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ENVIRONMENTAL SIGNIFICANCE STATEMENT 

Naphthenic acids (NAs) are widely present in crude oil and are being regulated due to their toxicity and 
persistence in the environment.  NA’s are a class of carboxylic acids (COOHs) defined by their structure 
and number of carbon atoms.  Screening for COOHs in oil contaminated waters is important when 
tracking the harmful effects of water-soluble petroleum products formed from sunlight.  It is well-known 
sunlight increases bioavailability and often toxicity of oil spilled in aquatic systems, but there is still much 
unknown about the composition of the photoproducts, including COOHs.  Barium ion adduct chemistry 
offers an elegant way to screen for COOHs in petroleum polluted waters. 
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 9 
ABSTRACT 10 

Petroleum derived dissolved organic matter (DOMHC) samples were successfully cationized with barium, 11 

revealing many [M-H+Ba]+ peaks in both dark and simulated sunlight treatments. The DOMHC samples 12 

generated after light exposure exhibited a greater number of [M-H+Ba]+ peaks compared to the dark 13 

control. Multiple [M-H+Ba]+ peaks were investigated in the irradiated DOMHC using low resolution 14 

MS/MS in order to confirm the presence of diagnostic fragment ions, m/z 139, 155 and 196 in each 15 

treatment.  Due to the high complexity of the bariated DOMHC mixture, Fourier transform ion cyclotron 16 

resonance mass spectrometry (FT-ICR MS/MS) was employed to obtain molecular level information for 17 

both irradiated and dark treatments.  The irradiated DOMHC treatments had more bariated oxygenated 18 

species over a wide range of H/C and O/C ratios when compared to the dark controls.  Doubly bariated 19 

species were also observed in DOMHC, which provides evidence that photochemistry transforms DOMHC 20 

to even more complex mixtures with multiple oxygenations per molecule.  This study provides evidence 21 

that barium adduct mass spectrometry can be successfully applied to DOMHC screening for the presence 22 

of COOHs, both in dark samples and solar irradiated samples.  Furthermore, direct evidence and 23 

molecular composition of aqueous phase crude oil photoproducts is provided by this technique. 24 

INTRODUCTION 25 

Petroleum derived naphthenic acids (NAs) are a class of carboxylic acid (COOHs) compounds 26 

known for their toxicity to aquatic life,1-7 vegetation8-11 and for their persistence in the environment.12-15  27 

Headley and McMartin (2004) define NAs as alkyl substituted cycloaliphatic carboxylic acids (COOHs) 28 

with small amounts of acyclic aliphatic acids,14 Shepherd et al. (2010) defined NAs as derivatives of 29 

cyclohexane and cyclopentane homologues from petroleum containing carboxylic acid groups16 and many 30 

reports have defined them as having the formula CnH2n + zO2.
17-22 Naphthenic acids, widely found in 31 

crude oil,23 are important due to their prevalence in oil contaminated sites,17, 24-26 chronic toxicity,1, 2, 9, 27-31 32 
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persistence in the environment,20 and their important role in biogeochemical cycles.24, 32   33 

           Naphthenic acids are present in complex mixtures such as oil sands processed water.14, 15, 17, 33-36 34 

and petroleum.24, 37-41 and have be widely studied using fluorescence,25, 42 gas chromatography coupled 35 

with mass spectrometry (GC-MS)43, 44 and Fourier transform ion cyclotron resonance mass spectrometry 36 

(FT-ICR MS).10, 45-53 Targeted and non-targeted derivatization methods have been employed in order to 37 

selectively detect NAs. Omari et al. (2019) utilized a charge tagging technique to detect NAs in petroleum 38 

fractions.23  Gutierrez-Villagomez et al. (2017) derivatized NAs and analyzed them using GC-MS.54 A 39 

few notable studies utilized GC x GC-TOF MS to identify derivatized NAs in petroleum and tailing 40 

waters.16, 55, 56 Duncan et al. (2016) developed a method which used barium ion chemistry for fatty acids 41 

(FAs)57-59 coupled with online membrane sampling to selectively ionize COOHs and FAs in wastewater 42 

samples.60 Isolation and cationization of COOHs and FAs using barium derivatization produces barium 43 

adducts, which are selectively ionized in positive-ion electrospray ionization ((+) ESI).57-60   44 

            It is well known that photochemistry plays a major role in the fate of petroleum spilled in areas 45 

with sunlight exposure.61-68 Recent work has shown that a wide array of photoproducts are generated by 46 

natural photochemistry of crude oil under solar irradiation.69-73 In studying the photochemical 47 

mechanisms of oil transformations, previous studies observed increased concentrations of aldehyde and 48 

ketone photoproducts in the aqueous phase with solar irradiation time.73  Given that oil sand processed 49 

waters (OSPW) from bitumen has been thoroughly characterized35, 43, 47, 74-77 and shown to contain up to 2 50 

% weight of NAs per total bitumen,14 we hypothesize that a portion of photooxygenated petroleum which 51 

has been previously shown to produce NAs,78 contains NAs which eventually diffuse into the water once 52 

petroleum is exposed to sunlight.  Zito et al. (2019) have shown that after the first 24 hours of light 53 

exposure, the DOMHC exhibited bioluminescence inhibition to Vibrio fischeri.69  This response may be 54 

partially due to the presence of NAs produced from the petroleum after sunlight exposure as shown in 55 

previous reports on toxicity of oil sands processed water containing naphthenic acids.26, 27, 30, 34, 79-84  56 

However, more sophisticated toxicity studies are needed in order have a deeper understanding of the toxic 57 

effects of DOMHC on human and aquatic life. In order to characterize NAs and other COOHs in DOMHC, 58 

which is a complex mixture, we employed the use of barium ion chemistry known to work for NAs60 and 59 

fatty acids (FAs)57-59 to selectively identify COOHs present in the DOMHC mixture.   60 

               This study presents a preliminary investigation on the barium cationization of DOMHC generated 61 

in pure water from thin petroleum films exposed to simulated sunlight. We know that the composition of 62 

DOMHC is highly oxygenated,69 however, it is unknown what portion of the oxygen containing 63 

compounds is comprised of NAs or other COOHs. This study utilizes the methods employed by Duncan 64 

et al. (2016) and FT-ICR MS to gain a deeper understanding of the presence of COOHs, which make up a 65 

portion of DOMHC.  The use of barium ion chemistry provides an elegantly simple approach that is 66 
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selective to COOHs and eliminates contamination. Controlled laboratory studies of acid photoproducts 67 

generated in DOMHC from pure water are useful because they eliminate potential contamination from 68 

background DOM sources and biota, which are known interferences and make NAs and COOHs hard to 69 

characterize.85-87 The results obtained by using this approach provide insight into the composition of acids 70 

present in DOMHC and have important implications for understanding the fate and persistence of 71 

hydrocarbons released by oil spills. 72 

EXPERIMENTAL 73 
 74 
Materials 75 

The oil used in this study was a surrogate Macondo oil (MC), (provided by BP August 2011, chain 76 

of custody number 20110803-Tarr-072). All glassware was acid cleaned and combusted at 550 °C prior to 77 

use. Nanopure water was collected from an Aeries nanopure system. Barium acetate was purchased from 78 

Sigma Aldrich. Methanol was HPLC grade and purchased from Fischer Scientific. 79 

Irradiation experiments  80 

Photoirradiations were performed in batches of three at a single time point for dark and light 81 

samples using an Atlas CPS + solar simulator in nanopore water (refer to Zito et al. (2019) for experiment 82 

details).69 Briefly, thin films of MC oil were prepared by pipetting 385 μL over 50 mLs of nanopore water. 83 

The beakers were subsequently covered with quartz lids to prevent evaporation and thermostatically 84 

controlled at 27°C. Dissolved organic carbon concentration (DOC) was measured on all samples, which 85 

were preconcentrated by the solid–phase extraction technique described in detail elsewhere.88  Briefly, after 86 

DOC analysis, each sample was acidified to pH 2 prior to loading onto a Bond Elut PPL (Agilent 87 

Technologies) stationary phase cartridge. Each sample was eluted with methanol at a final concentration of 88 

50 μgC mL-1. The extracts were stored in the dark at 4C in pre-combusted glass vials until analysis.  89 

Methanol extracts were subsequently mixed with 20 μL of 0.1 mM barium acetate prior to analysis in order 90 

to target carboxylate moieties per previously published methods for wastewater.60  Elemental formulas of 91 

the barium adducts were obtained using (+) electrospray ionization (ESI) on a 9.4 T FT-ICR-MS using 92 

PetroOrg © software  developed at the National High Magnetic Field Laboratory (NHMFL).89-91 Molecular 93 

formulas were assigned within a tolerance of 1 ppm. Elemental constraints for each assignment iteration 94 

are listed Supporting Information (Table S1). Identification of molecular formulas using high resolution 95 

MS allows verification of barium adduct formation and determination of the number of oxygen molecules 96 

present in each photoproduced acid.  Tandem mass spectrometry by infrared multiple photon dissociation 97 

(IRMPD; Synrad 48-2, λ = 10.6 μm, Mukilteo, WA) was used to confirm barium acetate derivatives. A 98 

single m/z at 302.9810, corresponding to a molecular formula of C6H13O5
138Ba1 (DBE = 1), was quadrupole 99 

isolated prior to high-resolution stored waveform inverse Fourier transform (SWIFT) isolation92 and 100 
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IRMPD. In addition, quadrupole isolation of ~2 m/z segments were followed by IRMPD to track diagnostic 101 

bariated product ions (m/z 196.9186).  The photon energy of the laser was fixed at 116.9 meV, using a total 102 

energy of ~20 J (25 W with an irradiation time of 800 ms). Lower energy would yield only the most labile 103 

losses, typically neutral loss.  Experimental conditions were chosen to limit dimer formation. In addition, 104 

IRMPD experiments did not yield spectra indicative of multimer formation. 105 

 106 
RESULTS AND DISCUSSION 107 

       Product ion scans using low resolution mass spectrometry (Figure S1) were performed, confirming 108 

the presence of bariated compounds with product ions of m/z 155 [BaOH]+.  The low-resolution MS-MS 109 

technique allowed determination of nominal masses for the presence of COOHs in the DOMHC.  These 110 

results also demonstrated an increased abundance of COOHs after exposure to simulated sunlight, 111 

including the presence of higher molecular weight species in the aqueous phase.  However, due to the 112 

large number of peaks observed in both the dark and irradiated treatments, the use of FT-ICR MS was 113 

necessary to provide detailed characterization of the DOMHC photoproducts. 114 

 Samples analyzed by FT-ICR MS confirmed the presence of known bariated diagnostic product 115 

ions, m/z 196 and m/z 139,60 in the dark and irradiated DOMHC. Figure 1 shows a heteroatom class graph 116 

of the percent relative abundance of molecular formulas derived from FT-ICR MS data versus number of 117 

oxygens per molecule (heteroatom class).  Data for both dark (black) and irradiated (red and blue) 118 

DOMHC samples are 119 

presented.  The dark 120 

(black) and irradiated (red) 121 

DOMHC samples both 122 

contained Ox species 123 

cationized with one 124 

barium atom, but only the 125 

irradiated sample 126 

contained Ox species 127 

cationized with two 128 

barium atoms (blue). 129 

Notably, there is a shift to 130 

higher oxygenated species 131 

after irradiation from O2 to O10 as observed in previous studies.69, 72 Figure 1 also shows that the bariated 132 

acid species have a wide range of oxygen content. These data not only confirm that the barium 133 

derivatization was successful, but they also show the presence of two barium atoms complexed with the 134 

Figure 1:  Heteroatom class graphs of bariated oxygen containing 

species for dark (black), Light (red) and double bariated light (blue) 

DOMHC formula derived from FT-ICR MS. Error bars represent 

standard deviation (n=3). 
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Ox species.  Because barium only forming adducts with COOHs,60 the presence of two bound barium ions 135 

suggests that three acids are present in these species (two bariated and one free acid) to yield a singly 136 

charged species.  Moreover, Duncan et al. (2016) confirmed that this technique was only selective to 137 

carboxylic groups containing hydrogen atoms located in the β and Ɣ positions,60 Therefore, we can 138 

conclude with confidence that the compounds in the DOMHC containing bariated adducts are indeed 139 

COOHs.  140 

Figure 2 shows van Krevelen plots for all molecular formulas observed by FT-ICR MS (each dot 141 

on the plot) for the dark (a) and irradiated (b) DOMHC bariated samples.   142 

 143 

These data show that 144 

the bariated compounds span a 145 

large range of H/C and O/C.  146 

These data also show that there 147 

are more bariated compounds 148 

present in the irradiated versus 149 

the dark DOMHC sample, 150 

confirming that more COOHs 151 

were present after sunlight 152 

exposure. Therefore, we can conclude that sunlight exposure results in the production of COOHs that 153 

partition to the aqueous phase.  This process can be problematic when the DOMHC enters aquatic systems 154 

due to the persistence and toxicity of NAs26, 27, 34, 81 that are likely present among the carboxylated 155 

photoproducts.  We also observed bariated compounds containing nitrogen and sulfur (Supporting S2), 156 

which have been previously reported for petroleum after light exposure.78   157 

Figure 3 compares dark and irradiated treatments as a function of DBE versus percent relative abundance 158 

from the data derived from FT-ICR MS. There is a strong predominance of six to nine DBE heavily 159 

represented in the irradiated treatment.    160 

 161 

 162 

Figure 2: van Krevelen plots derived from FT-ICR MS data for the 

dark (left) and irradiated (right) DOMHC bariated samples. 
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 163 

This result suggests that 164 

there are ring or 165 

aromatic species 166 

present in DOMHC that 167 

are COOHs.  Also, an 168 

increase in DBE was 169 

observed for the 170 

detected bariated 171 

species after irradiation.   172 

The increase in DBE 173 

after irradiation is for 174 

aqueous species and 175 

occurs specifically because of oxygenation.  The photoproducts become more water soluble due to the 176 

presence of carboxylic acids created by photochemistry.  The higher DBE species in the oil are not very 177 

water soluble because of their large size and non-polar nature.  These large molecules are susceptible to 178 

oxygenation, which results in solubilization in the aqueous layer.  While photobleaching does occur, its 179 

time dependence is slower than that for the formation of the oxygenated species. The DBE data can help 180 

identify the different types of COOHs present in the samples before and after irradiated exposure. Figure 181 

3 also shows the presence of DBE zero compounds, which may represent alcohols.  Previous reports 182 

using this method with alcohols did not observe a signal for hydroxylated species;60 however, the use of 183 

FT-ICR MS allows for ultra-high resolution enabling for these compounds to be resolved and detected.   184 

Since NAs are commonly identified by structure and Ba cationization is selective to COOHs60 high 185 

resolution MS and MS-MS data can be used to postulate what possible NAs are produced in water from 186 

irradiated petroleum.  Petroleum initially contains NAs that are predominantly alkyl substituted 187 

cycloaliphatic carboxylic acid with a mixture of acyclic aliphatic acids, olefinic, hydroxyl or dibasic 188 

acids.14  In addition to providing important new tools for assessing the behavior of oil in natural 189 

environments, this project also advances the understanding of barium adducts for analysis of COOHs in 190 

environmental, biological, and other samples. 191 

Figure 4 shows the IRMPD data for the bariated DOMHC after light treatment. IRMPD was used 192 

to verify the presence of m/z 196 which was the qualifier ion proposed by Duncan et al. (2016) for 193 

confirmation of the presence of COOHs in a sample.60 Although m/z 196 was observed in low resolution 194 

MS so was m/z 197. FT-ICR MS was used to verify if the peaks observed at low resolution were correct.  195 

Figure 4 shows that when m/z 302.98108 with the formula C6H13O5Ba1, DBE = 1 was isolated, the 196 

Figure 3: Compares dark (black) and light (red) DBE equivalents vs. percent 
relative abundance for bariated species data derived from FT-ICR MS in 

DOMHC. Error bars represent standard deviation (n=3). 

Page 7 of 18 Environmental Science: Processes & Impacts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 
 

fragment m/z 196.9186 was observed.  This 197 

mass corresponds to the formula 198 

C2H3O2
138Ba rather than C2H2O2

137Ba as 199 

reported by Duncan et al. (2016) for m/z 200 

196, and represents a characteristic fragment 201 

of bariated COOHs.  Figure S3 presents the 202 

m/z quad isolation vs. signal magnitude for 203 

m/z 196.918 for C2H3O2
138Ba and shows all 204 

the precursor ions that yielded the fragment. 205 

These precursors are present over the whole 206 

mass range observed and represent 207 

carboxylic acid containing molecules formed 208 

by exposure of the oil to light. 209 

 210 

CONCLUSION 211 

NAs are regulated due to their toxicity and persistence in the environment.  They are recalcitrant 212 

to biodegradation and photodegradation alone, making them persistent.  This study provides a preliminary 213 

investigation into the presence of carboxylic acid photoproducts in DOMHC generated from thin 214 

petroleum films first utilizing low resolution then verification using FT-ICR MS/IRMPD.  Based on prior 215 

work, these photoproduced carboxylic acids likely contain naphthenic acids, which are known to be toxic.  216 

Other carboxylic acid photoproducts are also potentially toxic as their bioavailability is increased 217 

compared to their petroleum precursors.  Data presented here show the existence of more bariated acid 218 

species in DOMHC after solar treatment, demonstrating that photochemistry plays a role in the dissolution 219 

of petroleum derived COOHs.  This transformation is an important factor to consider when petroleum 220 

comes in contact with sunlight and water, thereby making it bioavailable to surrounding ecosystems.  The 221 

use of low-resolution MS to prescreen for COOHs provides a quick screening tool for water bodies 222 

contaminated by petroleum, and high-resolution MS can provide more compositional detail.  223 
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