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Single-cell microfluidic impedance cytometry: from raw signals to 
cell phenotypes using data analytics
Carlos Honrado,a Paolo Bisegna,b Nathan S. Swami *a and Federica Caselli *b

The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput 
means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from 
fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel 
chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and 
subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell 
behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular 
and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., 
signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to 
the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges 
and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an 
essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.

1 Introduction
Cellular systems exhibit a wide degree of heterogeneity1,2, likely 
due to temporal fluctuations in the levels of regulatory proteins, 
position in the cell cycle and the activation of cell death 
mechanisms. These heterogeneous subpopulations can 
fundamentally affect biological function and determine disease 
presentation, progression and treatment response3. 
Quantifying phenotypic heterogeneity is particularly important, 
since it represents active changes to the cell under external 
interventions or micro-environment alterations. 
The state-of-the-art method for quantifying phenotypic 
heterogeneity is by fluorescence-based flow cytometry, 
wherein the characteristic surface proteins expressed by cells 
are labelled using fluorescent antibody receptors and measured 
at high throughput (103-104 cells/s) under laser excitation to 
obtain multi-dimensional data. However, quantification by this 
technique is infeasible in several scenarios, such as when the 
expressed cell surface proteins may not reliably identify cells of 
interest (e.g. stem cells4–7); when the measured phenotype 
exhibits spatial complexity (e.g. mitochondrial features8) or 
unknown intensity thresholds (e.g. metabolism9). Other limiting 
scenarios include the need to repeatedly analyse the same set 
of cells (e.g. kinetic monitoring under drug interventions10); or 
when cell labelling affects its functionality or the staining 
process involves costly chemicals and time-consuming tasks. In 
these cases, which are forming an increasing proportion of cell 

phenotypic studies of relevance to diseases, there is much 
interest in complementary methods for biophysical analysis of 
single-cells11, preferably using label-free metrics that are based 
on inherent cell properties, to enable phenotypic quantification 
from heterogeneous samples and to trigger downstream cell 
isolation strategies.
Phenotypic heterogeneity is often assessed based on 
measurable differences in biophysical properties, such as cell 
size, shape, deformability and subcellular characteristics, 
including membrane composition and morphology, 
mitochondrial network, organelles in cytoplasm, ion pile-up in 
endoplasmic reticulum and nucleus size. Such cell phenotype 
changes can be influenced by genetic and/or proteomic factors, 
as well as by the extracellular matrix and by active 
environmental cues. Fluorescence cytometry, while highly 
sensitive to biochemical phenotypes, is not well suited to 
discern biophysical phenotypes. On the other hand, the 
emerging frontier of cell biophysical characterization can be 
achieved by means of impedance cytometry (Fig. 1). In fact, 
biophysical phenotypes can be assessed by fitting single-cell 
impedance cytometry data to appropriate dielectric models, 
thereby enabling the quantification and stratification of 
complex samples in a label-free multi-parametric manner.
Microfluidic impedance cytometry involves the measurement 
of the electric field screening of individual cells passing over 
patterned electrodes in a microchannel, as accomplished by 
electric current variation under an applied AC voltage (Fig. 1A). 
The measured current exhibits a characteristic temporal signal 
shape (Fig. 1B-C) whose features depend on: the applied 
potential, the system impedance, and cell properties, i.e. 
volume and dielectric properties12. The measured impedance is 
frequency dependent and exhibits characteristic dispersions for 
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each subcellular region13 (Fig. 1F). While the electrical double-
layer around the electrodes screens the field at frequencies < 
100 kHz, the signal is chiefly determined by the cellular 
electrical size in the 0.1-1 MHz range due to complete 
membrane-induced screening. Polarization of the plasma 
membrane in the 2-10 MHz range offers information on 
membrane morphology based on measured capacitance. In the 
10-30 MHz range, the membrane is minimally polarized, so that 
the cytoplasmic conductivity and permittivity provide 
information on the organelles, while at higher frequencies, the 
response is dependent on nucleus properties. It is noteworthy 
that the exact frequency range values are dependent on cell 
size, media conductivity and the complex conductivity of the 
respective subcellular layer (see also Box 2 in Section 3). Using 
superimposed voltage sinusoids the impedance magnitude and 
phase (Fig. 1D) can be obtained simultaneously over multiple 
frequencies for each cell, paving the way for multiparametric 
analysis by fitting impedance spectra to the appropriate shell 
model14,15 (Fig. 1G) for characterization of subcellular 
electrophysiology. However, while cell recognition by 
fluorescence cytometry can simply be determined based on 
pre-set thresholds, recognition based on impedance metrics 
requires the analysis of temporal signal trains of single cells at 
each frequency and population-level analysis of the scatter 
plots (Fig 1E) to identify characteristic frequency dispersions 
(Fig. 1F).
A number of reviews with broad scope include a discussion on 
microfluidic impedance cytometry (e.g., refs.16–24). For a 
comprehensive description of the basic principles of 
microfluidic impedance cytometry and the relevant literature 
from early works to 2010, the reader is referred to the review 
papers by Cheung et al.25 and Sun and Morgan13. Subsequent 
developments were reviewed by Chen et al.26 in 2015 and by 
Petchakup et al.27 in 2017. In particular, Chen et al. discussed 
systems with enhanced sensitivity, systems coupled with optical 
flow cytometry, and point-of-care systems, whereas Petchakup 
et al. reviewed common designs and provided an overview of 
biomedical applications of the technique. The specific topic of 
positional dependence and position detection of particles and 
cells has been recently reviewed by Daguerre et al.28

The present review covers the exciting developments that have 
been achieved in recent years (2017-2020), with a focus on 
phenotypic elucidation based on signal processing, cell 
modelling and population-level data analysis. Microfluidic 
impedance cytometry has evolved from the standard 
approaches towards novel designs and strategies that greatly 
enhance the sensitivity and accuracy of the measurements, as 
well as the information content embedded in the electrical 
fingerprints, thus enabling multiparametric cell 
characterization. Furthermore, hybrid platforms combining 
microfluidic impedance cytometry with other sensing or 
manipulation modalities have been developed, and device 
portability has been pursued via system integration, simplified 
fabrication and real-time processing. Overall, this opens up new 
opportunities in fundamental and applied research, with 
biophysical cell phenotyping of complex samples becoming 

increasingly important. It is our intention to provide the reader 
with an overview of such current research efforts. 
On the other hand, the evolution from classical analysis based 
on signal amplitude at limited bandwidth, towards accurate 
multiparametric characterization at high-throughput, calls for 
tailored strategies of signal processing and data analysis to 
elucidate cell phenotypes from impedance cytometry data. 
Accordingly, this review has two main tutorial goals: i) to 
provide a cohesive overview of how high-content single-cell 
electrical fingerprints are collected and processed; ii) to 
elucidate the strategies to identify sub-populations of cells 
based on dielectric modelling and population-level analytics on 
the collected data to enable statistically relevant inferences on 
cell phenotype. We provide a systematic review on the 
emerging approaches to impedance-based cell phenotyping, so 
that future studies can focus on its standardization and make it 
more amenable to inline cell recognition for triggering of 
downstream sorting.
The overall structure of the paper is as follows: Section 2 
focuses on device designs for high content signal acquisition, 
Section 3 deals with data analytics tools to extract the 
information embedded in the electrical fingerprints, and 
Section 4 presents a survey of recent cell phenotyping 
applications. Finally, in Section 5 we draw our view on the 
perspectives of the technique.

2 Device designs for high-content measurement 
of single-cell electrical fingerprints
After general guidelines, we briefly review the classic electrode 
configurations. Then we describe innovative chip designs to 
obtain increased accuracy and multiparametric cell 
characterization, as well as platforms with multiple electrical 
sensing zones and hybrid platforms.

2.1 General considerations

Measurement setup. The most common experimental setup for 
electrical impedance analysis of single cells is as follows29. AC 
excitation signals at different frequencies are superimposed 
and applied to the stimulation electrodes, to establish an 
electric field in the channel, which is filled with a conductive 
fluid. The electrical current (or currents) determined from 
measurement electrodes that are maintained at virtual ground 
is conditioned and demodulated by lock-in amplifiers that 
provide the in-phase (real) and out-of-phase (imaginary) signals 
at each frequency, whilst rejecting noise at the other 
frequencies. Fluidic pumps (syringe pumps, pressure 
controllers, or peristaltic pumps) are used to establish and 
regulate the sample flow. As single-cell streamlines pass 
through the channel, a variation in the measured currents is 
recorded, which depends on the intrinsic field screening 
properties of each cell at that frequency. A technique based on 
maximum length sequences has also been proposed to perform 
broadband single cell impedance spectroscopy in a short 
interval of time30,31.
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Sensitivity. The sensitivity is governed by the dimensions of the 
sensing volume32. Traditionally, channels or pores with 
dimensions comparable to single-cell diameters have been 
utilized to maximize the detected signal33. However, a small 
volume may lead to practical issues, including tight fabrication 
tolerances and clogging, or may expose mechanically sensitive 
cells to high shear stress. In order to maintain high signal-to-
noise ratio (SNR) while using relatively large sensing volumes, 
dielectric focusing can be considered, wherein an insulating 
fluid is used to hydrodynamically focus a sample stream of 
particles suspended in electrolyte32,33. The SNR also increases 
with the excitation voltage. However, increasing the voltage 
may lead to electrochemical reactions at the electrodes, thus 
causing corrosion and/or bubble formation, especially at low 
frequency in high conductivity media34. Electric-field induced 
cell damage and loss of viability should also be prevented. 
Typically in microfluidic impedance cytometry, voltages from 
fractions of a Volt to a few Volts are adopted, depending on 
channel geometry, medium conductivity and flow rate (cf. also 
Table 2 in Section 4).
Frequency range. Probing cells over a broad frequency range is 
key to cell phenotyping, since different subcellular features can 
respond within critical frequency ranges, as determined by their 
dielectric properties. However, at low frequencies (<0.1 MHz) 
Faradaic reactions at metal electrodes may occur, causing 
corrosion. Moreover, a double-layer capacitance forms over 
metal-based electrodes, which dominates the signal at DC and 
at low frequencies, thus reducing the SNR. The lowest 
stimulation frequency (e.g., 0.5 MHz) is typically a compromise 
between the need for sensitivity to cell size versus the need to 
enhance SNR25,35. On the other hand, at high frequencies, the 
presence of stray capacitances in parallel with the 
measurement sample will shunt the channel impedance and 
affect the device sensitivity36. Tailored acquisition systems may 
be needed to maintain high sensitivity at frequency as high as 
500 MHz37. Microwave based solutions are being developed38,39 
to perform impedance based characterization in the GHz range, 
which offers direct intracellular permittivity probing, due to 
electric fields penetrating through the cellular membrane. As 
each cell exhibits characteristic differences in the water 
content, nucleus volumetric ratio, protein concentration, or 
cytoplasm structure, the cellular permittivity measured at high 
frequencies can be used to enhance the resolution in label-free 
discrimination between different cells.
Suspension medium. The dielectric properties of the 
suspension medium can be optimized to modulate the degree 
and frequency range for passage of field lines through the 
particle versus the media. Typically, 1x PBS solutions are used, 
whose formulation is tuned to achieve an optimal conductivity. 
Lowering suspending media to 0.5x or less40,41 can enhance field 
penetration to more interior regions of the cell in the usual 
operating range (0.5-50 MHz), thus emphasizing differences in 
subpopulations, but at the cost of increasing measurement 
noise due to voltage drops from the system impedance. 
Additional components may be added to the buffer (e.g., 
sucrose, BSA) to match the density and osmolarity of the 
suspension medium to that of the suspended particles, thus 

reducing sedimentation and cell shrinkage or swelling. Pre-
coating of the microchannel with proteins is useful to avoid cell 
sticking to the channel walls.
Throughput. The acquisition throughput of a microfluidic 
impedance cytometer (i.e., the number of single-cell 
measurement events per unit time) is generally in the order of 
a few hundreds of cells per second. This throughput results from 
the product of flow rate and sample concentration. The higher 
the flow rate, the shorter the particle transit times, thereby 
broadening the bandwidth of measured signals. The inverse 
transit time has to be within the bandwidth of the acquisition 
system and also sufficiently smaller than the lowest stimulation 
frequency. Sample concentration is limited by the coincidence 
issue42,43 (i.e., two or more particles simultaneously present in 
the sensing zone). The probability of coincidence depends on 
the expected number  of particles in the sensing zone, given 𝜇
by the product of sample concentration and sensing zone 
volume44. In order to keep the probability of coincidences below 
10%, the parameter  has to be kept below 0.11. Alternatively, 𝜇
coincidence arbitration can be achieved by means of joint 
system design and custom signal processing algorithms44–46 (cf. 
Section 3.1). 
In order to achieve real-time analysis at high throughput, which 
is needed for active particle sorting47,48 or selective enrichment, 
a high processing throughput is also required (i.e., the number 
of analysed single-particle signals per unit time), thus calling for 
tailored signal-processing approaches.

2.2 Electrode configurations

Coplanar electrodes. The coplanar electrode configuration 
consists of patterned electrodes located at the bottom of a 
microchannel and is used for either absolute or differential 
measurements. In an absolute measurement scheme, two 
electrodes are used: voltage is applied to one electrode and the 
current flowing through the other electrode is collected. The 
passage of a flowing particle is recorded as a current pulse in 
each frequency channel. Pulse amplitude and phase are 
extracted for particle characterization. Absolute measurement 
schemes are widely used in applications seeking simplicity and 
portability (e.g., refs. 49–56). In a differential measurement 
scheme, three electrodes are used, with voltage applied to the 
central electrode and the differential current measured at the 
lateral electrodes (Fig. 2A). Upon the passage of a particle, two 
current pulses in opposing directions are recorded, which can 
be modelled as a symmetric bipolar Gaussian shape. In 
comparison to the absolute measurement scheme, the 
differential scheme provides higher SNR and the peak-to-peak 
time can be used to estimate the particle velocity57. Differential 
measurements with three coplanar electrodes are quite 
common (e.g., refs. 58–64). Pseudo-differential measurement 
schemes have also been considered 65. As an approach to 
mitigate the number of false positives in absolute measurement 
schemes, configurations involving multiple coplanar electrodes 
have been investigated by Javanmard et al.66,67. Coplanar 
designs enjoy ease of fabrication, but they are sensitive to the 

Page 3 of 35 Lab on a Chip



ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

height of the particle in the microchannel due to the electric 
field non-uniformity.
Facing electrodes. In the facing electrode configuration, the 
electrodes are located at the top and the bottom of the 
microchannel. Compared to the coplanar configuration, this 
solution creates a more homogeneous electric field distribution 
(although not completely uniform) and is more sensitive (for 
identical geometrical parameters) because the electric field is 
confined into a smaller detection volume68. On the other hand, 
this design requires a more complex fabrication process due to 
alignment needs. In the most common facing electrode 
geometry, voltage is applied at two top electrodes and the 
differential current at the two opposite bottom electrodes is 
measured (Fig. 2B). As in the three-electrode coplanar design, 
individual flowing particles generate a signal having a symmetric 
bipolar Gaussian shape. The differential measurement scheme 
based on two pairs of facing electrodes, first developed by 
Gawad et al.12, is used in many research prototypes (e.g., 
refs.40,69–71) and in commercial microfluidic impedance 
cytometers (e.g., refs.41,72,73).
Liquid electrodes. The so-called liquid electrodes or recessed 
electrodes were introduced by Renaud’s group74–76. The 
electrodes are positioned at the bottom of dead-end chambers 
placed on each side of the main channel (Fig. 2C). This 
configuration creates vertical equipotential surfaces on the 
apertures of the main-channel walls, if the lateral recess 
distance of the electrodes to the channel is at least equal to the 
channel height76. Accordingly, the electric field is homogeneous 
over the channel height, and the chip works as a facing 
electrode chip rotated by 90 degrees. However, the sensitivity 
is reduced due to a larger detection length and thus a larger 
detection volume77.

2.3 Cytometer designs for increased accuracy

Due to non-homogeneous electric field distribution, nominally 
identical particles flowing along different trajectories 
experience different electric field strengths, thereby generating 
different impedance signals25,28,57,68. This introduces blurring of 
the estimated particle properties, thereby limiting accuracy and 
reproducibility. To overcome this issue, several approaches 
have been developed.
Approaches based on mitigation of electric field non-
uniformity. A cytometer design based on freestanding 3D 
electrodes (Fig. 2D) has been proposed by Guiducci et al.78. It 
features three vertical electrodes whose faces are aligned to the 
direction of the flow. This configuration generates a uniform 
electric field along channel height and allows flexibility in the 
design of electrode gaps79.
Approaches based on particle focusing. Focusing systems are 
used to ensure consistency in particle position. Examples 
include active focusing systems like acustophoretic focusing80 
and  dielectrophoretic focusing33,81,82, as well as sheath-flow 
focusing83. A sheath flow was used in Song et al.84 to force the 
particles to move close to a side sensing orifice, thus enabling 
microorganism detection.  Recently, inertial focusing effects in 
straight rectangular channels52 or serpentine microchannels63 

have been exploited. Tang et al.85 used inertial focusing in 
asymmetrically curved channels in combination with a highly 
conductive feed flow, reaching a detection throughput of 5000 
cell/s. Finally, Serhatlioglu et al.61 investigated viscoelastic 
focusing dynamics in a microfluidic impedance cytometer.
While optimal sample focusing strategies remains elusive, it 
should be noted86 that active focusing adds complexity to 
fabrication; sheath flow systems cause dilution; the high flow 
rates required for inertial focusing place an inordinate demand 
on electrical sampling; and viscoelastic focusing is sensitive to 
rheology of the carrier fluid.
Approaches based on system optimization. Focusing-free 
impedance cytometry systems based on optimization of the 
device geometry with respect to the particle of interest have 
been proposed86. They use constriction channels49,87 or 
constriction structures that induce self-focusing88, and are 
typically limited to a short range of particle sizes. An optimized 
electrode arrangement involving five pairs of facing electrodes 
was used in Spencer et al.89, whereby all non-signal electrode 
are connected to ground. 
Compensation strategies based on electrical metrics of 
particle position. The inaccuracy introduced in the measured 
particle properties due to position blurring can be significantly 
mitigated by means of compensation90. To this end, (i) an 
electrical metric correlating with particle trajectory is identified, 
(ii) a calibration curve is obtained by using reference particles of 
known properties, such as size, and (iii) the calibration curve is 
applied to measured data on particles of interest.
In the typical coplanar electrode chip with the three-electrode 
differential measurement scheme (Fig. 2A), the pulse width 
normalized by the peak-to-peak transit time correlates with the 
vertical position of the particle58. By introducing a floating 
electrode between the stimulating and sensing electrodes (Fig. 
2E), a bipolar double-Gaussian signal is obtained, and the 
relative prominence of the peaks with respect to the saddle in 
between them, can be correlated with the particle’s vertical 
position91. Those metrics were used to achieve accurate sizing 
of yeasts58,91 and human blood cells 92,93.
Rewiring the standard facing electrode design by applying 
voltage and ground to the pairs of diagonally opposite 
electrodes (Fig. 2F) generates an asymmetric bipolar Gaussian 
signal due to flowing particles, with the relative difference in 
peak heights of positive versus negative pulse offering 
information on vertical position of the particle94. This results 
from the interplay between transverse and longitudinal electric 
fields established in the sensing zone. Alternatively, by using 
five pairs of facing electrodes (Fig. 2G), the particle vertical 
position is encoded by the ratio between transit times relevant 
to oblique and transverse current paths90. The designs in Fig. 2F 
and G can also be implemented in a liquid electrode 
configuration, thereby enabling mitigation of measurement 
sensitivity to particle lateral position.

2.4 Cytometer designs for multiparametric characterization

Typical impedance measurements are focused on the 
characterization of cell size, membrane capacitance and interior 
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conductivity, but design solutions that are tailored to enrich the 
information content of electrical fingerprints have emerged. 
These designs can be used to provide additional information 
valuable for monitoring cell position, cell shape and cell 
mechanical properties, as discussed in this section (see Table 1A 
and B for an overview)
Electrical position sensing. As discussed in Section 2.3, 
electrical metrics correlated with particle trajectory have been 
exploited to increase accuracy of impedance-based cell 
characterization. From a different perspective, they provide an 
optics-free and high-throughput way to monitor microscale 
particle motion at the single cell level. This represents a 
tremendous opportunity, e.g., to understand fluid motion at the 
microscale, or to assess the efficiency of microfluidic cell 
focusing, separation, migration, and sorting. Furthermore, the 
development of impedance-based position sensors is an 
opportunity to obtain real-time position feedback for 
micromanipulation tasks in the field of microrobotics28.
Wang et al.95 reported a system using a single pair of non-
parallel microelectrodes to detect the lateral position of 
particles flowing in a microchannel on the basis of pulse width 
(Fig. 3A), however non-uniformity of velocity profile can be a 
confounding effect. Yang et al.96 presented a system based on 
N-shaped electrodes (Fig. 3B) that also accounts for particle 
velocity. Using simple geometric relationships, they derived an 
analytical expression yielding the particle’s lateral position from 
the measured electrical signal. Particle size characterization was 
also reported.  Solsona et al.97 exploited a gradient in the 
electric field to detect the particle lateral position (Fig. 3C). 
Brazey et al.98 presented an impedance based real-time sensor 
for the detection of the longitudinal particle position (Fig. 3D), 
which also provided particle velocity. Wang et al.46 predicted 
the location of particles across ten parallel channels, along with 
particle velocity and size, by using a code-multiplexed Coulter 
sensor network (Fig. 3E). 
The previous systems were limited to position detection along 
one axis. The first high-throughput system for electrical 
detection of cross-sectional (i.e., lateral and vertical) position of 
individual particles flowing through a rectangular microchannel 
was presented by Reale at al.99, combining the design in Fig. 2E 
(for vertical position detection) with the design in Fig. 2G (in 
liquid electrode configuration, for lateral position detection). 
The system was used to investigate inertial particle focusing at 
different particle Reynolds numbers. More compact design 
solutions93,100 (Fig. 3F and G) were subsequently developed  and 
used to monitor hydrodynamic focusing of red blood cells. 
Impedance-based characterization of cell velocity, size and 
opacity was simultaneously performed93. 
Designs providing information on cell shape. Besides cell size 
and dielectric properties, cell shape is a very important feature. 
As an example, the biconcave shape of the human red blood cell 
is essential for its biological function, and this feature can be 
critically affected by genetic or acquired pathological 
conditions. Cell shape is also a useful indicator when monitoring 
antibiotic susceptibility of bacteria101–103 or the budding or 
fission of yeasts, which are widely used as model systems to 
study cell cycle progression82,104–106.

A microfluidic impedance cytometer capable of single cell 
morphology discrimination under continuous sample flow was 
presented by Shaker et al.107. The device, based on liquid 
electrodes, is fabricated in a cross configuration around a 
sensing zone (Fig. 4A). This arrangement allows measurement 
of cell impedance along orthogonal orientations and enables 
extraction of an index describing cell shape anisotropy. The 
system was used to monitor shape changes experienced by 
budding yeasts. A dielectrophoretic focusing and orientation 
region was introduced before the shape sensing region, to avoid 
blurring introduced by randomization of particle trajectory and 
orientation. An impedance cytometer based on particle self-
alignment for enabling single-cell morphology discrimination 
was reported by Xie et al.88. A constriction structure is 
introduced to focus the particle stream and a pair of coplanar 
electrodes are used to record the impedance signal (Fig. 4B). 
Typical late-budding, early-budding, and unbudded yeast cells 
were distinguished based on width, amplitude and width-to-
amplitude ratio of impedance pulses. 
Differential impedance measurements were used by de 
Wagenaar et al.48 to detect a particular morphological anomaly 
on the sperm due to presence of cytoplasmic droplets on their 
flagella. A droplet induced a characteristic bump in the 
impedance signal and droplet content was quantified by 
calculating the area under the curve. This area was suitably 
corrected to mitigate confounding effects due to cell 
orientation, location and velocity. Zhu et al.108 developed an 
optimized platform to identify Caenorhabditis elegans (C. 
elegans) developmental stages, eliminating the influence of 
worm variable morphology. 
A microfluidic cytometer for electrical impedance tomography 
of single flowing cells was proposed by Caselli et al.109. While 
progress on this in-silico proof of concept design was limited by 
fabrication challenges (Fig. 4C), exciting recent developments 
towards three-dimensional microtubular devices for lab-on-a-
chip sensing applications (Fig. 4D) may alter the landscape of 
microcytometer designs110,111.
Designs providing information on cell mechanical properties. 
The mechanical properties of cells have emerged as useful 
label-free biomarkers for many conditions and diseases112–114. 
Microfluidic single-cell mechanics-based assays typically use 
expensive imaging systems, making the device bulky and 
requiring time-consuming post-processing protocols for the 
massive image data. Exploiting electrical impedance 
measurements in place of high-speed cameras presents a 
promising alternative approach. It provides advantages, such as 
high throughput and simple data processing for enabling rapid 
and real-time analysis of single cells115. Moreover, the 
combination of mechanical and electrical properties serves as a 
unique set of intrinsic cellular biomarkers for single-cell 
analysis, providing better differentiation of cellular phenotypes, 
which are not easily discerned via just one set of biophysical 
properties116. A few microfluidic impedance cytometers for cell 
mechanical characterization have been proposed in the last 
decade (see e.g. refs. 113,115 and the references therein). As a 
common feature, they share a microchannel with constriction 
regions.

Page 5 of 35 Lab on a Chip



ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Zhou et al.116 used four pairs of coplanar electrodes to 
investigate the time required by cells to pass through a 
constriction (Fig. 4E).  The total passage time was divided into 
two components: the entry time required for a cell to deform 
and enter a constriction, which is dominated by cell 
deformability, and the transit time required for the fully 
deformed cell to travel inside the constriction, which mainly 
relies on surface interaction of the cell with channel walls. Cells 
were simultaneously characterized via electrical impedance 
spectroscopy. Constriction channels separated by relaxation 
regions have been proposed to improve the discrimination 
capability, since the relaxation regions provide extra time 
stamps in the impedance trace. Ren et al.117 designed a chip 
containing four parallel sensing channels, each one including 
two constriction regions separated by a relaxation region (Fig. 
4F). The ratio of the rise times of the impedance signal 
magnitude recorded during cell entrance at each of the two 
constriction regions was used to characterize cell mechanical 
properties. Bioelectrical parameters were simultaneously 
collected. A subsequent version of that chip features five 
sequential constriction channels separated by relaxation 
regions118 and was successfully used to distinguish between 
four different prostate cancer cell lines. Yang et al.115 developed 
a differential multi-constriction microfluidic device with self-
aligned 3D electrodes (Fig. 4G) to simultaneously measure cell 
deformability, electrical impedance and relaxation index. The 
total transit time is taken as an indicator of cell deformability. 
The ratio of the cell transit times through last and first 
constrictions is used to define an index to quantify the cell 
relaxation capacity.

2.5 Multizone electrical sensing and other hybrid platforms

Given the versatility of integrating electrical sensing within 
microfluidic channels, several designs have been proposed, as 
reviewed below (see Table 1C and D for an overview). 
A few reports present systems wherein two (or more) electrical 
sensing zones are present, typically separated by an 
intermediate region that is devoted to particle stimulation, 
manipulation or selective capture. Zi et al.119 investigated cell 
survival rate by using two electrode pairs separated by a region 
where cells were exposed to a hypertonic stimulus (Fig. 5A). 
Reale et al.120 monitored the lateral displacement induced by a 
dielectrophoretic (DEP) force on cell/particle by electrical 
sensing in the pre-DEP and a post-DEP zones (Fig. 5B). Caselli et 
al.44 performed coincidence arbitration of particles flowing in 
close proximity to each other, by exploiting nonuniformity of 
particle velocity distribution and comparing the electrical 
snapshots from two sensing regions that are separated by a 
hyperbolic constriction (Fig. 5C). Chawla et al.121 proposed a 
microfluidic analysis unit consisting of two sets of electrodes 
and a channel of variable geometry to enable counting and size 
detection of single Schistosoma mansoni parasite larvae, and 
the collective evaluation of the motility of the larvae as an 
unbiased estimator for their viability. An improved version of 
that microfluidic unit, featuring simpler operation and higher 
analysis throughput, has been recently reported122.

Leveraging on the idea of antigen-based electrical 
labelling123,124, Valera et al.59 presented a platform to detect 
proteins in undiluted human plasma samples. The device uses a 
differential enumeration platform that integrates two electrical 
counting zones, antigen specific capture chambers, and bead-
based immunodetection to quantify cytokines. Similarly, Liu et 
al.125 used multiple electrical sensors for cell 
immunophenotyping against multiple antigens. The 
microfluidic device (Fig. 5D) consists of an array of microfluidic 
cell capture chambers, each functionalized with a different 
antibody to recognize a target antigen, and a network of code-
multiplexed Coulter counters placed at strategic nodes across 
the device to quantify the fraction of cell population captured 
in each microfluidic chamber.
Other works used electrical impedance sensing of flowing cells 
in combination with other sensing modalities, like high-speed 
imaging of flowing cells126 or of cells invading into side 
constriction channels127 (Fig. 5E), time-lapse microscopy of 
growing cells128 (Fig. 5F), or impedance spectroscopy of trapped 
cells129 (Fig. 5G). 
Platforms combining impedance sensing with dielectrophoretic 
manipulation130, or with inertial microfluidics for sample 
enrichment52 or sample fractionation63, have also been recently 
developed. Farmehini et al.130 used the voltage drops 
determined from impedance measurements to compute the 
fraction of applied voltage used for contactless 
dielectrophoretic particle manipulation at each frequency of 
interest. In this manner, they envisioned the integration of 
impedance measurements on the dielectrophoresis chip to 
account for chip-to-chip variability due to microfabrication 
errors. Raillon et al.52 developed a label-free high-throughput 
platform to isolate, enumerate, and size circulating tumour cells 
(CTCs) on two coupled microfluidic devices (Fig. 5H). Cancer 
cells were purified through a Vortex chip (Vortex Biosciences) 
and subsequently introduced in-line to an impedance chip, 
where a pair of electrodes measured fluctuations of an applied 
electric field generated by the passing cells. Petchakup et al.63 
presented a multi-staged platform that enables isolation of 
neutrophils and monocytes from diluted or lysed blood samples 
directly within minutes, based on Dean Flow Fractionation (DFF) 
(Fig. 5I). DFF-purified leukocytes are inertially focused in 
serpentine channels into single stream prior to impedance 
detection.
Feng et al.131 combined impedance cytometry and droplet 
microfluidics to monitor the osteogenic differentiation of single 
bone marrow mesenchymal stem cells in droplets. The device 
enabled single-cell trapping, positioning, and impedance 
measurements of individual cells.
It is noticed that many platforms (e.g., refs.121,128,131,132 also 
allow for parallelization of the analysis units, resulting in 
increased throughput.

2.6 Portable platforms

One of the current challenges in the development and 
commercialization of lab-on-a-chip microsystems is the 
integration and miniaturization of all the components that are 
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required for chip operation at the point of care facility, spanning 
from sample preparation to detection133,134. To this aim, 
integrated impedance-based devices have been recently 
developed. Credit-card-sized cell counters have been 
implemented, based on modular microfluidics65 or based on a 
CMOS lock-in application-specific integrated circuit, combined 
with an event counter that is embedded in a field-
programmable gate array133. Smartphone-based cytometers 
are also being developed, where the smartphones function to 
replace benchtop computers or laptops for the purpose of 
receiving and analysing the collected data135. Furniturewalla et 
al.51 presented a wearable microfluidic impedance cytometer 
implemented on a flexible circuit wristband with on-line 
smartphone readout. Moreover, in order to reduce the costs 
related to electrode microfabrication, devices with integrated 
micro-needles136, devices with integrated Field's metal 
microelectrodes137, and PCB-based solutions have been 
proposed138. Finally, the use of electronically barcoded 
particles50,56,139 is being explored as a tool for point-of-care 
diagnostic applications.

3 Data analytics
In this section, we review the tools for data analytics that are 
used in microfluidic impedance cytometry. First, we discuss the 
signal-processing strategies adopted to extract single-cell 
features from the raw impedance signals (Section 3.1). Then we 
present an overview of the available modelling approaches 
(Section 3.2), which are used for the interpretation of the device 
response and for in silico design, or to correlate raw impedance 
features to biophysical cell properties (Section 3.3). Finally, we 
review population-level data analysis that enables cell 
phenotyping (Section 3.4).

3.1 Signal-processing of raw data streams 

The analysis of raw signals for parameter extraction to enable 
recognition of phenotypes at the single-cell level requires 
sturdy signal processing. Herein we provide a description of the 
signal processing techniques that may be implemented to 
extract the information embedded in the raw impedance 
signals. Even though the particular chosen approach may 
depend on the specific system design utilized, the following 
steps can be generally identified: signal conditioning, 
segmentation, feature extraction, and feature processing, 
which are discussed below. A typical workflow is presented in 
Box 1.
Signal conditioning. Recorded data streams (i.e., demodulated 
electrical currents) typically exhibit some noise and baseline 
drift. In order to improve signal quality, denoising and 
detrending are usually performed. Classical signal processing 
tools may be implemented, such as moving-average filter98, 
Savitsky–Golay filter33, or wavelet-based denoising119.
Segmentation. This refers to the identification of data stream 
portions corresponding to cell passage in the sensing region. 
When multiple channels are acquired from the same sensing 
zone, the channel(s) with the best SNR is/are preferably used 

for segmentation, in order to increase sensitivity and 
robustness towards detection of artefacts.
Segmentation is usually performed by means of thresholding 
and peak-finding. This can be done on the conditioned signal 
(e.g., refs. 48,65), in the wavelet-domain33, or after correlation 
with a suitable template (e.g., refs.29,140). Derivative-based 
approaches have also been implemented to detect local 
maxima (e.g., ref.86).
An alternative approach is the identification of idle time frames 
(i.e., data stream portions not containing events). As an 
example, Liu et al.141 used the zero crossing rate (ZCR) as the 
discrimination parameter, since ZCR of the noise is greater than 
that of signal recorded during cell passage.
Feature extraction. As shown in Box 1, the features to be 
extracted (from each frequency channel) are often peak-
amplitudes and peak-to-peak transit times. The feature 
extraction may be a direct outcome of the segmentation, 
especially when the latter is based on peak-finding. However, 
peak-finding may provide inaccurate results if residual noise is 
present in the data stream. 
In order to achieve robust feature extraction, or when the 
electrical fingerprints have peculiar shapes, approaches based 
on correlation with design-tailored templates can be 
used29,91,94,142. As an example, a bipolar Gaussian template can 
be used for the differential current in case of classic designs29 
(Fig. 1A and B). Moreover, inter-channel correlations can be 
exploited. As an example, although the peak amplitude varies 
significantly among the different frequency channels and 
between the real and imaginary signal parts, the peak-width 
and the peak-to-peak time of the measured signals are quite 
similar. Accordingly, a unique bipolar Gaussian template 
characterized by a complex frequency-dependent amplitude 
may be used to process all frequency channels at the same 
time64. Generally, template-fitting strategies have higher 
computational cost than peak-finding strategies. An emerging 
alternative that potentially enables both, accuracy and real-
time processing, is given by neural network-based approaches 
(cf. also Table S2 of the Supplementary Material). By using a 
recurrent neural network, Honrado et al.100 showed the 
characterization of red blood cells and yeasts with a unitary 
prediction time of 0.4 ms. Wang et al.46 trained a convolutional 
neural network to analyse waveforms from a network of ten 
code-multiplexed Coulter counters (Fig. 3E) at high processing 
speed. Their network was also capable of resolving 
interferences generated by coinciding particles. 
In fact, multiple particles may reach the sensing zone in close 
proximity, generating a plethora of possible signal shapes from 
which single particle features cannot be reliably extracted, 
unless joint system design and custom signal processing 
algorithms are implemented. Kellman et al.45 presented a 
method to perform individual particle coincidence correction in 
a Coulter counter, inspired by multiple-user communication 
theory. They modulated the channel response, introducing 
wider and narrower regions to give each particle a binary Barker 
sequence signature, and applied a successive interference 
cancellation method to separate coinciding particles. Caselli et 
al.44 proposed a model of the signals generated by coinciding 
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particles in a microchannel comprising two electrical sensing 
zones (Fig. 5C) and used maximum a posteriori probability 
estimation to characterize individual particle properties, thus 
enabling accurate RBC counting at 2500 cell/s. In a following 
work143, in order to reduce the computational time, a machine-
learning based approach was developed (cf. Table S2).  
Besides coinciding particles, other application-specific or 
design-specific situations may give rise to peculiar signal shapes 
that call for tailored signal processing algorithms. Zhu et al.108 
measured C. elegans worms and employed Gaussian kernel 
density estimation to efficiently extract the baseline-to-plateau 
current magnitude, in presence of drastic spikes generated by 
motion of the worms. Zhang et al.87 used kernel density 
estimation and binarization to identify the time duration of 
three subsequent pulses generated in the signal waveform as 
the cell passed through an asymmetric constriction channel (cf. 
Fig. S2). Brazey et al.98 used an extended Kalman filter for real-
time detection in a noisy environment. Saateh et al.62 
developed a user-friendly software for real-time impedimetric 
droplet measurement.
Feature processing.  Before being used for population-level 
data analysis (Section 3.4), the single-cell features extracted 
from each frequency channel, such as complex peak-amplitude, 
pulse width, peak-to-peak times, etc., may undergo further 
processing to mitigate measurement errors (e.g., compensation 
for position blurring or for flow fluctuations). Moreover, by 
means of suitable models it is possible to correlate the raw 
impedance features to cell biophysical parameters (Section 
3.3).

3.2 Modelling approaches for microfluidic impedance cytometry

Foundational analytical and numerical modelling approaches 
for microfluidic impedance cytometry were described in Gawad 
et al.12 and Sun et al.144. They include equivalent circuit models 
(ECM), Maxwell’s mixture theory (MMT), and finite element 
method (FEM). While we refer the reader to the previous 
literature for an extensive presentation of the relevant theory, 
we provide a synthetic view of those approaches in Box 2 (cf. 
also Section S1 and Table S1 of the Supplementary Material). 
Equivalent circuit models and Maxwell’s mixture theory. 
Equivalent circuit models describe the device in terms of a 
combination of lumped circuit parameters and are widely used 
to understand the frequency response of the system (e.g., 
refs.53,54,87,131,145,146). As an example, in Box 2A(i) we report an 
equivalent circuit model of the standard facing electrode design 
in a differential measurement scheme12. The electrical 
impedances associated with stray capacitances ( ), electrical 𝑍𝑠𝑡

double-layer ( ), medium-filled channel ( ) and channel 𝑍𝑑𝑙 𝑍𝑚𝑒𝑑

with a suspended cell ( ) are shown. By using a simplified 𝑍𝑚𝑖𝑥

model13,147 (Box 2A(ii)), the impedance  is described as the 𝑍𝑚𝑖𝑥

parallel of medium capacitance ( ), medium resistance (𝐶𝑚𝑒𝑑

), and the series of membrane capacitance ( ) and 𝑅𝑚𝑒𝑑 𝐶𝑚𝑒𝑚

intracellular resistance ( ).𝑅𝑖𝑛𝑡

As shown in Box 2A(iii)  the impedance  can be directly 𝑍𝑚𝑖𝑥

related to the geometric and dielectric properties of the system 
by using Maxwell’s mixture theory (cf. e.g. Sun et al.144). Under 

the assumption of small volume fraction  (defined as the 𝜑
volume ratio of the cell to the detection area), the complex 
permittivity of the cell-medium mixture (  is given in terms 𝜀𝑚𝑖𝑥)
of the complex permittivity of the medium , the volume (𝜀𝑚𝑒𝑑)
fraction, and the complex Clausius-Mossotti factor ( ). The 𝑓𝐶𝑀

latter accounts for the complex permittivity of the cell  (𝜀𝑐𝑒𝑙𝑙)
that is generally computed by using suitable shell models14,15. 
As an example, we report a single-shell spherical model (Box 
2A(iv)) assuming that the cell membrane thickness ( ) is 𝑑𝑚𝑒𝑚

much smaller than the cell radius ( ). Since Maxwell’s mixture 𝑟
theory assumes uniform field, a geometric correction factor  𝐺
has to be included in  to account for fringing fields12,68.𝑍𝑚𝑖𝑥

By using MMT and neglecting stray capacitances, the following 
approximate expression for the differential current is obtained 
(Box 2A(i)):

𝐼𝑑𝑖𝑓𝑓≅ ―
𝑉𝑎𝑝𝑝𝑙

𝑍𝑚𝑒𝑑

1

[1 + (2𝑍𝑑𝑙/𝑍𝑚𝑒𝑑)]23𝜑𝑓𝐶𝑀                     (1)

where  denotes the applied potential, cell volume is 𝑉𝑎𝑝𝑝𝑙

embedded within , and cell dielectric properties are 𝜑
embedded within . The sensitivity of the differential current 𝑓𝐶𝑀

 to cell properties ( ) depends on the current flowing 𝐼𝑑𝑖𝑓𝑓 𝜑𝑓𝐶𝑀

in the empty cytometer ( ). At low frequency, the 𝑉𝑎𝑝𝑝𝑙/𝑍𝑚𝑒𝑑

double-layer impedance  may significantly reduce this 𝑍𝑑𝑙

sensitivity. The current  multiplied by the transfer function 𝐼𝑑𝑖𝑓𝑓

of the acquisition system ( ) provides the amplitude of the 𝐻(𝜔)
measured signal . Therefore,  also depends on frequency-𝑆 𝑆
dependent phase and gain of the acquisition system.
Finite element method. In comparison to ECM and MMT, finite 
element methods are computationally more demanding, but 
can account for the geometric and electric details of the system 
and of the flowing cell, thereby removing some simplifying 
assumptions. For instance, cells with arbitrary volume, shape, 
orientation and position in the channel can be simulated, and 
the electric field non-uniformity is automatically accounted, 
without the need for correction factors. The specific dielectric 
properties of each subcellular feature (e.g., cell membrane, 
cytoplasm, and nucleus) can be easily accounted, by assigning 
appropriate parameter values to the various geometric 
subdomains of the model. Furthermore, by using finite 
elements, the whole signal waveform recorded as a cell passes 
through the sensing region of the device can be simulated. 
Experimental details, such as distribution of particle sizes, 
dielectric properties, inter-arrival times, velocities, and 
trajectories can be accounted, along with an allowance for the 
measurement noise. Hence, a virtual laboratory can be 
developed using finite-element-based approaches, providing 
synthetic data streams that closely mimic experimental 
conditions148,149. As such, finite element simulations are widely 
used for in silico device design, testing and optimization, thus 
allowing a reduction of time and resources needed to move 
from novel ideas to prototypes62,77,86,93,97–99,108,150. Moreover, 
synthetic data streams obtained via finite elements are a 
valuable resource to assess the performance of the signal 
processing routines used to process the measured impedance 
signals. While optical methods could be used as the gold 
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standard, they require suited equipment and image-processing 
algorithms, and they may have a certain level of uncertainty 
(e.g. due to limited resolution or algorithm-induced errors). 
Since biophysical properties of virtual particles passing through 
the system are known based on the synthetic impedance signal 
streams, performance metrics (e.g., sensitivity, positive 
predictive value, errors in estimated particle properties) of 
signal processing algorithms can be quantified46,100,140. Similarly, 
synthetic data streams could be used to investigate the 
extrapolation capability of neural networks designed for 
recognitions of cell phenotypes.  
As summarized in Box 2B, FEM model equations include the 
conservation of the electric current density  in the intracellular 𝑱
space and in the suspending medium, the insulating boundary 
condition over the channel walls, and the equation accounting 
for the electrode double-layer capacitance. To optimize mesh 
quality, the cell membrane is preferably modelled as an 
interface with a contact impedance between the intracellular 
space and the medium, rather than a very thin three-
dimensional domain. Accordingly, the electric current flux is 
continuous across the interface, whereas the electric potential 
is discontinuous, with a jump depending on membrane 
conductance and capacitance per unit surface,  and 𝜎𝑚𝑒𝑚/𝑑𝑚𝑒𝑚

, respectively. Any geometric structure with small 𝜀𝑚𝑒𝑚/𝑑𝑚𝑒𝑚

thickness-to-surface ratio is better modelled as an interface, as 
shown for cell membrane. The model can be easily modified to 
account for additional features, like for instance the presence 
of cell nucleus or cell wall82. For prescribed applied potentials 
over the electrodes, the distribution of the electric potential  𝑉
in the device is solved and the electric currents through the 
electrodes are computed by integration.
In order to find an optimal compromise between computational 
cost and solution accuracy, the mesh should be wisely designed. 
In particular, it should be finer near the electrodes and around 
the cell membrane, wherein higher field gradients are expected, 
and coarser elsewhere. 
Simulating the signal produced by a flowing particle requires a 
series of FEM analyses, involving different meshes for different 
particle locations. Unfortunately, rather noisy simulated signals 
are generally obtained due to mesh variations, unless extremely 
fine meshes are used. As a matter of fact, smooth, accurate 
signals can be obtained, using even relatively coarse meshes, as 
long as two sets of FEM analyses with the same mesh are 
performed for each particle location, one with the particle 
inside the measuring zone and another one with the particle 
replaced by the suspending medium. By subtracting the results 
of the two simulations, the mesh-generated numerical noise 
can be effectively cancelled out.
Moreover, sometimes it can be convenient to model the device 
as a network of admittances. The admittance matrix of the 
network (depending on cell properties and location) is 
computed by performing a suitable single set of finite element 
analyses109. Based on this, different wiring schemes can be 
readily modelled, solved and compared.

3.3 Cell biophysical characterization by model fitting

Equivalent circuit models, Maxwell’s mixture theory, and shell-
models have been widely used to compute cell dielectric 
properties by fitting simulated impedance spectra to measured 
ones (e.g. refs.69,89). To this aim, the signal associated with each 
cell ( ) is usually normalized with respect to the signal 𝑆𝑐𝑒𝑙𝑙

measured using reference beads ( ), to cancel the transfer 𝑆𝑏𝑒𝑎𝑑

function of the acquisition system. In particular, normalization 
enables comparison of cells based on their impedance 
frequency response, since field penetration through the 
reference bead is invariant versus frequency. In order to 
differentiate cells from beads, a reference high frequency 
channel (e.g., 18 MHz) is typically used, wherein there is no field 
penetration through beads (e.g., ref.151). Assuming the 
experimental setup described in Box 2, the normalization is 
computed as follows89:

𝑆𝑐𝑒𝑙𝑙

𝑆𝑏𝑒𝑎𝑑 =
𝑓𝑐𝑒𝑙𝑙

𝐶𝑀 𝜑𝑐𝑒𝑙𝑙

𝑓𝑏𝑒𝑎𝑑
𝐶𝑀 𝜑𝑏𝑒𝑎𝑑

=  
𝑓𝑐𝑒𝑙𝑙

𝐶𝑀

𝑓𝑏𝑒𝑎𝑑
𝐶𝑀

( 𝑟𝑐𝑒𝑙𝑙

𝑟𝑏𝑒𝑎𝑑)
3

                             (2)

where the superscripts refer to cell or bead parameters. 
Accordingly, the unknown dielectric properties of the cell ( ), 𝑓𝑐𝑒𝑙𝑙

𝐶𝑀

along with its size can be found by multiplying the 
experimentally measured quantity ( ) by a calibration 𝑆𝑐𝑒𝑙𝑙/𝑆𝑏𝑒𝑎𝑑

factor ( ):𝑓𝑏𝑒𝑎𝑑
𝐶𝑀

𝑓𝑐𝑒𝑙𝑙
𝐶𝑀 ( 𝑟𝑐𝑒𝑙𝑙

𝑟𝑏𝑒𝑎𝑑)
3

= 𝑓𝑏𝑒𝑎𝑑
𝐶𝑀

𝑆𝑐𝑒𝑙𝑙

𝑆𝑏𝑒𝑎𝑑                                                (3)

By fitting a suitable shell model to the above (calibrated) data, 
measured based on several frequencies, the dielectric 
properties of the subcellular features that appear in the 
expression of  can be estimated – refer to Section S1 of the 𝑓𝑐𝑒𝑙𝑙

𝐶𝑀

Supplementary Material for further details. As an example, in 
case of a single-shell model, it is possible to estimate (cf. Box 2): 
permittivity and conductivity of the intracellular space (  and 𝜀𝑖𝑛𝑡

, respectively) and membrane capacitance ( ), 𝜎𝑖𝑛𝑡 𝜀𝑚𝑒𝑚/𝑑𝑚𝑒𝑚

while membrane conductance ( ) is typically 𝜎𝑚𝑒𝑚/𝑑𝑚𝑒𝑚

neglected. By using multi-shell models additional parameters 
can be estimated, such as conductivity and permittivity of the 
cell wall, as in case of yeasts or bacteria152,153, or the dielectric 
properties of intraerythrocytic parasites69. The inclusion of 
multiple shells, however, comes at the cost of model 
complexity, processing time and overall confidence in the fitted 
data. By increasing the number of modelled shells, more 
parameters must then be considered and iterated, resulting in 
longer modelling/fitting times. Furthermore, initial values and 
boundaries for each modelled parameter need to be defined, 
with the risk of biasing the modelling outcome. Commonly 
accepted values from previous literature are often used. This 
not only permits certain parameters to be fixed at a specific 
reference value but also allows for other parameters to be 
further varied and/or to include additional shells, without 
compromising complexity and processing time.
Typically, the mean dielectric properties of a homogeneous 
population of cells are determined69,71. As an example, 
experimentally measured impedance spectra of malaria 
parasite infected-RBCs69 are shown in Fig. S1A, along with their 
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best fit (double-shell oblate spheroid model). In that figure, 
each data point is the average impedance over at least 150 cells. 
In Spencer et al.89, the impedance spectra of single flowing RBC 
ghosts were reported (Fig. S1B). The latter were obtained by 
simultaneously applying eight frequencies to the stimulation 
electrodes. Accordingly, the electrical properties of thousands 
of single cells at high throughput were determined. 
Although fitting of impedance spectra generally requires 
measurements at several frequencies, Chen’s group87,127,154 
developed a high-throughput approach to quantify single-cell 
intrinsic bioelectrical markers by simultaneous application of 
just two frequencies. In a recent work87, they introduced a 
microfluidic platform composed of an asymmetrical 
constriction channel through which single-cells are forced to 
squeeze, while capturing impedance profiles (amplitude and 
phase waveforms) (Fig. S2). A number of features are extracted 
from the raw impedance signals and then translated into values 
of specific membrane capacitance, cytoplasm conductivity and 
cell diameter, by using an equivalent circuit model and channel 
geometrical parameters. Mahesh et al.155 proposed an 
approach to estimate cell size and cell membrane capacitance 
with a single frequency, by exploiting a fine feature of the 
reactive current.
While modelling approaches to obtain cell dielectric properties 
are well-established and widely used, models capable of 
translating impedance-based measurements (e.g., cell transit 
time through a constriction channel) into biomechanical cell 
properties are in their infancy. This is mainly due to the 
complexity of the cell deformation process, including: non-
linear mechanical constitutive behaviour, large deformations, 
contact and friction, fluid-structure interactions. These features 
require complex, computationally-demanding numerical 
integration schemes. Accordingly, phenomenological 
parameters (e.g., relaxation indices computed as transit time 
ratios), rather than biophysical parameters, are generally used 
in impedance-based deformability cytometry. Simple 
viscoelastic cell-models were used to characterize the 
instantaneous Young modulus156 or the cytoplasmic viscosity127 
of cells in a microfluidic impedance chip, wherein optical 
measurements of cell aspiration length, rather than electrical 
metrics, were used as input for the analysis. There is a need for 
tailored device designs and coupled modelling approaches to 
bring impedance-based deformability cytometry to its full 
maturity.

3.4 Cell population data analysis: clustering into phenotypes

Investigations on a multitude of sample types using impedance 
cytometry have been performed in recent literature (see 
Section 4 for an in-depth exploration of recently published 
work). The analysis of impedance cytometry data invariably 
relies on the visualization of data in terms of specific features 
(e.g. impedance magnitude and phase, transit-time) 
represented as scatter-plots, histograms, frequency relaxation 
spectra or other methods to discern clusters of specific 
phenotype(s) present in the data. Box 3 provides a broad 

suggestive guideline on how to perform data visualization and 
analysis.
An examination of published material shows that a common 
practice in cell population data analysis is to acquire impedance 
data using low frequencies (≤ 1 MHz). Impedance data at low 
frequencies allows for inferences on cell size to be drawn, either 
based purely on signal magnitude or on estimated electrical 
diameter (using reference particles). Differences in cell size are 
the most frequently used biophysical parameters to distinguish 
cell types and even perform separation157–159. Thus, when 
performing impedance cytometry measurements of 
heterogeneous populations, it is valuable to gather data at the 
low frequency range, so that subpopulations of varying size can 
be distinguished and properly gated (e.g. RBCs versus WBCs 
versus cancer cells).
Signals from multiple frequencies are also commonplace in 
recent literature, since specific frequency ranges supply 
information about different cell properties (Fig. 1). Thus, 
impedance data in the form of magnitude (sometimes referred 
to as amplitude) and phase at different frequencies are 
regularly used to plot and analyse data. Moreover, these 
different variables can also be used to calculate metrics that 
further probe cell properties and can give qualitative 
estimations of certain dielectric properties, with the best known 
example being magnitude opacity40,55,57,60,63,71,160,161. Being the 
result of the ratio of impedance magnitude at mid-range 
frequency (i.e., 1–10 MHz) over impedance magnitude at low 
frequency (i.e., 0.1–1 MHz), this metric effectively probes 
membrane properties and is inversely related to membrane 
capacitance36,160. It has been widely used in recent literature to 
profile different cell types40,60,63,71 or assess alterations to 
membrane properties due to different interventions55,161.
Quantitative electrophysiological cell properties derived from 
dielectric modelling can also be used to plot and analyse cell 
populations (as explored in Section 3.3). However, only recently 
have these models been able to do so at a single-cell 
level89,154,156,162,163, thereby making these properties (e.g.  𝐶𝑚𝑒𝑚

or ) available as another component of the overall data 𝜎𝑐𝑦𝑡

analysis process, while unveiling the presence of 
subpopulations and different phenotypes in the analysed 
samples.
Contingent on the homogeneity/heterogeneity of samples, the 
clustering of data and gating process can be rather involved, 
with different approaches being available. The simplest method 
relies on “manually” gating clusters of data that are evident on 
the data plot. This approach is easily implementable and 
probably satisfactory to many sample types. However, by its 
nature, this method can be unreliable and skew the perception 
of the data, as it often depends on familiarity with the 
subpopulations expected to be found in the data. Other 
methods rely on the fitting of normal distributions to the data, 
be it 1-dimensional Gaussian fits to histograms or 2-dimensional 
Gaussian fits to scatter plots, for example. By identifying normal 
distributions in the data, gates can be generated to cluster the 
data into subpopulations. However, such approaches are not 
easily implemented (specially for 2D distributions) and rely on 
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the presence of normally distributed populations, which need 
not be the case for all sample types.
Another analysis method that has gathered much interest in 
recent literature focuses on machine learning-based 
classification of different cell subpopulations (cf. also Table S2 
of the Supplementary Material). In particular, support vector 
machines53 and neural networks115,154 have been used as 
supervised classifiers based on impedance cytometry data. 
These methods allow for a quasi-real-time analysis of data, 
limiting human interference into the gating strategy, but these 
need to be trained with a representative dataset.

4 Phenotyping cell populations
The juxtaposition of single-cell versus large population-level 
analysis has presented itself as a recurrent topic of debate 
within the microfluidics community at large164, and is the 
manifestation of a crucial question regarding any cell 
population analysis: how homogeneous can a given sample be? 
Bulk analysis techniques are generally simple to use and readily 
available (e.g., PCR or Raman spectroscopy), however, cells 
exposed to seemingly identical environmental stimuli will often 
display a distribution of heterogeneous behaviours. A collective 
averaging of results could thus cause the loss of crucial 
information regarding the population makeup, potentially 
giving rise to misleading results. In contrast, high throughput 
single-cell analysis offers the capability to, not only analyse 
large quantities of individual cells, but also to identify the 
distribution of responses, along with measuring statistically 
relevant numbers to make inferences from the data. 
Consequently, it is advantageous for the analysis of impedance 
cytometry data to be performed at a single-cell population 
level, be it in the form of electrical features (e.g. impedance 
phase or magnitude) or extracted biophysical parameters (e.g. 
electrical size or dielectric properties), so that the single-cell 
data can be analysed for the presence of various 
subpopulations in the heterogeneous sample. It is by this 
process that different phenotypes can be identified for cells 
under specific external stimuli (e.g. modifications during 
differentiation, stages of infection, activation processes, or 
differences in drug resistance or therapeutic potential, to name 
a few examples).
Table 2 offers an extensive list of literature focused on cell 
population analysis. Recent literature has focused on 
investigating a wide variety of cell types to identify and 
characterize specific phenotype(s) present in the samples of 
interest. The following section will focus on highlighting some 
of those approaches. Table 3, found at the end of this section, 
presents a broader view on the key phenotypical findings. With 
the interest in studying cell samples originating from tumour 
xenografts or model cancer cell lines increasing in the recent 
years, we divide the scope of the work performed with cancer 
cells into three independent sub-sections. These sub-sections 
cover the studies probing the role of electrophysiological 
phenotypes to understand disease presentation and single-cell 
dielectric properties (Section 4.1); biomechanical phenotyping 
studies (Section 4.2); and the application of electrophysiological 

phenotypes as a metric to assess cell viability and drug 
sensitivity (Section 4.3). The remainder of this section covers 
the works focused on a variety of sample types: mammalian 
cells (Section 4.4), human pathogens (Section 4.5), yeast cells 
(Section 4.6) and others (Section 4.7).

4.1 Cancer cells – Phenotypical characterization

The majority of recently published literature utilize cancer cell 
lines, either from long-standing established model cell lines or 
from patient derived xenografts, with a focus on phenotypical 
characterization of various cancer cell types. The Chen 
Group87,127,154,156,162,163,165 used a narrow microfluidic 
constriction channel (e.g., Fig. 5E and Fig. S2) for extraction of 
single-cell specific dielectric properties using equivalent circuit 
models (Sections 3.2 and 3.3). It is noteworthy that this 
squeezed state of the cell may alter the measured electrical 
activity due to its effects on the cell membrane166. This system 
was applied to the phenotypical characterization of CTCs from 
hepatic, oral and lung and the identification of EpCAM+ CTCs 
after their isolation162. (Fig. 6A). For hepatic and oral cancer 
samples, EpCAM+ CTCs had an estimated lower  and 𝐶𝑚𝑒𝑚

higher  than EpCAM- CTCs. Furthermore, significant 𝜎𝑐𝑦𝑡

differences in  and  were observed between the 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

studied cancer cell types. In an updated system154, 
microchannels defining a crossing constriction were capable of 
measuring >100 cells/s, allowing acquisition of >100,000 cells 
per sample type analysed. To evaluate the updated system, 
H1299 and HeLa model cell lines were compared, with 
significant differences in  and  being observed 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

between these cells (Fig. 6B). A neural network-based pattern 
recognition tool was used to classify cell types based on their 
estimated dielectric properties (cf. Table S2), with classification 
success rates above 90% and 75% for the distinctions of H1299 
versus HeLa cell lines and A549 versus EMT-activated A549, 
respectively.
A follow-up work163 presented the capability of distinguishing 
between adenoid carcinoma cell line SACC-83 and lung 
metastasis cell line SACC-LM, with metastatic cells presenting a 
lower  and higher . Liang et al. followed with the 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

characterization of the dielectric properties of single-nuclei 
from cancer cell lines A549 and SW620165. By varying the 
constriction device to allow for trapping of individual isolated 
nucleus, the extracted dielectric properties (nuclear envelope 
capacitance ( ) and resistance ( ) and nucleoplasm 𝐶𝑛𝑒 𝑅𝑛𝑒

resistance ( )) were used to show significant differences in 𝑅𝑛𝑝

, between the tested cell types. In another approach129 𝑅𝑛𝑒

based on integration of hydrodynamic constrictions to passively 
trap single cancer model cells (HeLa, HepG2 and A549), 
temporal analysis of cells was possible using electrical 
impedance spectroscopy (EIS), where significant differences 
were observed between cell lines for impedance magnitude 
data at 1MHz (Fig. 6C); while non-trapped flowing cells were 
analysed by standard impedance flow cytometry (IFC) (Fig. 5G). 
Such strategy, combining both IFC and EIS in a single system, 
could thus yield more data-rich results, improving the 
phenotypical characterization.
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More recently, McGrath et al.71 presented a comprehensive 
study aiming at the phenotypical stratification of patient-
derived, pancreatic tumour xenografts based on their 
tumourigenicity. Using a high-throughput system ( 300 >
cells/s), single cells derived from primary pancreatic tumours 
versus those from liver metastasis were analysed with a novel 
impedance phase contrast metric, which is based on impedance 
phase variations in the high and low frequency range. Variations 
in this metric were found to be related to electrophysiology of 
the cell interior and to be systematically altered as a function of 
tumourigenicity (Fig. 6D). Moreover, dielectrophoresis was 
performed in parallel and confirmed that cancer cells of higher 
tumourigenicity exhibited lowered interior conductivity and 
enhanced permittivity. Genetic analysis also confirmed that 
dysregulation of Na+ transport and Ca2+ removal from the 
cytoplasm is present in more tumourigenic cell lines, further 
validating the phenotypical characterization.

4.2 Cancer cells – Biomechanical phenotyping

Another topic of emerging research interest in recent literature 
is the integration of methods to determine biomechanical 
phenotypes of cells based on impedance cytometry. The 
measurement of mechanical and electrical properties of single 
cells can yield useful information on the physiological and 
pathological state of cells. Based on the constriction channel 
device, the Chen Group156, estimated the dielectric (  and 𝐶𝑚𝑒𝑚

) and mechanical properties of single-cells from model cell 𝜎𝑐𝑦𝑡

lines (H460, H446, A549, 95D and 95C), with the latter 
measured through instantaneous estimation of Young’s 
modulus ( ) using a numerical mechanical model applied to 𝐸𝑖𝑛𝑠𝑡

high-speed camera images. (Fig. 6E).
In another constriction-based system (Fig. 4E), four pairs of 
electrodes were included for the acquisition of impedance 
magnitude data and different time metrics (i.e. entry, transit 
and passage times) of individual cells, to characterize the 
deformability of MCF-7 model cells116. The system was used to 
characterize the deformability and impedance phenotypes of 
normal, fixed and (phorbol 12-myristate 13-acetate) PMA-
modified MCF-7 cells, while RBCs were used as highly 
deformable reference particles. Alterations to cell deformability 
by fixation (decrease) and PMA modification (increase) were 
confirmed based on time metrics and presented together with 
differences in impedance magnitude (Fig. 6F).
A system comprised of multiple constriction regions was 
presented by Yang et al. to characterize the biophysical 
phenotypes of model MCF-7 cells115. Using 3D electrodes, 
impedance and deformability measurements of single cells 
based on the transit-time through the constrictions (Fig. 4G) 
were used to distinguish biophysical properties of untreated, 
nethylmaleimide-treated and cytochalasin B-treated MCF-7 
cells. A back propagation neural network (cf. Table S2) yielded 
a classification accuracy of more than 90%, when impedance 
and deformability metrics were considered together, 
demonstrating its applicability to the analysis of concurrent 
biophysical and impedimetric data.

4.3 Cancer cells – Viability assessment

Another area of interest when studying various cancer cells is 
the determination of cell viability and the phenotypic 
alterations observed due to loss of viability by apoptosis or 
necrosis, specifically under chemotherapeutic drug treatments. 
Xie et al. proposed non-traditional parameters based on 
admittance (i.e. the reciprocal of impedance) as new metrics to 
discriminate live, necrotic and apoptotic cells49. Specifically, 
conductance ( , the real part of admittance) and susceptance (𝐺

, the imaginary part of admittance) were used. Proof-of-𝐵
concept demonstration was performed using HeLa and Jurkat 
cells treated with an apoptosis-inducing drug Actinomycin D 
(AD). Higher concentrations of AD represented smaller  and . 𝐺 𝐵
Comparison between the phenotyping of cells using the novel 

 and  metrics versus standard flow cytometry was 𝐺 𝐵
performed, with the ratios for viable, early apoptotic and 
necrotic/non-viable cells showing good correlation.
De Ninno et al.64 presented a three-electrode coplanar device 
capable of discrimination between live, necrotic and apoptotic 
cells at high-throughput (~200 cells/s). Cells from lymphoma 
model cell line U937 were either treated with etoposide (an 
apoptosis-inducing drug) or subjected to a heat-shock (to 
induce a loss of viability and mimic natural necrosis). Results 
suggest that using electrical diameter (estimated using 500 kHz 
impedance magnitude) it was possible to discriminate between 
intact cells and smaller cell debris (possibly apoptotic bodies 
and/or necrotic cell fragments; Fig. 6G). Within the cell 
population, viable and necrotic cells were discriminated based 
on clear differences in impedance phase data at 500 kHz. 
Impedance phase at 10 MHz was used to identify two 
subpopulations of cell debris of differing phenotype, possibly 
due to capacitance and conductivity differences between 
apoptotic bodies and other cell fragments present.
In another work using the same lymphoma cell line41, the 
viability of cells was found to be compromised by exposure to 
toxic nanomaterials (NMs) at various concentrations and time-
points. After optimization steps for the acquisition conditions 
(e.g. frequency and buffer composition), a clear discrimination 
between viable and necrotic cells was obtained at 6 MHz using 
a buffer comprised of PBS to 0.28M sucrose solution at a 1:4 
ratio (Fig. 6H). In fact, the effect of NMs on cell viability could 
not be assessed using trypan blue dye exclusion and flow 
cytometry, due to interference of NMs on the staining process 
using Annexin-V/7-AAD. This highlights the utility of impedance-
based viability assessment systems for cases wherein labelling 
cannot identify functional alterations.
Supervised machine learning was implemented to perform 
viability assessment of drug-treated cancer cells (model T47D 
cell line) in a different approach53. Since activated matriptase (a 
membrane-bound protease), is overexpressed in various 
epithelial cancers, cells were subject to an anti-matriptase-
conjugated drug, inducing apoptosis and loss of viability. Cells 
sensitive to the drug presented changes in impedance 
magnitude and phase data with respect to drug insensitive cells 
(in the 500 kHz - 30 MHz range). Support vector machines, using 
an 8-feature matrix (impedance magnitude and phase at 4 
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different frequencies), had an overall accuracy of 95% in >
predicting the viability of analysed cells (cf. Table S2). These 
results highlight the value in implementing machine learning 
protocols (such as neural networks) to streamline cell viability 
assessment, without the need for staining or labelling.

4.4 Mammalian Cells

Considering other mammalian cells, studies on various 
leukocytes populations in human blood has been a major focus. 
These cells play important roles in immune response, infections, 
cancer and other diseases. However, immune systems can 
become compromised as a consequence of certain diseases, 
with an example being diabetes, wherein key metabolic 
pathways are altered, thereby dysregulating many components 
of both the innate and adaptive immune systems. This effect 
was studied by Mahesh et al. using a system for biomechanical 
and electrical phenotyping of lymphocytes from diabetic 
patients145. The device was comprised of a constriction channel 
wherein alterations to the mechanical properties of single cells 
was estimated based on differences in the transit-time of cells 
through the narrowing region, with pairs of electrodes at the 
entrance and exit of the constriction measuring single-cell 
signals. Results showed a significant increase in the transit-
times of diabetic versus normal lymphocytes, indicating a loss 
of deformability by lymphocytes from diabetic patients (Fig. 
7A). Significantly higher signal amplitude differences were also 
observed for the altered lymphocytes, indicating overall 
changes to the electrophysiology of diabetic lymphocytes, likely 
connected to alterations in the cytoskeleton of cells.
Another work focused on the profiling of diabetic leukocytes 
was proposed by Petchakup et al.60. An innovation presented in 
this work was the utilization of a microfluidic device to perform 
a size-based, inertial cell sorting step (using Dean flow 
fractionation - DFF) to enrich for specific leukocyte populations 
prior to impedance cytometry (Fig. 5I). DFF-sorted leukocytes 
populations of monocytes, lymphocytes and neutrophils were 
clearly distinguishable from other blood cells on the basis of 
their impedance magnitude and magnitude opacity phenotypes 
(Fig. 7B). The activation of DFF-sorted monocytes with 
inflammatory stimulus from TNF-α induced alterations to the 
membrane as apparent by an increase in magnitude opacity, 
while LPS stimulation was used to pick out two subpopulations: 
activated monocytes and non-activated neutrophils within the 
expected homogeneous sample. Considering DFF-sorted 
samples from diabetic patients, the phenotypes of neutrophils 
presented significantly higher magnitude opacity versus that of 
monocytes, suggesting that diabetic patients would likely have 
neutrophils/monocytes expressing pro-inflammatory/activated 
phenotype, which can possibly serve as a novel biomarker for 
the inflammatory response.
In a follow-up work, impedance cytometry detection was 
integrated within the DFF sorting device63. Focusing again on 
diabetes, the capability of healthy and glucose-treated 
neutrophils to form neutrophil extracellular traps (NETosis, an 
anti-inflammatory defense function, wherein web-like DNA 
structures are used to trap and kill pathogens) was assessed. 

Cells undergoing calcium ionophore (Cal) induced NETosis were 
measured, with NETosis neutrophils presenting a higher 
magnitude opacity and cell size than unstimulated neutrophils, 
especially at 120 min (Fig. 7C). These alterations could be 
related to cell membrane and cytoplasm conductivity 
alterations, together with the alteration of internal structure 
and degradation of the nucleus induced by NETosis. Moreover, 
a comparative study of NETosis induced by CaI and phorbol 12-
myristate 13-acetate (PMA) revealed distinct phenotypes, with 
PMA-treated cells having significantly lower magnitude opacity 
and larger size than CaI-treated cells. The differential effects of 
each drug on the rates at which cells enlarge and exhibit altered 
membrane permeability due to NETosis may explain the 
differences. The results presented in both works by Petchakup 
et al. referred herein demonstrate the clear potential for 
integrating an analysis technique, such as impedance 
cytometry, with other relevant microfluidic sorting techniques, 
opening the door for truly point-of-care tools to be developed.
A different work also focusing on lymphocytes was presented 
by Rollo et al., aiming at the electrical profiling of activated T-
lymphocytes79. Adoptive T-cell immunotherapy is a promising 
approach in personalized medicine which requires the 
assessment of clonal antigen specificity followed by the label-
free isolation of cells of interest. To assess if electrical 
phenotypes could indicate specific clonal antigen profiles, the 
authors analysed T-lymphocytes that were CD8+ unstimulated, 
CD8+ CD69+ activated, and CD8+ CD69- non-activated. Using a 
device comprised of 3D microelectrodes for signal acquisition 
(Fig. 2D), the impedance change associated with T-cell 
activation was measured using data at 6 and 14 MHz, where 
CD69+ cells presented a shift in the real component of 
impedance at both frequencies, possibly due to 
electrophysiology changes arising from activation processes, 
such as remodelling of actin cytoskeleton or the increment in 
nuclear volume (Fig. 7D).
Other mammalian cell types studied in recent literature include 
skeletal stem cells (SSCs) following enrichment and 
expansion161. SSCs are a rare population found in bone marrow 
with high capacity for bone and cartilage regeneration. The 
phenotypical profiling of these rare cells has the potential for 
sorting and enrichment of this population. The system 
integrated fluorescence detection for the identification of 
CD146+ cells, a key SSC surface marker. Impedance 
measurements showed that unexpanded SSCs were on average 
larger than other cells found in the bone marrow. Furthermore, 
following the in vitro culturing of SSCs for expansion, both cell 
size and membrane capacitance (assessed by magnitude 
opacity) increased significantly, as early as by passage 0 (Fig. 
7E). SSCs also showed an increased membrane capacitance with 
osteogenic differentiation. However, when compared to other 
bone marrow cells, no significant differences in magnitude 
opacity were found with primary SSCs, thereby limiting 
membrane capacitance-based DEP enrichment. Nonetheless, 
the observed phenotypical differences in size and stiffness 
could be harnessed by other microfluidic techniques for SSCs 
enrichment, as explored in a subsequent work167.
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Another mammalian cell type studied recently was human 
umbilical vein endothelial cells (HUVECs), specifically utilized as 
model cells for the study of viability assessment after a 
hypertonic stimulus119. Loss of viability was induced by either a 
paraformaldehyde treatment or a heat-shock. The hypertonic 
stimulus (Fig. 5A) was implemented to cause volumetric 
differences between viable and non-viable cells, making the loss 
of viability detectable based on difference in impedance 
magnitude at low frequency (450 kHz) (Fig. 7F). The system 
presented comparable sensitivity in the assessment of viability 
to that of flow cytometry results. The system was capable of 
determining loss of viability through both paraformaldehyde 
and heat-shock methods, not only for HUVECs cell type, but also 
human colon cancer (HT-29) cells and immature bone-marrow-
derived macrophages (iBMDM).

4.5 Human pathogens

Recent literature in the realm of impedance cytometry has also 
focused on the detection and phenotypical characterization of 
different human pathogenic organisms. An example is the work 
by McGrath et al. 151 focused on the analysis of waterborne 
parasitic protozoa, specifically from the Cryptosporidium and 
Giardia genus. Few techniques are capable of detecting and 
assessing the viability of single pathogens in a rapid manner168, 
which is critical given that only 10 viable oocysts in a water 
sample can initiate a significant human infection. 
Measurements were performed comparing viable pathogens 
with heat-inactivated ones, which mimic naturally occurring 
non-viable oocysts. Due to the thick outer wall layer protecting 
oocysts, heat-inactivated cells undergo ion exchange with the 
suspending medium that causes a distinct electrophysiology 
difference versus untreated cells, as confirmed by the 
suspension of both sample types in a highly conductive medium 
(5× PBS) to optimize the discrimination. (Fig. 8A). Using data at 
high frequency (50 MHz), 2D Gaussian confidence ellipses were 
defined for each population, with the gating strategy involving 
the definition of a line of equal probability (i.e., where detected 
events had equal probability of belonging to either population). 
This gating strategy resulted in the classification of the viability 
phenotype with over 90% certainty. Using the same strategy, 
discrimination between human pathogenic C. parvum and G. 
lamblia versus non-human pathogenic C. muris was also 
achieved with over 92% certainty, due to clear differences in cell 
size phenotypes.
Another system focused on waterborne pathogens developed a 
system to detect micron-scale human pathogenic bacteria in 
water samples40. Monitoring of bacterial concentrations is 
pivotal in water quality assessment, with 5 bacteria per mL 
being considered the permitted limit. Thus, the authors used 
impedance cytometry to identify bacteria suspended in tap 
water or an equivalent buffer of very low conductivity (0.085 
S/m). Using reference polystyrene beads of 1 and 2 µm mixed 
with an Escherichia coli bacteria sample to demonstrate 
discrimination based on size differences at 200 kHz and 
impedance phase phenotypes at 7 MHz (Fig. 8B), different 
bacterial types within a mixed sample were discriminated, with 

the Gram-positive Staphylococcus aureus presenting higher 
impedance phase at 8 MHz than the Gram-negative E. coli. 
These results40, 151 show the potential for an impedance-based 
system to be integrated in current water quality management 
for the detection of waterborne pathogens contaminations.
An additional work focused on the detection of bacterial 
phenotypes was recently presented by Moore et al.153. 
Gastrointestinal infections in hospital settings after antibiotic 
administration are widely attributed to the susceptibility of 
human microbiota to germination and colonization by 
Clostridium difficile (C. difficile). In this study, the metabolite 
conditions leading to germination of C. difficile spores was 
studied based on well separated high frequency (10 MHz) 
impedance phase signals from C. difficile in spore versus 
vegetative form (Fig. 8C), even though the impedance 
magnitude signal exhibited overlaps due to minimal size 
differences between spore aggregates and their vegetative 
form. In this manner, antibiotic-induced disruption of 
microbiota in a mouse model was shown to enhance 
susceptibility to spore germination.
Focusing on a different type of human pathogenic organisms, 
Honrado et al. performed the dielectric characterization of red 
blood cells infected by a malaria parasite69. Since malaria is the 
world’s most prevalent parasitic disease, there is a need to 
understand the electrophysiological alterations of cells during 
the malaria infection cycle. To investigate this, the infection of 
RBCs by malaria parasites (Plasmodium falciparum) was 
followed, with measurements performed every 6 h post-
invasion along the 48 h intraerythrocytic life cycle of the 
parasite. To identify the subpopulation of infected cells, GFP 
emitting parasites were utilized for integrated fluorescence 
detection. Impedance data at 5 MHz revealed the differing 
phenotype of infected versus uninfected cell populations (Fig. 
8D). To probe the origin of the observed phenotypes, multi-shell 
modelling was performed to determine the dielectric properties 
of the cell and parasite at each individual time-point post-
invasion. Analysis showed a significant increase in  and  𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

of infected RBCs along the infection time course. These 
alterations are probably related with known membrane 
alterations caused by the parasite starting at early stages, which 
also influence the extent of ionic exchange between the intra- 
and extra-cellular regions. Alterations include changes to 
membrane lipid and protein composition, the expression of 
new pathways and the formation of angular elevations that 
alter membrane structure. Furthermore, the volume ratio taken 
by the parasite within the host cell was estimated to vary from 
less than 10% at earlier stages of infection to more than 90% at 
later stages. These findings can be used in future microfluidic 
sorting techniques for the enrichment and detection of infected 
cells.

4.6 Yeast Cells

A staple across the field of microfluidics is to utilize yeast cells 
(commonly from the Saccharomyces cerevisiae species) as a 
model sample type for testing of a variety of phenomena. Being 
easily accessible and culturable, yeast cells are optimal particles 
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to investigate size-based methods or explore new methods for 
viability assessment. On the latter point, Opitz et al. explored 
the utilization of impedance cytometry as a new quality control 
tool for the determination of cell viability and to assess cell 
culture status72. To mimic loss of viability, a heat-inactivation 
step was performed, with the estimated ratio of non-viable cells 
tracking well with standard flow cytometry methods, even in 
long-term batch cultures (Fig. 8E). By starving cells, the natural 
decay in viability was observed up to 18 days, with samples 
presenting a gradual decrease in impedance phase at 10 MHz. 
Cultures treated with the cytotoxic compound amphotericin 
showed a similar trend with increasing exposure times of up to 
300 min. This phenotype of viability loss at 10 MHz is explained 
by the alterations in membrane properties upon death, 
resulting in changes to conductivity and capacitance for the cell 
membrane and internal structure.
The phenomenon of budding yeast has also gathered some 
interest in recent publications, as it works as a model for 
phenotyping strategies focused on morphology and shape, 
which can provide information about cellular physiological and 
pathological conditions. An example can be found in a recent 
work where single-cell morphology was assessed based on 
particle self-alignment88 (Fig. 4B). Using signal width, amplitude 
and the ratio of width to amplitude (R) as metrics, unbudded 
yeast cells and early/late-budding cells were discriminated. By 
following the yeast proliferation process along 48h (Fig. 8F), it 
was observed that most cells are in the budding stage for the 
first 12h, however, from 24 h onward, the proportion of 
budding yeast is highly reduced, reaching a minimum at 48h. 
This state is comparable to the inactive, non-budding stage that 
yeast cells are commonly found at.
In another example, dielectrophoretic forces were used to trap 
budding yeast cells and perform size estimations of the trapped 
cells132. Eight trapping sites were defined to generate pressure 
differences capable of trapping the flowing particles. Electrical 
impedance spectroscopy was then performed on trapped 
particles. The size of trapped beads correlated well with 
impedance magnitude at 1 MHz. Hence, using the same metric, 
differences between single and budding yeast cells were 
observed, with the system being sensitive to variations in the 
size of the trapped particle. The capabilities to correctly identify 
the health and budding stage of cultures, presented in the 
herein highlighted literature, could possibly be applied in the 
fermentation industry as a rapid analysis technique.

4.7 Miscellaneous Biosystems

Besides the more traditional lines of work and applications for 
impedance cytometry, there have been some recent works 
focusing on less usual sample types or procedures. In one 
example by Heidman et al.169, viability assessment of pollen 
from various species was studied: tobacco (Nicotiana tabacum), 
tomato (Solanum lycopersicum), cucumber (Cucumis sativus) 
and pepper (Capsicum Annuum). Pollen quality control is 
important for plant breeding research, and for plant and food 
production processes. Pollen viability is typically determined by 
classical methods, such as staining, but also using more 

laborious processes, like in vitro pollen germination. Impedance 
cytometry was thus explored by the authors as an alternative 
method for pollen analysis and viability assessment. Due to the 
large size of pollen particles, samples were run in microchannels 
with cross-sections of 120 × 120 µm (tobacco, tomato and 
pepper) or 250 × 250 µm (cucumber). Results showed that 
different stages of developing, viable, germinating and non-
viable pollen populations could be detected and quantified 
based on differences in impedance phase between 3 and 12 
MHz, with high correlation to other standard benchmarking 
methods. Moreover, pollen with active germination potential 
were also discriminated against non-viable pollen and non-
germinating viable populations. These results suggest that 
impedance cytometry could then be adopted as an effective 
label-free technique for pollen quality control.
Another instance of an uncommon sample type is the green 
algae (Picochlorum SE3, Chlorophyta, 2 to 3 µm cell diameter), 
used for studies on viability assessment55. Algae were rendered 
non-viable with a 1h heat-treatment, with significant 
differences in magnitude opacity at 500 kHz and 20 MHz being 
observed. Non-viable cells presented smaller impedance 
magnitude at low and high frequencies, indicating a smaller size 
and altered cytoplasmic properties due to necrosis. Green algal 
cells were also cultured under different salinity conditions and 
analysed at different time points, with the magnitude opacity of 
cells being significantly reduced. Results suggest a capability by 
cells to adapt to the culturing conditions, which in turn suggests 
that this method could be implemented in situ to, not only 
analyse cell phenotype, but also assess the viability of cultures 
of varying media composition.
As a final example, while impedance cytometry has been widely 
used for label-free phenotyping of individual cells, it has yet to 
be used to detect larger biological systems or organisms. A 
recent case is the work by Zhu et al., which reported the study 
of C. elegans using impedance cytometry108. C. elegans is a well-
characterized model organism which has been widely used in 
genetic studies on developmental biology, aging and 
neurobiology. In this work, the authors explored impedance 
cytometry as a tool to identify the developmental stage (larval 
L1, L2, L3 and L4 stages or adult stage) of individual C. elegans 
worms. Using impedance magnitude data at 300 kHz, worm-
length related parameters were correlated to developmental 
stage, since worms present specific body morphology, size and 
behaviour at each stage (Fig. 8G). The accuracy of phenotyping 
and identification varied between 82% to 97%, with later stages 
(L4 and adult) presenting optimal accuracy. Furthermore, small 
(i.e., L1-L3) and large (i.e., L4 and adult) worms, from a mixed 
population, were separated to different outlets by first 
performing a size-based discrimination step using impedance 
cytometry data, and then re-directing individual C. elegans to 
the desired outlet using a system of individually addressable 
valves. The system was not only capable of identifying specific 
developmental-related phenotypes, but also for integrating 
impedance data within a decision step for particle separation. 
These results show that impedance cytometry could have a 
broader spectrum of interest and applications, by integration 
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with separation technologies or by its application to sample 
types of larger scale.

5 Conclusions and outlook
The quantification of phenotypic heterogeneity is becoming 
increasingly significant to understand biological function and to 
address the needs of precision medicine. Over the last decade, 
microfluidic impedance cytometry has carved a niche within this 
broader need by enabling quantification of subpopulations 
based on their electrophysiology, especially for cell types that 
lack reliable biochemical markers to identify them. In recent 
years, novel design solutions have increased the accuracy of the 
technique and led to robust design-tailored tools to process the 
raw impedance signals. The capability of the technique to offer 
multiparametric information on the cells has also been 
enriched. It is now possible to acquire electrical fingerprints that 
convey biophysical information on cell size, shape, dielectric 
and mechanical properties, as well as on motion-related 
quantities such as cell velocity and position within the 
microchannel. Multifrequency measurements coupled with 
dielectric (multi-)shell models enable the quantification of 
conductivity and permittivity of subcellular features. 
Impedance spectroscopy of single flowing cells at up to eight 
simultaneous frequency has been demonstrated for 
identification by fitting of dielectric models, and microwave-
based solutions are being developed to extend the frequency 
range, potentially enabling the identification of novel electrical 
biomarkers for the status of cell nucleus. Real-time processing 
of impedance data has also been shown, paving the way to 
inform sorting for downstream analysis of target sub-
populations. Although cell sorting based on impedance-
signature has been demonstrated47,48,108, its great potential has 
not yet been fully exploited. Emerging microfabrication 
solutions, such as tubular microfluidics, are opening 
opportunities for electrical impedance tomography of flowing 
cells.  
Some novel emerging directions in cell analysis include the 
development of impedance cytometers for single-bacteria 
analysis, by overcoming the challenges of downscaling to 
enable early diagnosis of bacterial infections, such as through 
gauging host microbiota susceptibility to infection and for 
reducing the timeframes for antibiotic susceptibility analysis. 
Recent advances highlight the importance of biophysical 
properties determined by impedance-based single-cell analysis 
to complement the biochemical information obtained from 
fluorescence-based flow cytometry, thereby enabling a more 
holistic picture of the cell phenotype, which is essential for 
understanding cell death mechanisms, elucidating cancer 
metastasis, and predicting stem cell differentiation lineage. We 
envision enhanced impedance-based deformability cytometry 
protocols by novel device designs and coupled modelling 
approaches to translate impedance metrics into biomechanical 
properties. Impedance-based platforms to monitor dynamic 
changes at the single-cell level after drug interventions to the 
same sample are also very promising.

Electric fields represent an invaluable tool for single-cell analysis 
and manipulation in microfluidic devices. Electrical sensing has 
the key advantage of being label-free while electrical forces 
scale favourably with miniaturization170. We envision the 
development of all-electrical integrated platforms wherein for 
instance: dielectrophoresis is used to manipulate cells171 and 
other analytes172–174; impedance cytometry is used at multiple 
stations (e.g., pre and post-stimuli) for dynamic cell biophysical 
characterization and cell tracking; electro-actuated valves175 
enable programmable flow control and sorting; selected cells 
undergo electrical lysis176 and the released intracellular material 
is analysed on chip by means of impedance-based 
nanopores177,178. All-electrical systems show great promise for 
system integration and portability. The final goal is to design 
compact, modular and adaptive devices that use disposable 
chips and enable fast, user-friendly readout capabilities. This 
would enable the widespread use of the technology out-of-the-
lab, within clinical settings, which is of central importance to 
validate newly discovered electrical biomarkers. A pivotal step 
in this direction would be the movement from cleanroom-based 
chip microfabrication to makerspace fabrication179–181, which is 
getting closer thanks to developments in 3D printing, 
imprinting182, flexible electronics and nanomaterials.
On the other hand, in order to stratify cell subpopulations in 
complex heterogeneous samples, novel hybrid microfluidic 
platforms could be developed, wherein electrical sensing is 
coupled e.g. with optical and fluorescence imaging183,184, 
Raman185 and hyperspectral186 imaging, digital holography187, 
and biochemical assays188. In fact, probing complementary cell 
properties (e.g., morphological, biophysical, biochemical 
properties) enables multimodal sensing, which can significantly 
enhance the feature space used for cell characterization and 
discrimination. This comes with technical challenges in terms of 
device design and operation, as well as challenges in the 
combination of the acquired multimodal data189,190. Data 
streams from heterogeneous sensor sources can have different 
noise level, information content and representation (e.g., 
structured vs unstructured data, 1D or 2D signals), and 
multimodal information fusion still need to be improved in 
theories, methodologies and practical systems191. Furthermore, 
as high-dimensional data become available, the identification of 
subpopulations by manual gating becomes impractical and 
automated data-driven clustering strategies are required192,193. 
In particular, unsupervised clustering methods can enable the 
unbiased detection of novel subpopulations. 
In this framework, synergistic research efforts involving 
microfluidics, sensor science and machine learning are expected 
to bring single-cell analysis to its next level, with a tremendous 
impact for life-science research, diagnostics and personalized 
medicine.
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Fig. 1 Overview of impedance-based cell phenotyping. (A) Typical measurement setup: a multifrequency AC voltage signal is applied to the top electrodes and the differential current 
from the bottom electrodes is measured. (B) Acquired signal (real part, one frequency channel). (C) Single-cell signal (real and imaginary parts). Markers highlight peak values. (D) 
Peak amplitude representation in the complex plane, showing impedance magnitude (|Z|) and impedance phase (φZ). (E) Scatter plot of single-cell data (phase vs. magnitude). (F) 
Spectra of impedance magnitude and phase, with indication of the cellular features probed in each frequency range. (G) Multi-shell models used to fit the impedance spectra.

Fig. 2 (A) and (B) Classic coplanar and facing electrodes designs, respectively, along with relevant idealized signals. (C) Liquid electrodes concept. (D) Design based on three-
dimensional electrodes. (E-G) Design enabling compensation of position blurring, along with simulated impedance traces for different particle trajectories. See Sections 2.2 and 2.3 
for details. Images were adapted with permission from (A) ref. 57, copyright The Royal Society of Chemistry 2001, (B) ref. 36, copyright 2005 Wiley-Liss, Inc. (C) ref. 75, copyright The 
Royal Society of Chemistry 2010 (D) ref. 79, copyright 2017 Elsevier B.V. (E) ref. 58, copyright 2017 The Author(s), (F) ref. 94, copyright 2017 The Author(s), (G) ref. 90, copyright The 
Royal Society of Chemistry 2016.
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Table 1 Overview of the microfluidic impedance cytometers discussed in Sections 2.4 and 2.5 (timeframe 2017-2020). References marked with an asterisk are further detailed in 
Table 2; if present, the relevant picture is indicated in brackets (‘Ref.’ column); MIC, microfluidic impedance cytometry; ‘L-electrodes’ indicates the liquid electrode concept (i.e., 
metal electrodes recessed in lateral channels); N/A, not applicable.

A. Designs for electrical position detection
Electrode layout Direction (and principle) of detection Application Ref.
Single pair of non-parallel coplanar electrodes Channel width (transit time) Discrimination of five different

transverse bead positions
Wang et al. 201795

(Fig. 3A)
3 N-shaped coplanar electrodes Channel width (measured electrical 

signal and geometric relationships)
RBC/bead position detection, monitoring 
bead hydrodynamic focusing

Yang et al. 201996 
(Fig. 3B)

2 facing electrode arrays Channel width (gradient in electric field) Bead tracking Solsona et al. 201997

(Fig. 3C)
2 coplanar electrodes with non classical
shape + DEP-focusing electrode array

Channel length (impedance variation) Bead tracking
(potentially real-time)

Brazey et al. 201898

(Fig. 3D)
Network of 10 code-multiplexed Coulter 
sensors

Location across 10 parallel channels 
(recognition of signal patterns)

Position detection of cells from different 
cell lines

Wang et al. 201946

(Fig. 3E)
5 coplanar L-electrode pairs +
5 coplanar electrodes

Channel width (ratio of transit times) + 
channel height (relative prominence)

Monitoring bead inertial focusing Reale et al. 201899 

2 coplanar L-electrode pairs +
5 coplanar electrodes

Channel width (peak relative difference) 
+ channel height (relative prominence)

Monitoring RBC/bead hydrodynamic 
focusing

Reale et al. 201993

(Fig. 3F)
2 coplanar L-electrode pairs +
2 facing electrode pairs

Channel width (peak relative difference) 
+ channel height (peak relative 
difference) 

RBC/yeast position detection Honrado et al. 2020100

(Fig. 3G)

B. Designs sensitive to cell shape or cell mechanical properties
Electrode and fluidic layouts Impedance-based metrics Application Ref.
1 coplanar electrode pair,
1 constriction structure

Pulse width, amplitude and width-to-
amplitude ratio

Morphology-based yeast buddying 
analysis

Xie et al. 2019*88

(Fig. 4B)
1 coplanar electrode pair,
straight channel

Baseline-to-plateau current magnitude Identification of developmental stages of 
C. Elegans with variable morphology

Zhu et al. 2018*108

4 coplanar electrode pairs,
1 constriction channel

3 passage times, impedance magnitude Simultaneous electrical and mechanical 
cell characterization

Zhou et al. 2018*116

(Fig. 4E)
1 coplanar electrode pair,
2 (or 5) constriction regions separated by 
1 (or 4) relaxation region(s)

Signal features (transit times, rise times 
ratio, rise slope, impedance and phase 
drops)

Simultaneous electrical and mechanical 
cell characterization

Ren et al. 2019117

(Fig. 4F), and  
Ghassemi et al. 2020118

4 three-dimensional electrodes,
differential multiconstriction channel

4 transit times, relaxation index (i.e., 
transit times ratio), average impedance 
magnitude

Simultaneous electrical and mechanical 
cell characterization

Yang et al. 2019*115

(Fig. 4G)

C. Platforms with multiple electrical sensing zones
MIC sensing zone (#, layout, wiring) Separating region(s) Application Ref.
2 zones, 1 coplanar electrode pair each, 
absolute measurement

Hypertonic stimulation Quantification of cell survival rate Zi et al. 2020*119 
(Fig. 5A)

2 zones, 2 coplanar L-electrode pairs each, 
crossed differential wiring scheme 

Dielectrophoresis Monitoring dielectrophoretic focusing Reale et al. 2019120 
(Fig. 5B)

2 zones, 3 coplanar electrodes each, 
differential measurement

Hyperbolic constriction Coincidence arbitration Caselli et al. 202044 
(Fig. 5C)

2  zones, 2 coplanar electrodes each 
(1 in common), absolute measurement

N/A Automated antischistosomal
drug screening

Chawla et al. 2018121

2 zones, 3 coplanar electrodes each, 
differential measurement

Antigen specific capture chamber Protein detection in undiluted plasma 
samples

Valera et al. 201859

6  zones, 3 coplanar electrodes overall, 
shaped to create coded Coulter counters

Antigen specific capture chambers 
(4 overall)

Immunophenotyping against
multiple antigens

Liu et al. 2019125

(Fig. 5D)
D. Hybrid platforms

MIC sensing zone (layout, wiring) Other sensing/manipulation modality Application Ref.
2 coplanar L-electrode pairs,
crossed differential wiring scheme

High-speed optical imaging of individual 
flowing cells

Multimodal analysis of pollen grains Reale et al. 2019126

2 coplanar electrodes,  
absolute measurement

High-speed optical imaging of travelling 
single cell invading into a side 
constriction channel

Multiparametric cell characterization Liu et al. 2020127

(Fig. 5E)

2 coplanar electrodes,  
absolute measurement

Time-lapse microscopy of growing cells Long-term monitoring of cell growth rates Chawla et al. 2018128

(Fig. 5F)
2 coplanar electrodes,  
absolute measurement

Impedance spectroscopy of individual 
trapped cells

Electrical property measurement of single 
cells

Feng et al. 2019*129

(Fig. 5G)
2 coplanar electrodes,  
absolute measurement

Contactless dielectrophoretic particle 
manipulation

Increase robustness against chip-to-chip 
variability due to microfabrication errors

Farmehini et al. 
2019130

2 coplanar electrodes,  
absolute measurement

Vortex chip Isolation and enumeration of circulating 
tumour cells

Raillon et al. 201952

(Fig. 5H)
3 coplanar electrodes, 
differential measurement

Dean flow fractionation and flow rate 
reduction based on inertial focusing

Leukocyte isolation Petchakup et al. 
2019*63

(Fig. 5I)
Interdigital electrodes (5 fingers) Encapsulation of cells in droplets Monitoring osteogenic differentiation Fan et al. 2019131
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Fig. 3 (A-E) Systems for electrical position detection along one spatial coordinate. (F) and (G) Designs for cross-sectional position detection. See Section 2.3 and Table 1A. Images 
were adapted with permission from (A) ref. 95, copyright The Royal Society of Chemistry 2017, (B) ref. 96, copyright The Royal Society of Chemistry 2019 (C) ref. 97, copyright The Royal 
Society of Chemistry 2019 (D) ref. 98, copyright The Royal Society of Chemistry 2018 (E) ref. 46, copyright The Royal Society of Chemistry 2019 (F) ref. 93, copyright The Royal Society 
of Chemistry 2019, (G) ref. 100, copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020.

Fig. 4 (A-C) Shape-sensitive designs. (D) Microtubular channel with integrated electrodes. (E-G) Designs for mechanical characterization. See Section 2.4 and Table 1B for details. 
Images were adapted with permission from (A) ref. 107, copyright The Royal Society of Chemistry 2014, (B) ref. 88, copyright 2019 American Chemical Society, (C) ref. 109, copyright 
2010 IEEE, (D) ref. 111, 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (E) ref. 116, copyright 2017 American Chemical Society, (F) ref. 117, copyright 2019 Author(s), (G) ref. 115, 
copyright 2019 Elsevier B.V.
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Fig. 5 (A-D) Platforms with two or more electrical sensing zones, which are separated by: (A) a region of hypertonic stimulation, (B) a region of dielectrophoretic focusing, (C) a 
hyperbolic constriction, and (D) antigen specific capture chambers. (E-I) Hybrid platforms combining impedance cytometry with: (E) high-speed optical imaging, (F) time-lapse 
microscopy of growing cells, (G) impedance spectroscopy of individual trapped cells, (H) a Vortex chip for selective enrichement, and (I) two inertial focusing stages for Dean flow 
fractionation and flow rate reduction, respectively. See Section 2.5 and Table 1C-D for details. Images were adapted with permission from (A) ref. 119, copyright 2019 Elsevier B.V, (B) 
ref. 120, copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (C) ref. 44, copyright 2020 IEEE, (D) ref. 125, 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (E) ref. 
127, copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020, (F) ref. 128, copyright The Author(s) 2018, (G) ref. 129, copyright 2019 American Chemical Society, (H) ref. 
52, copyright 2019 International Society for Advancement of Cytometry, (I) ref. 63, copyright The Royal Society of Chemistry 2019.
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Table 2 Overview of cell population phenotypical analysis using single-cell microfluidic impedance cytometry discussed in Section 4. *PS = polystyrene; †NCCD = No cell concentration 
declared; ‡NFRD = No flow-rate declared; §NSVD = No signal voltage declared.

Sample 
Type Focus Sample Composition

Sample 
Concentration/ 
Flow-rate/Cell 

Throughput

Acquisition 
Conditions 

(Frequencies, Voltage 
& Channel cross-

section)

Characterization Metrics & 
Methods Ref.

Algae
Viability assessment of 
bacterium-sized green 

algae

Picochlorum SE3 algae
(~2–3 µm cell diameter);
(ref. particles: *PS beads)

†NCCD
‡NFRD

500 kHz to 30 MHz (8 
simultaneous 
frequencies)

§NSVD
30 µm × 8 µm

Magnitude & Opacity (Magnitude 
20 MHz/Magnitude 500 kHz)

Sui et al. 
202055

C. elegans
Identification of C. 

elegans developmental 
stages

C. elegans
(~200 µm – 1.2 mm length)

†NCCD
30 µL/min

300 kHz
1.5 V amplitude

160 µm × 130 µm
Transit Time & Magnitude Zhu et al. 

2018108

Cancer 
Cells

Discrimination of 
dissociated tumour cell 
lines from major cancer 

types

Lung, thyroid, breast, ovarian, and kidney 
normal and cancer cells

(~10–20 µm cell diameter);
(testing particles: peripheral blood 

mononucleated cells, RBCs)

†NCCD
50 µL/min

250 kHz
§NSVD

25 µm × 25 µm

Transit-time & Signal peak-to-peak 
voltage

Desai et al. 
2019194

Cancer 
Cells

Characterization of 
phenotypical properties 

of circulating tumour 
cells

Lung cancer cell lines A549 and MLO-Y4; 
Isolated CTCs from hepatic, oral and lung 

cancer
(~10–20 µm cell diameter)

2 × 104 cells/mL
50, 100 and 

150 µL/h

1 kHz & 100 kHz
§NSVD

6-10 µm × 6-10 µm

Transit-time, Magnitude, Phase & 
Dielectric Properties (  & );𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

Equivalent Circuit Models

Chiu et al. 
2017162

Cancer 
Cells

Characterization of 
phenotypical properties 

of tumour cell lines

Lung cancer cell line A549, Adenoid 
carcinoma cell line SACC-83 and lung 

metastasis cell line SACC-LM
(~10–20 µm cell diameter)

5 × 106 cells/mL
‡NFRD

100 kHz & 250 kHz
§NSVD

11 µm × 9 µm

Transit-time, Magnitude, Phase & 
Dielectric Properties (  & );𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

Equivalent Circuit Models

Zhang et 
al. 2019163

Cancer 
Cells

Characterization of 
phenotypical properties 

of single-nuclei

Nuclei from cancer cell lines A549 and 
SW620

1 × 106 
nuclei/mL

‡NFRD

1 kHz to 250 kHz
0.2 V amplitude
5-8 µm × 5-7 µm

Magnitude, Phase & Dielectric 
Properties ( , , & );𝐶𝑛𝑒 𝑅𝑛𝑒 𝑅𝑛𝑝

Equivalent Circuit Models

Liang et al. 
2019165

Cancer 
Cells

Characterization of 
pancreatic 

tumourigenicity 
phenotypes

Pancreatic tumour xenografts from 
metastatic (T366 and T608) vs. primary 
cancer of mutant genotype (T449 and 
T395) and wild type (T738 and T188)

(~12–20 µm cell diameter);
(ref. particles: 7 µm *PS beads)

2 × 105 cells/mL
1.2 × 105 

beads/mL
100 µL/min

500 kHz, 18.3 MHz & 
250 kHz to 50 MHz (24 

frequencies)
6 V amplitude
60 µm × 30 µm

Real, Imaginary, Magnitude, Phase, 
Electrical Diameter, Opacity 

(Magnitude 2MHz/Magnitude 500 
kHz) & Contrast (Phase 
50MHz/Phase 500kHz);

2D Gaussian gating

McGrath 
et al. 

201971

Cancer 
Cells

Characterization of 
phenotypical properties 
of tumour cell lines with 
epithelial-mesenchymal 

transitions.

Lung cancer cell lines A549 & H1299;
(testing particles: HeLa model cell line)

(~10–40 µm cell diameter)

3-5 × 106 
cells/mL

‡NFRD

100 kHz & 250 kHz
§NSVD

10 µm × 12 µm

Transit-time, Magnitude, Phase & 
Dielectric Properties (  & );𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

Equivalent Circuit Models & Neural 
Network Pattern Recognition

(two-layer feed forward)

Zhao et al. 
2018154

Human 
Pathogens

Detection and 
enumeration of Gram-

positive and Gram-
negative bacteria

Gram-positive Staphylococcus aureus and 
Gram-negative Escherichia coli

(~1 µm cell diameter and 
2-3 µm × 0.5 µm, respectively);

(ref. particles: 1 and 2 µm *PS beads)

2-2.5 × 106 
particles/mL
0.01 µL/min

200 kHz, 7 MHz & 8 
MHz

3 V amplitude
10 µm × 10 µm

Magnitude, Phase & Opacity 
(Magnitude 7 MHz / 
Magnitude 200 kHz)

Clausen et 
al. 201840

Human 
Pathogens

Viability assessment and 
species discrimination of 
water-borne pathogens

Cryptosporidum parvum, Cryptosporidum 
muris 

and Giardia lamblia
(~4 µm, ~6 µm and 9 µm 

cell diameter, respectively);
(ref. particles: 7 µm *PS beads)

1 × 105 cells/mL
1 × 105 

beads/mL
40 µL/min

18.3 MHz & 250 kHz 
to 50 MHz 

(24 frequencies)
1 to 10 V amplitude

40 µm × 30 µm

Real, Imaginary, 
Magnitude & Phase;
2D Gaussian gating & 
Multi-shell Modelling

McGrath 
et al. 

2017151

Human 
Pathogens

Characterization of 
phenotypical properties 

of Plasmodium 
falciparum-infected RBCs

Plasmodium falciparum-infected RBCs and 
uninfected RBCs

(~7.5 µm × 2 µm);
(ref. particles: 7 µm *PS beads)

5 × 105 cells/mL
1 × 105 

beads/mL
40 µL/min

18.3 MHz & 250 kHz
 to 50 MHz

 (24 frequencies)
§NSVD

40 µm × 30 µm

Real, Imaginary, 
Magnitude, Phase
 & Fluorescence;

Multi-shell Modelling

Honrado 
et al. 

201869

Human 
Pathogens

Detection of 
susceptibility of host 

microbiota to bacterial 
spore germination

Clostridioides difficile in spore
 and vegetative form

(~0.5 µm diameter and
~2-5 µm × 0.5 µm, respectively);
(ref. particles: 2 µm *PS beads)

†NCCD
10 µL/min

0.5, 2 & 10 MHz
0.5 V amplitude
30 µm × 30 µm

Magnitude & Phase Moore et 
al. 2020153

HUVECs
Viability assessment of 
hypertonic stimulated 

cells

Human umbilical vein endothelial cells – 
HUVECs, human colon cancer (HT-29) cells 

and immature bone-marrow-derived 
macrophages (iBMDM)

(~10–20 µm cell diameter);
(testing particles: 5, 10 and 

15 µm *PS beads)

1 × 105 cells/mL
0.3-1.7 × 105 

beads/mL
20 µL/min

450 kHz
5 V amplitude
20 µm × 20 µm

Magnitude Zi et al. 
2020119

Model Cell 
Lines

Discrimination of live, 
necrotic and apoptotic 

cells

HeLa and Jurkat model cell lines
(~10–40 µm cell diameter);

(ref. particles: 3, 5, 7 and 
10 µm *PS beads)

1-10 × 106 
particles/mL
-200 µL/min

1 MHz
0.3 V amplitude
25 µm × 12 µm

Conductance, Susceptance, 
Magnitude & Phase

Xie et al. 
201749

Model Cell 
Lines

Combined impedance 
flow cytometry (IFC) and 

electrical impedance 
spectroscopy (EIS) for 

cell analysis

HeLa, HepG2 and A549 model cell lines
(~10–40 µm cell diameter);

(ref. particles: 6 µm *PS beads)

1 × 106 cells/mL
10 nL/min

IFC: 1 MHz
EIS: 1 – 103 kHz
1 V amplitude
30 µm × 20 µm

Magnitude;
Equivalent Circuit Models

Feng et al. 
2019129
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Model Cell 
Lines

Discrimination of live, 
necrotic and apoptotic 

cells

Lymphoma model cell line U937
(~13 µm cell diameter);

(ref. particles: 10 µm *PS beads)

†NCCD
‡NFRD

500 kHz, 2 MHz, 6 
MHz & 12 MHz

§NSVD
50 µm × 50 µm

Magnitude & Phase
Ostermann 

et al. 
202041

Model Cell 
Lines

Discrimination of live, 
necrotic and apoptotic 

cells

Lymphoma model cell line U937
(~13 µm cell diameter);

(ref. particles: 6 µm *PS beads)

10 µL/min
200 cells/s

500 kHz & 10 MHz
5 V amplitude
40 µm × 21 µm

Electrical diameter & Phase;
Multi-shell Modelling

De Ninno 
et al. 

202064

Model Cell 
Lines

Characterization of 
deformability and 

impedance phenotypes 
of cancer cells

Normal, fixed and 
PMA-modified model MCF-7 cells

(~15-25 µm cell diameter);
(ref. particles: RBCs)

0.5-1 × 106 
cells/mL

1000 cells/min

1 MHz
0.5 V amplitude
10 µm × 20 µm

Time metrics & Magnitude Zhou et al. 
2018116

Model Cell 
Lines

Characterization of 
biophysical and 

impedance phenotypes 
of cancer cells

Model cell lines (H460, H446, 
A549, 95D and 95C)

(~10–20 µm cell diameter)

1 × 106 cells/mL
‡NFRD

1 kHz & 100 kHz
§NSVD

10 µm × 10 µm

Extracted Properties (Young’s 
modulus, electrical 

diameter,  & );𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

Equivalent Circuit Models

Wang et 
al. 2017156

Model Cell 
Lines

Characterization of 
deformability and 

impedance phenotypes 
of cancer cells

Model MCF-7 cell line
(~15-25 µm cell diameter) >430 cells/min

50 kHz
2 V amplitude
10 µm × 20 µm

Transit-time, Magnitude;
Neural Network

 Pattern Recognition
 (three-layer back propagation)

Yang et al. 
2019115

Model Cell 
Lines

Viability assessment of 
drug-treated cancer cells

Model T47D cell line
(~10–20 µm cell diameter)

4 × 105 cells/mL
‡NFRD

500 kHz & 300 kHz
 to 30 MHz 

(4 simultaneous 
frequencies);

§NSVD
100 µm × 30 µm

Magnitude, Phase;
Neural Network 

Pattern Recognition 
(support vector machines)

Ahuja et 
al. 201953

Pollen Viability assessment of 
pollen

Tobacco (Nicotiana tabacum), tomato 
(Solanum lycopersicum), cucumber 

(Cucumis sativus) and pepper
 (Capsicum Annuum) pollen
(~15–150 µm cell diameter)
(testing particles: 10, 20, 30,
 60 and 100 µm *PS beads)

5 x 104-5 
cells/mL
1-5 × 104 
beads/mL

‡NFRD

500 kHz, 3 MHz
 & 12 MHz

§NSVD
120-250 µm × 
120-250 µm

Magnitude & Phase
Heidmann 

et al. 
2016169

Red Blood 
Cells

Characterization of 
phenotypical properties 

of individual RBCs

RBCs, sphericallized RBCs, RBCs ghosts
(~7.5 µm × 2 µm)

(ref. particles: 7 µm *PS beads)

5 × 105 cells/mL
40 µL/min

18 MHz & 250 kHz
 to 80MHz

 (8 simultaneous 
frequencies)

4 V amplitude
40 µm × 30 µm

Real, Imaginary, Magnitude, Phase 
& Dielectric Properties (Electrical 

Radius, ,  & );𝐶𝑚𝑒𝑚 𝜀𝑐𝑦𝑡 𝜎𝑐𝑦𝑡

Multi-shell Modelling

Spencer & 
Morgan 
202089

Stem Cells

Characterization of 
phenotypical properties 

of skeletal stem cells 
after enrichment and 

expansion

Patient-derived skeletal stem cells & 
human bone marrow 

mononuclear cells – hBMMNCs
(~5–30 µm cell diameter);

(ref. particles: 7 µm *PS beads

2-2.5 × 105 
cells/mL

0.5-1 × 105 
beads/mL
40 µL/min

500 kHz & 2 MHz
4 V amplitude
40 µm × 30 µm

Electrical diameter, Opacity 
(Magnitude 2MHz /
Magnitude 500 kHz) 

& Fluorescence

Xavier et 
al. 2017161

White 
Blood 
Cells

Detection and profiling 
of activated T-
lymphocytes

Unstimulated CD8+ T-lymphocytes, 
activated CD8+-CD69+ T-lymphocytes, non-

activated CD8+-CD69- T-lymphocytes
(~5–15 µm cell diameter);

(ref. and testing particles: 8, 10 
and 15 µm *PS beads)

3-5 × 105 
cells/mL
5 × 105 

beads/mL
1 µL /min

400 cells/min

100 kHz to 27 MHz
 (6 simultaneous 

frequencies)
0.4 V amplitude
30 µm × 50 µm

Real & Imaginary Rollo et al. 
201779

White 
Blood 
Cells

Detection and profiling 
of white blood cells post 
inertial-based separation

Lymphocytes, monocytes and neutrophils
(~5–20 µm cell diameter);

(testing particles: diluted whole blood and 
peripheral blood mononucleated cells)

1 × 106 cells/mL
5 µL /min

300 kHz & 1.7 MHz
3 V amplitude
30 µm × 20 µm

Magnitude & Opacity 
(Magnitude 1.7 MHz /
Magnitude 300 kHz)

Petchakup 
et al. 

201860

White 
Blood 
Cells

Detection and profiling 
of neutrophils post 

integrated inertial-based 
separation of white 

blood cells

Lymphocytes, monocytes and neutrophils
(testing particles: peripheral blood 

mononucleated cells)
(~5–20 µm cell diameter);

(ref. particles: 10 µm *PS beads)

1-5 × 105 
cells/mL

1-2.5 × 104 
beads/mL

~800 cells/min

300 kHz & 1.7 MHz
§NSVD

30 µm × 20 µm

Electrical diameter & Opacity 
(Magnitude 1.7 MHz /
Magnitude 300 kHz)

Petchakup 
et al. 

201963

White 
Blood 
Cells

Characterization of 
deformability and 

impedance phenotypes 
of diabetic lymphocytes

Normal and diabetic-activated 
lymphocytes

(~5–15 µm cell diameter);
(testing particles: normal and fixed RBCs)

4 × 106 cells/mL
50 µL /h

800 kHz
0.1 V amplitude

10 µm × 5-15 µm
Transit-time & Magnitude Mahesh et 

al. 2019145

Yeast Cells
Viability assessment of 
drug-treated yeast cells 

and insect cells

Yeast cells (Saccharomyces
 cerevisiae carlsbergensis)
(~4–40 µm cell diameter);

Normal and baculovirus-infected
 Sf9 insect cell

1 × 105-7 
cells/mL

500 to 1000 
cells/s

500 kHz, 10 MHz & 12 
MHz

§NSVD
30-50 µm × 30-50 µm

Magnitude & Phase Opitz et al. 
201972

Yeast Cells
Detection and cell shape 

phenotyping of single 
buddying yeast cells

Buddying yeast cells
 (Saccharomyces cerevisiae)
(~4–40 µm cell diameter);

(testing particles: 5 and 8 µm *PS beads; 
8 and 15 µm by 4 µm SU-8 rods)

107 cells/mL
40 µL/min

∼3−6 cells/s

1 MHz
0.2 V amplitude
17 µm × 12 µm

Particle shape metrics & Magnitude; Xie et 
al.201988

Yeast Cells
Dielectrophoretic 

trapping and 
determination of cell size

Buddying yeast cells
 (Saccharomyces cerevisiae)
(~4–40 µm cell diameter);
(testing particles: 6, 8 and 

10 µm *PS beads)

1 × 106 cells/mL
1 × 105-6 

beads/mL
0.5 µL/min

300 kHz to 10 MHz
§NSVD

150 µm × 15 µm
Magnitude Geng et al. 

2019132

Page 29 of 35 Lab on a Chip



Journal Name  ARTICLE

Please do not adjust margins

Please do not adjust margins

Please do not adjust margins

Fig. 6 Collection of phenotyping results on cancer cells and model cell lines from literature. See Sections 4.1, 4.2 and 4.3 for further details. (A) Measurements of estimated  vs 𝜎𝑐𝑦𝑡

 of CTCs, with and without EpCAM expression, from hepatic, oral and lung cancers. (B) i - Measurements of estimated  vs  of H1299, HeLa, A549 and A549 undergoing 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡 𝐶𝑚𝑒𝑚

EMT (epithelial mesenchymal transition); ii – comparison between cell lines, where significant differences were observed (* 0.001). (C) i – Impedance magnitude distributions 𝑝 <  

for three cancer types and reference beads; ii – EIS magnitude measurements of the three cancer types with corresponding MMT model fitting curves. (D) i – Measurements of 
impedance magnitude vs phase at 50 MHz for various PDAC cell lines; ii – comparison of impedance phase contrast between cell lines, where significant differences were observed 
(* 0.003, ** 0.0007, *** 0.00007); iii – Phase contrast range for PDAC samples along the frequency spectra measured. (E) Measurements of 95D model cells in terms of 𝑝 <  𝑝 <  𝑝 <  

their estimated: i -  vs ; ii -  vs ; iii -  vs ; iv -  vs  vs . (F) Measurements of impedance vs transit time for cells before (i) and 𝐷𝑐𝑒𝑙𝑙 𝐶𝑚𝑒𝑚 𝐷𝑐𝑒𝑙𝑙 𝜎𝑐𝑦𝑡 𝐷𝑐𝑒𝑙𝑙 𝐸𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡 𝐸𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠

after (ii) passing the channel constriction. (G) i - Measurements of electric diameter vs impedance phase at 10 MHz for U937 model cells containing untreated and heat-treated cells; 
ii – Measurements of impedance phase at 0.5 MHz vs impedance phase at 10 MHz for gated sub-populations of smaller (top) and bigger (bottom) size; iii – comparison of impedance 
phase at 0.5 MHz (left) and 10 MHz (right) between the identified subpopulations, where significant differences were observed (* 0.001). (H) Measurement of impedance phase 𝑝 <  

vs magnitude at 6MHz of U937 model cells undergoing a NM-300k treatment. Images were adapted with permission from (A) ref. 162, copyright 2017 Elsevier B.V., (B) ref. 154, copyright 
2018 Elsevier B.V., (C) ref. 129, copyright 2019 American Chemical Society, (D) ref. 71, copyright 2020 Elsevier B.V., (E) ref. 156, copyright The Author(s) 2017, (F) ref. 116, copyright 2018 
American Chemical Society, (G) ref. 64, copyright 2020 Elsevier B.V., (H) ref. 41, copyright  The Author(s) 2020.
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Fig. 7 Collection of phenotyping results on mammalian cells from literature. See Sections 4.4 for further details. (A) i – Measurements of transit time vs signal amplitude for normal 
and diabetic lymphocytes; ii – comparison of transit time (left) and signal amplitude (right) between normal and diabetic lymphocytes, where significant differences were observed 
(**** 0.0001). (B) Measurements of impedance magnitude at 300 kHz vs opacity (impedance magnitude at 1.7 MHz / 300 kHz) for various cell populations; ii - Measurements 𝑝 <  

of impedance magnitude at 300 kHz vs opacity (impedance magnitude at 1.7 MHz / 300 kHz) for untreated, TNF-  and LPS treated monocytes. (C) Measurements of electrical size 𝛼

vs opacity (impedance magnitude at 1.7 MHz / 300 kHz) for: i – neutrophils undergoing NETosis at different time points; ii – neutrophils undergoing NETosis induced via Cal and PMA. 
(D) Measurements of in-phase vs out-of-phase signals at 6 MHz (i) and 14 MHz (ii) for CD69+ and CD69- T-lymphocytes (i) and unstimulated CD8+, CD69+ and CD69- T-lymphocytes 
(ii). (E) i – Measurements of electrical size vs opacity (impedance magnitude at 2 MHz / 500 kHz) for CD146+ and CD146- hBMMNCs; and distributions of electrical size (ii) and opacity 
(ii) for SSCs along passage number for one individual patient. (F) i – Distribution of signal amplitude at 450 kHz for a population of live an dead iBMDM cells; ii – comparison between 
viability estimations by flow cytometry (FCM) and impedance cytometry (HSIFC); iii – comparison between viability estimations by FCM and HSIFC for various cell types and 
treatments. Images were adapted with permission from (A) ref. 145, copyright 2019 IOP Publishing, (B) ref. 60, copyright 2018 Elsevier B.V., (C) ref. 63 copyright 2019 The Royal Society 
of Chemistry, (D) ref. 79, copyright 2017 Elsevier B.V., (E) ref. 161, copyright 2017 The Royal Society, (F) ref. 119, copyright 2020 Elsevier B.V..
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Fig. 8 Collection of phenotyping results on various sample types from literature. See Sections 4.5, 4.6 and 4.7 for further details. (A) i - Measurements of impedance magnitude vs 
impedance phase at 50MHz for untreated and heat-treated C. parvum oocysts; ii - measurements of impedance magnitude at 250 kHz vs impedance phase at 18.3MHz for different 
waterborne pathogens. (B) i – Measurements of current at 200 kHz vs impedance phase at 7MHz for E. coli and reference beads; ii – distribution of impedance phase at 8 MHz for 
populations of bacteria and reference beads. (C) Measurement of impedance phase vs impedance magnitude at 10 MHz for: i - untreated and heat-treated C. difficile; ii – C. difficile 
cells under various conditions to quantify spore germination. (D) i – Measurement of impedance magnitude vs impedance phase at 5 MHz for a mixed population of reference beads 
and uninfected and malaria parasite infected-RBCs; and estimated alterations to  (ii) and  (iii) for each cell population based on multi-shell modelling. (E) i – Measurement 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

of impedance phase vs impedance magnitude at 10 MHz for untreated (viable) and heat-treated (dead) yeast cells; ii – comparison between viability estimations by impedance 
cytometry vs flow cytometry for various mixed samples of viable and dead yeast cells; iii – distributions of impedance phase at 10 MHz for yeast cells for long-term viability analysis. 
(F) Measurements of impedance magnitude at 1 MHz vs a particle shape metric R for budding and single yeast cells along the culturing process. (G) i – Simulations of current 
magnitude for C. elegans worms at five developmental stages (L1-L4 and adult); ii – measurements of current magnitude for exemplary C. elegans worms at L1 and adult 
developmental stage. Images were adapted with permission from (A) ref. 151, copyright The Author(s) 2017, (B) ref. 40, copyright 2018 Multidisciplinary Digital Publishing Institute, 
(C) ref. 153, copyright 2020 Elsevier B.V., (D) ref. 69, copyright 2018 The Royal Society, (E) ref. 72, Springer-Verlag GmbH Germany, part of Springer Nature 2019. (F) ref. 88, copyright 
2019 American Chemical Society, (G) ref. 108, copyright 2018 Elsevier B.V.. 

Page 32 of 35Lab on a Chip



Journal Name  ARTICLE

Please do not adjust margins

Please do not adjust margins

Please do not adjust margins

Table 3 Key phenotypical findings using single-cell microfluidic impedance cytometry

Cell Phenotype of 
Interest

Dielectric 
Property Sub-cellular Properties

𝐶𝑚𝑒𝑚

Loss of viability, e.g. induced by heat-inactivation, causes increased cell membrane permeability with break-down of the membrane integrity, 
rendering cells non-viable. These result in a decreased , as the cell loses the ability to function as a perfect insulator at low frequencies. Such 𝐶𝑚𝑒𝑚

phenomena have been observed in literature: heat-treated non-viable MCF7 cells show higher magnitude opacity (i.e. lower ) than viable cells 𝐶𝑚𝑒𝑚

in 1× PBS (ref. 160); heat-treated non-viable lymphoma cells show a decrease in absolute impedance phase at 500 kHz in 1× PBS (ref. 64); heat-treated 
non-viable algae cells show a decrease in magnitude opacity (based on 20 MHz / 500 kHz data) in 1× PBS (ref. 55); cytotoxic nanomaterials-induced 
non-viable lymphoma cells show lower impedance phase at 6 MHZ in a 0.25xPBS + sucrose buffer (ref. 41); hypertonic stimulus-induced non-viable 
HUVECs show increased impedance magnitude at low frequency (450 kHz) (ref. 119);

Cell Death:
viable, necrotic and 

apoptotic

𝜎𝑖𝑛𝑡
&

𝜀𝑖𝑛𝑡

Increased permeability in non-viable cells causes increased ion exchange between the cell interior and medium, together with internal degradation 
of cell organelles. These result in alterations of the cell interior properties, such as  & , which can be qualitatively observed with changes to 𝜎𝑖𝑛𝑡 𝜀𝑖𝑛𝑡

impedance at higher frequencies, as reported in literature: heat-treated non-viable yeast cells show a decrease in impedance phase at 10 MHz in 
0.5× PBS (ref. 72); heat-treated non-viable pollen particles show a decrease in impedance phase at 12 MHz (ref. 169); apoptosis causes shedding of 
smaller-sized apoptotic bodies from cells, identifiable based on their size and greater impedance phase at high frequency (≥10 MHz) in 1× PBS (ref. 
64);

Immune Cells:
cell activation, 

differentiation and 
diabetic response

Size
&

𝐶𝑚𝑒𝑚

Monocytes, lymphocytes and neutrophils are distinguishable based on impedance magnitude and opacity (refs. 60,195,196). When processes such as 
activation or differentiation occur in these cell types, alterations to cell membrane permeability and conformation can result in alterations to . 𝐶𝑚𝑒𝑚

Various phenomena have been reported in literature: monocyte differentiation into macrophages results in size increase but no impedance 
magnitude alteration (ref. 60); inflammatory stimulus induces an increase in impedance magnitude opacity (i.e. lower ) (ref. 60); NETosis 𝐶𝑚𝑒𝑚

neutrophils have higher cell size and magnitude opacity (i.e. lower ) than unstimulated neutrophils (ref. 63); diabetic lymphocytes present loss 𝐶𝑚𝑒𝑚

of deformability and higher impedance magnitude at 800 kHz than normal lymphocytes (ref. 145); diabetic neutrophils show higher magnitude opacity 
(i.e. lower ) than monocytes in 1× PBS (ref. 60); glucose-stimulated neutrophils show larger size than unstimulated neutrophils at 120 min post-𝐶𝑚𝑒𝑚

stimulus (ref. 63);

Cancer Cells:
measuring drug 

sensitivity & 
metastasis

𝐶𝑚𝑒𝑚
&

𝜎𝑐𝑦𝑡

Cancer cells are known for an increased cell membrane roughness and folding, which affects the surface area dependent metric of , and higher 𝐶𝑚𝑒𝑚

nucleus-to-cytoplasm ratios and cell cycle turnover, which in turn affects estimations of . Differences in the phenotypes of various cancer cells 𝜎𝑐𝑦𝑡

tied to these specific characteristics have been reported in literature: EpCAM+ CTCs have lower  and higher  than EpCAM- CTCs (ref. 162); 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

epithelial-mesenchymal transitions (EMT) on lung tumour cells causes lower  and  (ref. 154); lung metastasis adenoid carcinoma cells present 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

a lower  and higher  than non-metastatic adenoid carcinoma cells (ref. 163); more tumourigenic pancreatic cancer cells show higher 𝐶𝑚𝑒𝑚 𝜎𝑐𝑦𝑡

impedance phase at high frequencies (>10 MHz) and lowered  (ref. 71);𝜎𝑖𝑛𝑡

Bacteria:
detection, viability, 

germination and 
antibiotic 

susceptibility

 𝜎𝑖𝑛𝑡
&

𝜀𝑖𝑛𝑡

Gram-negative E. coli and Gram-positive S. aureus are detectable and discriminated using impedance phase at 8 MHz with a buffer of low 
conductivity (0.085 S/m) (ref. 40);
Heat-treated C. difficile bacteria show lower impedance phase at 10 MHz than untreated bacteria (ref. 153);
Germinated vegetative C. difficile bacteria have higher impedance phase at 10 MHz than C. difficile in spore form (ref. 153);

Stem Cells:
alterations with cell 

expansion and 
passage

Size
&

𝐶𝑚𝑒𝑚

Unexpanded skeletal stem cells are larger than other bone marrow cell populations (ref. 161), while the expansion of skeletal stem cells and following 
passages cause an increase in size and  (assessed by magnitude opacity) (ref. 161);𝐶𝑚𝑒𝑚
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