alberts, G. Chua and D. G. Muench, <i>Exposure to naphthenic acids and the acid</i>
14	371		extractable organic fraction from oil sands process-affected water alters the subcellular
15	372		structure and dynamics of plant cells, Sci. Total Environ., 2019, 651, 2830-
16	373	25	2844,2810.1016, 10.1016/j.scitotenv.2018.10.181
17 18	374	35.	M. P. Barrow, J. V. Headley, K. M. Peru and P. J. Derrick, <i>Fourier transform ion</i>
19	375		cyclotron resonance mass spectrometry of principal components in oilsands naphthenic
20	376	0.6	acids, J. Chromatogr. A, 2004, 1058 , 51-59,10.1016, 10.1016/j.chroma.2004.08.082
21	377	36.	L. D. Brown and A. C. Ulrich, <i>Oil sands naphthenic acids: A review of properties</i> ,
22	378		measurement, and treatment, Chemosphere, 2015, 127 , 276-290,210.1016,
23	379		10.1016/j.chemosphere.2015.02.003
24	380	37.	M. P. Barrow, J. V. Headley, K. M. Peru and P. J. Derrick, <i>Data Visualization for the</i>
25 26	381		Characterization of Naphthenic Acids within Petroleum Samples, Energy Fuels, 2009,
20	382		23 , 2592-2599, 10.1021/ef800985z
28	383	38.	C. S. Hsu, G. J. Dechert, W. K. Robbins and E. K. Fukuda, Naphthenic acids in crude
29	384		oils characterized by mass spectrometry, Energy Fuels, 2000, 14, 217-223,
30	385		10.1021/ef9901746
31	386	39.	D. M. Jones, J. S. Watson, W. Meredith, M. Chen and B. Bennett, Determination of
32	387		naphthenic acids in crude oils using nonaqueous ion exchange solid-phase extraction,
33 34	388		Anal. Chem., 2001, 73 , 703-707, 10.1021/ac000621a
35	389	40.	N. A. Tomczyk, R. E. Winans, J. H. Shinn and R. C. Robinson, On the nature and origin
36	390		of acidic species in petroleum. 1. Detailed acid type distribution in a California crude oil,
37	391		<i>Energy Fuels</i> , 2001, 15 , 1498-1504, 10.1021/ef010106v
38	392	41.	Y. Wan, B. Wang, J. S. Khim, S. Hong, W. J. Shim and J. Hu, Naphthenic Acids in
39	393		Coastal Sediments after the Hebei Spirit Oil Spill: A Potential Indicator for Oil
40 41	394		Contamination, Environ. Sci. Technol., 2014, 48, 4153-4162, 10.1021/es405034y
41 42	395	42.	M. H. Mohamed, L. D. Wilson, J. V. Headley and K. M. Peru, Screening of oil sands
43	396		naphthenic acids by UV-Vis absorption and fluorescence emission spectrophotometry, J.
44	397		Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2008, 43, 1700-1705,
45	398		10.1080/10934520802330255
46	399	43.	F. M. Holowenko, M. D. MacKinnon and P. M. Fedorak, Characterization of naphthenic
47	400		acids in oil sands wastewaters by gas chromatography-mass spectrometry, Water Res.,
48	401		2002, 36 , 2843-2855, 10.1016/S0043-1354(01)00492-4
49 50	402	44.	M. J. Wilde, C. E. West, A. G. Scarlett, D. Jones, R. A. Frank, L. M. Hewitt and S. J.
50	403		Rowland, Bicyclic naphthenic acids in oil sands process water: Identification by
52	404		comprehensive multidimensional gas chromatography-mass spectrometry, J.
53	405		Chromatogr. A, 2015, 1378, 74-87, 10.1016/j.chroma.2014.12.008
54	406	45.	K. Qian, W. K. Robbins, C. A. Hughey, H. J. Cooper, R. P. Rodgers and A. G. Marshall,
55	407		Resolution and identification of elemental compositions for more than 3000 crude acids
56 57			
57 58			
50			

1			
2 3	400		
4	408		in heavy petroleum by negative-ion microelectrospray high-field Fourier Transform ion
5	409		cyclotron resonance mass spectrometry, Energy Fuels, 2001, 15 , 1505-1511,
6	410	4.6	10.1021/ef010111z
7	411	46.	C. A. Hughey, C. S. Minardi, S. A. Galasso-Roth, G. B. Paspalof, M. M. Mapolelo, R. P.
8	412		Rodgers, A. G. Marshall and D. L. Ruderman, Naphthenic acids as indicators of crude
9	413		oil biodegradation in soil, based on semi-quantitative electrospray ionization Fourier
10 11	414		transform ion cyclotron resonance mass spectrometry, Rapid Commun. Mass Spectrom.,
12	415		2008, 22 , 3968-3976, 10.1002/rcm.3813
13	416	47.	D. F. Smith, T. M. Schaub, S. Kim, R. P. Rodgers, P. Rahimi, A. Teclemariam and A. G.
14	417		Marshall, Characterization of Acidic Species in Athabasca Bitumen and Bitumen Heavy
15	418		Vacuum Gas Oil by Negative-Ion ESI FT-ICR MS with and without Acid-Ion Exchange
16	419		Resin Prefractionation, Energy Fuels, 2008, 22, 2372-2378, 10.1021/ef8000345
17	420	48.	J. V. Headley, K. M. Peru, S. Mishra, V. Meda, A. K. Dalai, D. W. McMartin, M. M.
18	421		Mapolelo, R. P. Rodgers and A. G. Marshall, Characterization of oil sands naphthenic
19 20	422		acids treated with ultraviolet and microwave radiation by negative ion electrospray
20 21	423		Fourier transform ion cyclotron resonance mass spectrometry, Rapid Commun. Mass
22	424		Spectrom., 2010, 24, 3121-3126, 10.1002/rcm.4754
23	425	49.	W. K. Robbins, A. M. McKenna, M. M. Mapolelo, D. R. Smith, L. A. Stanford, R. P.
24	426		Rodgers and A. G. Marshall, presented in part at the Prepr Am. Chem. Soc., Div.
25	427		Energy Fuels, //, 2012.
26	428	50.	J. V. Headley, K. M. Peru, M. H. Mohamed, L. Wilson, D. W. McMartin, M. M.
27	429		Mapolelo, V. V. Lobodin, R. P. Rodgers and A. G. Marshall, <i>Electrospray Ionization</i>
28 29	430		Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of
30	431		Tunable Carbohydrate-Based Materials for Sorption of Oil Sands Naphthenic Acids,
31	432		Energy Fuels, 2013, 27, 1772-1778, 10.1021/ef3014713
32	433	51.	J. V. Headley, K. M. Peru, M. H. Mohamed, L. Wilson, D. W. McMartin, M. M.
33	434		Mapolelo, V. V. Lobodin, R. P. Rodgers and A. G. Marshall, Atmospheric pressure
34	435		photoionization fourier transform ion cyclotron resonance mass spectrometry
35	436		characterization of tunable carbohydrate-based materials for sorption of oil sands
36 37	437		naphthenic acids, Energy Fuels, 2014, 28, 1611-1616, 10.1021/ef401640n
37 38	438	52.	N. Sun, P. Chelme-Ayala, N. Klamerth, K. N. McPhedran, M. S. Islam, L. Perez-Estrada,
39	439		P. Drzewicz, B. J. Blunt, M. Reichert, M. Hagen, K. B. Tierney, M. Belosevic and M.
40	440		Gamal El-Din, Advanced Analytical Mass Spectrometric Techniques and Bioassays to
41	441		Characterize Untreated and Ozonated Oil Sands Process-Affected Water, Environ. Sci.
42	442		<i>Technol.</i> , 2014, 48 , 11090-11099, 10.1021/es503082j
43	443	53.	K. M. Peru, M. J. Thomas, D. C. Palacio Lozano, D. W. McMartin, J. V. Headley and M.
44	444	55.	P. Barrow, Characterization of oil sands naphthenic acids by negative-ion electrospray
45 46	445		ionization mass spectrometry: Influence of acidic versus basic transfer solvent,
47	446		<i>Chemosphere</i> , 2019, 222 , 1017-1024, 10.1016/j.chemosphere.2019.01.162
48	447	54.	J. M. Gutierrez-Villagomez, J. Vazquez-Martinez, E. Ramirez-Chavez, J. Molina-Torres
49	448	54.	and V. L. Trudeau, Analysis of naphthenic acid mixtures as pentafluorobenzyl derivatives
50	449		by gas chromatography-electron impact mass spectrometry, Talanta, 2017, 162 , 440-452,
51	450		10.1016/j.talanta.2016.10.057
52	450 451	55.	C. Hao, J. V. Headley, K. M. Peru, R. Frank, P. Yang and K. R. Solomon,
53 54	451 452	55.	C. Hao, J. V. Headley, K. M. Ferd, K. Frank, F. Tang and K. K. Solomon, Characterization and pattern recognition of oil–sand naphthenic acids using
54 55	472		Characterization and pattern recognition of oil-sand hapminenic actas using
56			
57			
58			

2			
3	453		comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry,
4	454		Journal of Chromatography A, 2005, 1067 , 277-284, 10.1016/j.chroma.2005.01.041
5 6	455	56.	M. C. Vaz de Campos, E. C. Oliveira, P. J. S. Filho, C. M. S. Piatnicki and E. B.
о 7	456		Caramão, Analysis of tert-butyldimethylsilyl derivatives in heavy gas oil from brazilian
8	457		naphthenic acids by gas chromatography coupled to mass spectrometry with electron
9	458		impact ionization, Journal of Chromatography A, 2006, 1105 , 95-105,
10	459		10.1016/j.chroma.2005.07.040
11	460	57.	J. A. Zirrolli, E. Davoli, L. Bettazzoli, M. Gross and R. C. Murphy, <i>Fast atom</i>
12	461	011	bombardment and collision-induced dissociation of prostaglandins and thromboxanes:
13	462		some examples of charge remote fragmentation, J. Am. Soc. Mass Spectrom., 1990, 1,
14 15	463		325-335, 10.1016/1044-0305(90)85009-b
16	464	58.	N. Zehethofer, D. M. Pinto and D. A. Volmer, <i>Plasma free fatty acid profiling in a fish</i>
17	465	001	oil human intervention study using ultra-performance liquid
18	466		chromatography/electrospray ionization tandem mass spectrometry, Rapid
19	467		Communications in Mass Spectrometry, 2008, 22 , 2125-2133, 10.1002/rcm.3597
20	468	59.	J. S. Crockett, M. L. Gross, W. W. Christie and R. T. Holman, <i>Collisional activation of a</i>
21	469	07.	series of homoconjugated octadecadienoic acids with fast atom bombardment and
22 23	470		tandem mass spectrometry, J. Am. Soc. Mass Spectrom., 1990, 1, 183-191, 10.1016/1044-
24	471		0305(90)85055-q
25	472	60.	K. D. Duncan, D. A. Volmer, C. G. Gill and E. T. Krogh, <i>Rapid Screening of Carboxylic</i>
26	473	00.	Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and
27	474		On-Line Membrane Sampling, Journal of The American Society for Mass Spectrometry,
28	475		2016, 27 , 443-450, 10.1007/s13361-015-1311-y
29 30	476	61.	R. J. Corrêa, D. Severino, R. d. S. Souza, E. F. de Santana, L. L. Mauro, S. D. S.
30 31	477	01.	Alvarenga and D. E. Nicodem, <i>The generation of singlet oxygen by petroleum and its</i>
32	478		fractions, Journal of Photochemistry and Photobiology A: Chemistry, 2012, 236 , 9-13,
33	479		10.1016/j.jphotochem.2012.02.019
34	480	62.	D. E. Nicodem, C. L. B. Guedes and R. J. Correa, <i>Photochemistry of petroleum I</i> .
35	481	02.	Systematic study of a Brazilian intermediate crude oil, Mar. Chem., 1998, 63 , 93-104,
36	482		10.1016/S0304-4203(98)00053-X
37 38	483	63.	P. F. Pesarini, R. G. S. de Souza, R. J. Corrêa, D. E. Nicodem and N. C. de Lucas,
39	484	05.	Asphaltene concentration and compositional alterations upon solar irradiation of
40	485		petroleum, Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214 , 48-53,
41	486		10.1016/j.jphotochem.2010.06.005
42	487	64.	C. Aeppli, C. Carmichael, R. K. Nelson, K. L. Lemkau, W. M. Graham, M. C. Redmond,
43	488	011	D. L. Valentine and C. M. Reddy, <i>Oil Weathering after the Deepwater Horizon Disaster</i>
44 45	489		Led to the Formation of Oxygenated Residues, Environ. Sci. Technol., 2012, 46, 8799-
45 46	490		8807
47	491	65.	C. Aeppli, R. K. Nelson, C. A. Carmichael, N. Arakawa, L. I. Aluwihare, D. L. Valentine
48	492	05.	and C. M. Reddy, 2013.
49	493	66.	C. Aeppli, M. Berg, O. A. Cirpka, C. Holliger, R. P. Schwarzenbach and T. B. Hofstetter,
50	494	50.	Influence of Mass-Transfer Limitations on Carbon Isotope Fractionation during
51	495		Microbial Dechlorination of Trichloroethene, Environ. Sci. Technol., 2009, 43 , 8813-
52 53	496		8820, 10.1021/es901481b
55 54			
55			
56			
57			
50			

2			
3	497	67.	S. M. King, P. A. Leaf, A. C. Olson, P. Z. Ray and M. A. Tarr, Photolytic and
4 5	498		photocatalytic degradation of surface oil from the Deepwater Horizon spill,
6	499		Chemosphere, 2014, 95, 415-422, 10.1016/j.chemosphere.2013.09.060
7	500	68.	S. M. King, P. A. Leaf and M. A. Tarr, <i>Photochemistry of Deepwater Horizon Oil</i> , ACS
8	501		Symp. Ser., 2011, 1086 , 81-95, 10.1021/bk-2011-1086.ch006
9	502	69.	P. Zito, D. C. Podgorski, J. Johnson, H. Chen, R. P. Rodgers, F. Guillemette, A. M.
10	503		Kellerman, R. G. M. Spencer and M. A. Tarr, Molecular-Level Composition and Acute
11 12	504		Toxicity of Photosolubilized Petrogenic Carbon, Environmental science & technology,
12 13	505		2019, DOI: 10.1021/acs.est.9b01894, 10.1021/acs.est.9b01894
14	506	70.	B. H. Harriman, P. Zito, D. C. Podgorski, M. A. Tarr and J. M. Suflita, Impact of
15	507		Photooxidation and Biodegradation on the Fate of Oil Spilled During the Deepwater
16	508		Horizon Incident: Advanced Stages of Weathering, Environmental science & technology,
17	509		2017, 51 , 7412-7421, 10.1021/acs.est.7b01278
18	510	71.	P. Zito, D. C. Podgorski, T. Bartges, F. Guillemette, J. A. Roebuck, R. G. M. Spencer, R.
19 20	511		P. Rodgers and M. A. Tarr, Sunlight induced molecular progression of oil into oxidized
20 21	512		oil soluble species, interfacial material, and dissolved organic matter, Energ. Fuel, 2020,
21	513		34 , 4721–4726, 10.1021/acs.energyfuels.9b04408
23	514	72.	P. Z. Ray, H. Chen, D. C. Podgorski, A. M. McKenna and M. A. Tarr, Sunlight creates
24	515		oxygenated species in water-soluble fractions of Deepwater horizon oil, Journal of
25	516		Hazardous Materials, 2014, 280, 636-643, 10.1016/j.jhazmat.2014.08.059
26	517	73.	X. Cao and M. A. Tarr, Aldehyde and Ketone Photoproducts from Solar-Irradiated
27	518		Crude Oil–Seawater Systems Determined by Electrospray Ionization–Tandem Mass
28 29	519		Spectrometry, Environmental science & technology, 2017, 51, 11858-11866,
29 30	520		10.1021/acs.est.7b01991
31	521	74.	V. V. Rogers, K. Liber and M. D. MacKinnon, Isolation and characterization of
32	522		naphthenic acids from Athabasca oil sands tailings pond water, Chemosphere, 2002, 48,
33	523		519-527, 10.1016/S0045-6535(02)00133-9
34	524	75.	J. V. Headley, K. M. Peru, M. P. Barrow and P. J. Derrick, <i>Characterization of</i>
35	525		Naphthenic Acids from Athabasca Oil Sands Using Electrospray Ionization: The
36 37	526		Significant Influence of Solvents, Anal. Chem. (Washington, DC, U. S.), 2007, 79, 6222-
38	527		6229, 10.1021/ac070905w
39	528	76.	J. W. Martin, X. Han, K. M. Peru and J. V. Headley, Comparison of high- and low-
40	529		resolution electrospray ionization mass spectrometry for the analysis of naphthenic acid
41	530		mixtures in oil sands process water, Rapid Commun. Mass Spectrom., 2008, 22, 1919-
42	531		1924, 10.1002/rcm.3570
43	532	77.	A. C. Scott, R. F. Young and P. M. Fedorak, Comparison of GC-MS and FTIR methods
44 45	533		for quantifying naphthenic acids in water samples, Chemosphere, 2008, 73 , 1258-1264,
45 46	534		10.1016/j.chemosphere.2008.07.024
47	535	78.	M. T. Griffiths, R. D. Campo, P. B. O'Conner and M. P. Barrow, <i>Throwing Light on</i>
48	536	,	Petroleum: Simulated Exposure of Crude Oil to Sunlight and Characterization Using
49	537		Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance
50	538		Mass Spectrometry., Analytical chemistry, 2014, 86 , 527-534, 10.1021/ac4025335
51	539	79.	H. A. Alharbi, D. M. V. Saunders, A. Al-Mousa, J. Alcorn, A. S. Pereira, J. W. Martin, J.
52 53	540	12.	P. Giesy and S. B. Wiseman, <i>Inhibition of ABC transport proteins by oil sands process</i>
55 54	541		affected water, Aquat. Toxicol., 2016, 170 , 81-88,10.1016,
55	542		10.1016/j.aquatox.2015.11.013
56	372		1011010, Juquuton 2010, 11, 010
57			
58			
59			

2			
3	543	80.	J. C. Anderson, S. B. Wiseman, N. Wang, A. Moustafa, L. Perez-Estrada, M. Gamal El-
4	544	00.	Din, J. W. Martin, K. Liber and J. P. Giesy, <i>Effectiveness of Ozonation Treatment in</i>
5	545		Eliminating Toxicity of Oil Sands Process-Affected Water to Chironomus dilutus,
6	546		<i>Environ. Sci. Technol.</i> , 2012, 46 , 486-493, 10.1021/es202415g
7	547	81.	S. A. Armstrong, J. V. Headley, K. M. Peru, R. J. Mikula and J. J. Germida, <i>Phytotoxicity</i>
8 9	548	01.	and naphthenic acid dissipation from oil sands fine tailings treatments planted with the
10			
11	549		emergent macrophyte Phragmites australis, J. Environ. Sci. Health, Part A:
12	550	00	<i>Toxic/Hazard. Subst. Environ. Eng.</i> , 2010, 45 , 1008-1016, 10.1080/10934521003772436
13	551	82.	A. E. Bauer, L. M. Hewitt, J. L. Parrott, A. J. Bartlett, P. L. Gillis, L. E. Deeth, M. D.
14	552		Rudy, R. Vanderveen, L. Brown, S. D. Campbell, M. R. Rodrigues, A. J. Farwell, D. G.
15	553		Dixon and R. A. Frank, The toxicity of organic fractions from aged oil sands process-
16	554		affected water to aquatic species, Sci. Total Environ., 2019, 669 , 702-710,
17	555		10.1016/j.scitotenv.2019.03.107
18	556	83.	F. Gagne, M. Douville, C. Andre, T. Debenest, A. Talbot, J. Sherry, L. M. Hewitt, R. A.
19 20	557		Frank, M. E. McMaster, J. Parrott and G. Bickerton, Differential changes in gene
20 21	558		expression in rainbow trout hepatocytes exposed to extracts of oil sands process-affected
22	559		water and the Athabasca River, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol.,
23	560		2012, 155 , 551-559, 10.1016/j.cbpc.2012.01.004
24	561	84.	D. Jones, A. G. Scarlett, C. E. West and S. J. Rowland, <i>Toxicity of Individual Naphthenic</i>
25	562		Acids to Vibrio fischeri, Environ. Sci. Technol., 2011, 45, 9776-9782, 10.1021/es201948j
26	563	85.	P. Brunswick, L. M. Hewitt, R. A. Frank, G. van Aggelen, M. Kim and D. Shang,
27	564	001	Specificity of high resolution analysis of naphthenic acids in aqueous environmental
28	565		<i>matrices, Anal. Methods,</i> 2016, 8 , 6764-6773, 10.1039/c6ay01912a
29	566	86.	P. Brunswick, D. Shang, G. van Aggelen, R. Hindle, L. M. Hewitt, R. A. Frank, M.
30 31	567	00.	Haberl and M. Kim, <i>Trace analysis of total naphthenic acids in aqueous environmental</i>
32	568		matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass
33			
34	569		spectrometry direct injection, J. Chromatogr. A, 2015, 1405 , 49-71,10.1016, 10.1016/j.chrome. 2015.05.048
35	570	07	10.1016/j.chroma.2015.05.048
36	571	87.	A. Celsie, J. M. Parnis and D. MacKay, Impact of temperature, pH, and salinity changes
37	572		on the physico-chemical properties of model naphthenic acids, Chemosphere, 2016, 146,
38	573	00	40-50,10.1016, 10.1016/j.chemosphere.2015.11.122
39	574	88.	T. Dittmar, B. Koch, N. Hertkorn and G. Kattner, A simple and efficient method for the
40	575		solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater, Limnol.
41 42	576		Oceanogr-Meth., 2008, 6, 230-235, 10.4319/lom.2008.6.230
42 43	577	89.	N. K. Kaiser, J. P. Quinn, G. T. Blakney, C. L. Hendrickson and A. G. Marshall, A novel
44	578		9.4 tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass
45	579		range, J. Am. Soc. Mass Spectrom., 2011, 22, 1343-1351, 10.1007/s13361-011-0141-9
46	580	90.	G. T. Blakney, C. L. Hendrickson and A. G. Marshall, Predator data station: A fast data
47	581		acquisition system for advanced FT-ICR MS experiments, Int. J. Mass Spectrom., 2011,
48	582		306 , 246-252, 10.1016/j.ijms.2011.03.009
49	583	91.	Y. Corilo, Journal, 2015.
50	584	92.	S. Guan and A. G. Marshall, Stored waveform inverse Fourier transform (SWIFT) ion
51 52	585	-	excitation in trapped-ion mass spectometry: Theory and applications, International
52 53	586		Journal of Mass Spectrometry and Ion Processes, 1996, 157-158, 5-37,
55 54	587		https://doi.org/10.1016/S0168-1176(96)04461-8
55	588		
56	589		
57			
58			
50			

1			
2			
3	590		
1 2 3 4 5 6 7 8	550		
5			
6			
7			
8			
9			
10			
11			
12			
13			
14 15			
15 16			
16 17			
18			
19			
20			
21			
21 22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34 25			
35			
36 37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53 54			
54 55			
55 56			
50 57			
58			
59			

Photochemistry plays a role in the dissolution of petroleum derived carboxylic acids.

129x50mm (96 x 96 DPI)