
Network Topologies Dictate Electromechanical Coupling in 
Liquid Metal-Elastomer Composites

Journal: Soft Matter

Manuscript ID SM-ART-06-2020-001094.R1

Article Type: Paper

Date Submitted by the 
Author: 20-Jul-2020

Complete List of Authors: Zolfaghari Moheb, Navid; Carnegie Mellon University, Civil Engineering
Khandagale, Pratik ; Carnegie Mellon University
Michael, Ford; Carnegie Mellon University, 
Dayal, Kaushik; Carnegie Mellon University, 
Majidi, Carmel; Carnegie Mellon University, Mechanical Engineering

 

Soft Matter



Journal Name

Network Topologies Dictate Electromechanical Cou-
pling in Liquid Metal-Elastomer Composites†

Navid Zolfaghari,a Pratik Khandagale,a Michael J. Ford,a Kaushik Dayal,b,c,d and Carmel
Majidi∗a,b,c

Elastomers embedded with micro- and nanoscale droplets of liquid metal (LM) alloys like eutectic
gallium-indium (EGaIn) can exhibit unique combinations of elastic, thermal, and electrical prop-
erties that are difficult to achieve using rigid filler. For composites with sufficient concentrations
of liquid metal, the LM droplets can form percolating networks that conduct electricity and de-
form with the surrounding elastomer as the composite is stretched. Surprisingly, experimental
measurements performed on LM-embedded elastomers (LMEEs) show that the total electrical
resistance of the composite increases only slightly even as the elastomer is stretched to sev-
eral times its natural length. In contrast, Pouillet’s Law would predict an exponential increase
in resistance (Ω) with stretch (λ ) due to the incompressibility of liquid metal and elastomer. In
this manuscript, we perform a computational analysis to examine the unique electromechanical
properties of conductive LMEE composites. Our analysis suggests that the gauge factor that
quantifies electromechanical coupling (i.e. G = {∆Ω/Ω0}/λ ) decreases with increasing tortuosity
of the conductive pathways formed by the connected LM droplets. A dimensionless parameter for
path tortuosity can be used to estimate G for statistically homogeneous LMEE composites. These
results rationalize experimental observations and provide insight into the influence of liquid metal
droplet assembly on the functionality of the composite.

Introduction
In order to be electrically conductive, soft elastomers are typi-
cally embedded with conductive filler particles that form a per-
colating network. These filler particles include structured carbon
black1–3, silver nanoflakes4,5, or nickel microparticles6,7. De-
pending on the material composition, volume fractions, and filler
distribution, such composites can achieve low electrical resistiv-
ity in their unstressed state. However, stretching can degrade
the percolating network and lead to a dramatic increase in resis-
tance when the elastomer is stretched to several times its natural
length6,8–10. This undesirable electromechanical coupling arises
from the significant mechanical mismatch between the rigid filler
particles and surrounding elastomer matrix – as the elastomer
stretches, particles that are in direct physical contact or in close
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enough proximity for electrical tunneling will separate and lose
their electrical connectivity11,12. Although not an issue for low
strain applications in which deformation is largely restricted to
compression, twisting, or bending, loss of electrical connectivity
due to an applied strain can be prohibitively limiting for appli-
cations in wearable computing, smart textiles, and soft robotics
in which the conductive elastomer must maintain stable electrical
resistance under significant stretch.

To address this limitation, researchers have developed a new
class of conductive elastomers in which the rigid filler parti-
cles are replaced with micro- and nanoscale droplets of liq-
uid metal (LM) alloys like eutectic gallium-indium (EGaIn)13–15.
As with other conductive polymer composites, the LM droplets
encapsulated within the elastomer can form a dense, perco-
lating network that supports high electrical conductivity (Fig-
ure 1A). Because the droplets are in a liquid phase, they can
deform with the surrounding elastomer and preserve the con-
nectivity of the conductive network (Figure 1B). LM-embedded
elastomer (LMEE) composites that are soft and electrically con-
ductive have been demonstrated by embedding LM droplets
in poly(dimethylsilxoane) (PDMS)16–18, poly(ethylene-vinyl ac-
etate)19, polyacrylate20, and liquid crystal elastomer21. In their
natural (unstressed) state, these composites can have an electrical
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conductivity as large as σ = 103 S/cm (for reference, σ = 3×104

and 6×105 S/cm for EGaIn and copper, respectively).18 More-
over, referring to Figure 1C, the end-to-end electrical resistance
(Ω) does not increase significantly with stretch (λ). This lack
of dependence of resistance on strain is surprising since Pouil-
let’s Law would predict a relative increase in electrical resistance
of ∆Ω/Ω0 = λ 2 − 1 since both the liquid metal and surround-
ing elastomer are virtually incompressible. That the gauge factor
G = {∆Ω/Ω0}/λ is well below ∂

∂λ

∣∣∣
λ=1
{λ 2−1}= 2 suggests that

the volumetric conductivity σ increases with stretch. Compared
with the piezoresistive effect in other conductive materials, this
unusual electromechanical response implies “negative piezoresis-
tivity” in which electrical resistivity decreases with positive tensile
strain. Such an effect has not been commonly observed in other
soft material systems.

For particle and droplet-filled conductive elastomers, electrical
current passes through conductive pathways within a percolat-
ing network. For conductive composites with rigid particle fillers,
electrical conductivity can be enabled by tunneling through the
thin interface between two neighboring filler particles. In con-
trast, conductivity in LMEEs is primarily achieved through phys-
ical contact and coalescence of neighboring droplets within the
elastomer. Several studies have examined electrical conductiv-
ity through electrical tunneling22,22–25 based on calculations of
the potential barriers at a tunnel junction26,27. Researchers have
adapted these theories to examine the increase in resistance as
the tunneling gap increases with tensile strain11,12.

Compared to composites with rigid fillers, there has been rela-
tively little theoretical study on the mechanical or electrical prop-
erties of LMEE composites. Analytical and computational studies
of elastomers with liquid droplet inclusions have been limited to
the following: modifications of Eshelby’s theory of inclusions to
examine mechanical stiffness28–31, Maxwell-Garnett and Brugge-
man effective medium approximations to study thermal conduc-
tivity and electrical permittivity32,33, finite element analysis to
model deformation of co-linear LM droplets34, and use of the
volume element method to show the effect of localized stresses
on rupturing and coalescence of adjacent LM droplets35. In ex-
tending current computational approaches to analysis of LMEE
electromchanical coupling, an important consideration is the uni-
form hydrostatic pressure within LM droplets and its influence on
internal stress within the surrounding elastomer.

Here, we present a computational analysis that examines the
electromechanical properties of conductive LMEE composites. As
shown in Figure 1C, the model is capable of predicting theoretical
bounds for electromechanical coupling that are in good agree-
ment with experimental measurements. Our analysis suggests
that G approaches zero as the tortuosity of the conductive path-
ways formed by the connected LM droplets increases. Path tortu-
osity can be represented with a dimensionless parameter γ that is
used to predict G within a percolating network of connected LM
droplets.

Electromechanical coupling in LMEE composites had previ-
ously been examined in Cohen and Bhattacharya 35 , which pro-
vided a numerical model using a cubic representative volume el-

ement (RVE) method. Although their model didn’t predict gauge
factors for electromechanical coupling within the range of exper-
imental measurements, they were able to demonstrate that local
stresses induced around the droplets during mechanical deforma-
tion can cause the elastomer to rupture and allow adjacent LM
droplets to coalesce. The current analysis goes further in theoret-
ically validating the experimental measurements, with the goal of
demonstrating that there exists a network of connected droplets
that results in only a modest increase in electrical resistance Ω of
the LMEE during stretch.

Using a finite element method (FEM), we model a variety of LM
droplet microstructures that not only obey the mechanical defor-
mation of the hyper-elastic matrix but also account for fluid flow.
Based on this analysis, we are able to calculate the change in
electrical power required to maintain a constant voltage droplet
between the ends of the percolating network as it is stretched
from its initial configuration:

∆P =

(
−V 2

Ω0

){
∆Ω/Ω0

∆Ω/Ω0 +1

}
(1)

Finally, we provided a non-dimensional parameter γ that can
quantify the change in normalized electrical resistance of the
LMEE under deformation, which will provide guidance and ratio-
nalization to researchers engineering these composites and quan-
tifying electromechanical coupling.

Computational Model
FEM-based computational modeling of the LMEE composites was
performed in ANSYS V.19.2. The elastomer was treated as an
incompressible Neo-Hookean solid with a strain energy density of

W =
µ

2
(Ī1−3) , (2)

where µ is the initial shear modulus and Ī1 is the first deviatoric
strain invariant. We assumed that the embedded LM droplets are
in full contact with the surrounding elastomer and ignored any
mechanical contributions from the nanometer-thin oxidization
layer that typically forms at the LM-elastomer interface. More-
over, we ignored the presence of any air cavities or voids within
the composite. The LM was treated as a homogeneous fluid with
a viscosity µLiq and specific density ρLiq.

Droplet Geometry

In previous experimental studies, the shapes of droplets within
LMEE composites were determined using optical imaging, elec-
tron microscopy, and X-ray computed tomography. In general, LM
droplets can be spherical, ellipsoidal, or have irregular shapes,
although most LMEEs are composed of LM inclusions with ap-
proximately spherical shape. For simplicity, we will limit anal-
ysis to composites in which the droplets are initially spherical
prior to elastomer stretch and droplet elongation. Nonetheless,
the FEM approach used here can be easily adapted to other mi-
crostructures in which the LM droplets have a non-spherical shape
in the natural/unstressed state. Furthermore, we only modeled
the deformation of droplets that are connected with their neigh-
bors and along the path of electrical current flow. While other
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Fig. 1 (A) Schematic of LMEE morphology along with electron micrograph of LMEE cross section showing LM droplets (B) Photographs of LMEE
powering LED while unstretched and stretched (C) Summary of the electromechanical coupling of reported LMEEs compared to Pouillet’s Law and the
model in this work. The blue shaded region that corresponds to our model represents the range of possible electromechanical coupling dependent on
the geometry of the LM droplets.

droplets could have modest influence on the mechanical resis-
tance to stretch, we assume that they will not contribute to the
change in electrical resistance.

LMEEs are typically synthesized using shear mixing or ul-
trasonication, which typically results in LM droplets that are
randomly distributed within the elastomer matrix. The droplets
can be monodisperse or polydisperse and have a spatial distri-
bution that is statistically uniform over volumes of interest. To
simplify analysis, we examined small clusters of LM droplets that
are well below the threshold of a RVE. Rather than aim for a
statistically accurate representation of the LMEE microstructure,
our goal was to demonstrate that there exist spatial arrange-
ments of LM droplets within an elastomer that allow for the low,
experimentally-measured values of electromechanical coupling
presented in Figure 1C. We evaluated electromechanical coupling
by examining seven different classes of spatial arrangements
that were simple enough to parameterize but realistic and
descriptive enough to capture the LM morphology and unique
electromechanical properties of the composite. These arrange-
ments can be co-planar or three-dimensional, with representative
configurations for each class of geometries presented in Figure 2.
In all the studied cases, the size of the volumetric element is
much larger than the size of the droplets.

In this study, we ignore the role of surface oxide on the electri-
cal or electromechanical properties of the droplet networks. In
practice, however, the gallium-based LM alloys used in LMEEs
are highly susceptible to oxide formation and this could influence
the electrical resistance between contacting droplets. Such an
influence could be especially pronounced for sub-micron LM
droplets, for which the volume ratio of the insulating oxide
could be significant. Moreover, we assume uniform droplet
size and do not account for the influence of polydispersity on
the electromechanical properties of the composite. However,
polydispersity could be an important factor since it could lead
to more complex network topologies that are outside the scope

of the simple geometries examined here. Nonetheless, the
computational methods adopted here could be generalized to
model the presence of oxide layers as well as polydispersity of
the LM suspensions.

Electrostatics

We used electrostatic field theory to assess the extent to which
the electrical resistance Ω of an LMEE strip of natural length L0

and cross-sectional area A0 change with stretch λ = L/L0 for the
classes of geometries presented in Figure 2. These include the
following: co-linear droplets with a center-to-center spacing `

(Fig. 2a); droplets arranged in a sawtooth pattern with spacing
` and angle θ (Fig. 2b); “horseshoe” arrangement with spacings
{`1, `2} and angles {θ1, θ2} corresponding to the red and black
segments shown in Fig. 2c; droplets in a rectangular arrangement
(Fig. 2d); diamond formation with angle θ and center-to-center
droplet spacing ` (Fig. 2e); 3D tetrahedron and pentahdron ar-
rangements (Fig. 2f and (Fig. 2g, respectively).

In each case, we sought to determine the relative change in
resistance as a function of λ , i.e. ∆Ω/Ω0 = f (λ ). Lineariz-
ing about λ = 1 yields an estimate of the gauge factor G =

limλ→1{∆Ω/Ω0}/λ . All of the results are compared with the ide-
alized model for the change in electrical resistance for a homoge-
nous and incompressible elastic solid:

∆Ω

Ω0
= λ

2−1 , (3)

which derives from Pouillet’s Law, i.e. Ω = ρL/A where ρ is the
volumetric resistivity of the conductor. As shown in Figure ??
of the Supporting Information, this prediction is in exact agree-
ment with predictions obtained when we perform FEM simula-
tions for a prismatic cylindrical channel of liquid metal within
a Neo-Hookean solid. In the following section, we report elec-
tromechanical coupling for elastomers embedded with the LM
droplet geometries shown in Figure 2.
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(a) Linear
(b) Sawtooth (c) Horseshoe

(d) Rectangular

(e) 2D-Diamond

(f) Tetrahedron
(g) Pentahedron

Fig. 2 Illustrations of different interconnectivity of the LM droplets in LMEE used in this study. The geometric parameters that were modified to study
their influence on electromechanical coupling are shown, where R is the radius of the droplet, ` is the center-to-center distance between droplets, and
θ is the angle of the connecting lines from horizontal.

Results & Discussion

Using the computational method described in the previous sec-
tion, we obtain plots of ∆Ω/Ω0 versus λ for the selected class of
geometries. For each type of spatial arrangement, electromechan-
ical coupling is influenced by a variety of geometric parameters,
including the droplet radius R and spacing `. For the “horseshoe-
like” serpentine patterns in Figure 2c, we define an additional
geometric parameter γ that is associated with the tortuosity of
the connected path.

Linear Configuration

As shown in Figure 2a, a linear pattern for liquid metal inclusions
is defined as a sequence of spherical droplets of identical radius
that are partially overlapped by a length 2R− `. The key parame-
ter that defines this geometry is the normalized spacing k = `/R,
where ` is defined as the center-to-center distance between two
adjacent spherical droplets. Figure 3 indicates the change of the
effective electrical resistance (∆Ω/Ω0) versus uniaxial stretching
of the sample (λ) for different values of k (k ∈ {1.2,1.5,1.7,1.9}).

Reducing k will retrieve the solution for a cylindrical channel
inside the elastomer, which corresponds to the algebraic expres-
sion derived from Pouillet’s Law. Increasing k will cause ∆Ω/Ω0

at a given λ to decrease. Specifically, spacing the droplets farther
apart will lead to a more narrow opening for liquid to flow be-
tween droplets. The FEM simulation suggests that stretching the
elastomer will induce hydrostatic pressure that will force fluid to
flow into this narrow opening and cause it to enlarge. For this
reason, the increase in resistance with stretch is not as great as it
is for a prismatic channel. Nonetheless, the gauge factor for these
geometries is significantly higher than it is for the experimental
measurements plotted in Figure 1C.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0

0.5

1

1.5

2

Fig. 3 Normalized change in electrical resistance as a function of strain
for linear patterns of LM droplets with different values of k. Pouillet’s law
is shown for reference.

Sawtooth Configuration
Next, we consider the “sawtooth” pattern shown in Fig 2b. Here,
the key parameters that define the geometry are the normalized
spacing k = `/R and sawtooth angle θ . Fig 4a shows the change
of the effective electrical resistance for different configurations
under loading. Compared to the linear configuration, the LM
droplets arranged in a sawtooth configuration can exhibit signifi-
cantly less electromechanical coupling, with G ≈ 1 in the case of
k = 1.7 and θ = 40o.

As with the linear case, we see that increasing k will lead to
a more narrow connection between adjacent droplets and a cor-
responding reduction in electromechanical coupling. We observe
that increasing the angle θ can lead to an even more pronounced
reduction in G . Figures 4b and 4c compare two cases with the
same k but different values of θ , where the total current density
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Fig. 4 (a) Normalized change in electrical resistance as a function of
strain for sawtooth patterns of LM droplets with different geometric pa-
rameters. Pouillet’s law is shown for reference. The major parameters
that define the sawtooth configuration are `/R and θ (see Figure 2b).
(b,c) FEM comparison of the current density in two sawtooth patterns be-
fore (top) and after (bottom) an imposed strain. Both patterns have the
same k = `/R value but different angles of connectivity. In this figure the
color map represent the total current density in the liquid metal.
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Fig. 5 Normalized change in electrical resistance as a function of strain
for horseshoe patterns with different geometrical configurations. The
main parameters that define the horseshoe patterns are `1/R, `2/R, θ1
and θ2 (see Figure 2c).

was monitored during stretching. As suggested by the FEM simu-
lations, increasing the angle θ will cause the overlapped regions
of the droplets to align with the direction of elongation. This
alignment can reduce electrical resistance since after stretching
the sample, the interfacial area between droplets increases rather
than decreases, providing a larger opening for the electrical cur-
rent to pass through (see Figure 4c). In this way, the current den-
sity along the pathway for the deformed solid in Fig 4b is higher
than that shown in Fig 4c. Hence, we postulate that increasing
the angle θ can decrease the normalized electrical resistance dur-
ing strain.

Horseshoe Configuration
Referring to Figure 2c, LM droplets arranged in a “horseshoe”
configuration can be parameterized by a series of center-to-center
spacings `i and angles θi. In general, the index i is defined as
i ∈ {1, ...,N} where N corresponds to the number of different
pairs of segment lengths and angles defined along the path of the
horseshoe geometry. Here, we find that two pairs of parameters
(i.e. i ∈ {1,2}) are sufficient for achieving a spectrum of elec-
tromechanical properties that cover the behaviors that are mea-
sured experimentally during the strain. As before, each droplet
was assumed to be a sphere of radius R and ki = `i/R was de-
fined as the ratio of the spacing of the spheres to their radius.
For N = 2, we define `1 and `2 as the center-to-center spacing be-
tween droplets as shown by the red and black lines, respectively,
in Figure 2c. Likewise, there are two different angles of θ1 and θ2

that define the tortuosity of the pattern.
Figs. 5 and 6 summarize the results for this class of geometries.

Similar to the sawtooth configuration, we observe that increas-
ing the values of θ1 and θ2 leads to a reduction in electrome-
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Fig. 6 a) Normalized change in electrical resistance as a function of
strain for horseshoe patterns with different values of the tortuosity pa-
rameter. Schematics of droplet configuration for different tortuosity pa-
rameters: (γ). b) `1/R = `2/R = 1.7,θ1 = 90◦,θ2 = 80◦ and γ = 0.68. c)
`1/R = 1.7, `2/R = 1.9,θ1 = 60◦,θ2 = 40◦ and γ = 1.47.d) `1/R = 1.7, `2/R =

1.9,θ1 = 50◦,θ2 = 25◦ and γ = 2.02. e) Definition of tortuosity parameter γ

based on longitudinal pitch and transverse deviation.

chanical coupling (i.e. decrease in G ). This reduction implies
that orienting portions of the LM connection chain in the direc-
tion perpendicular to elongation will result in decreased normal-
ized electrical resistance when the LMEE composite is stretched.
Moreover, increasing the value of k1/k2 for θ1,θ2 ≤ 90◦ can in-
crease the resistance drop and vice versa. This observation may
support the hypothesis that increasing the tortuosity of the pat-
tern in the oblique direction from its stretching orientation can
lower the change of the electrical resistance of the sample.

In order to further explore the influence of ki and θi on G , we
defined the following dimensionless tortuosity parameter

γ =
−`1cos(θ1)+2`2cos(θ2)+ `2

`1sin(θ1)+ `2sin(θ2)

where the numerator of γ is the longitudinal pitch of the pattern
while the denominator is the transverse deviation. Increasing
the tortuosity parameter caused an increase in electromechani-
cal coupling (Fig 6). The variable γ is a scale-invariant param-
eter that describes the horseshoe-like configuration. Based on
the definition of γ, letting θ1 = 180◦ and θ2 = 0◦ will cause γ

to approach infinity. In this limiting case, the electromechanical
response approaches that of the linear pattern shown in Figure
2a, which is similar to the case of a prismatic cylindrical channel
(∆Ω/Ω0 = λ 2− 1). As shown in the figure, configurations with
γ < 2 exhibit only modest electromechanical coupling relative to
Pouillet’s Law and have gauge factors that are similar to what has
been measured experimentally. Interestingly, when γ < 1, the re-
sistance initially decreases with strain (i.e. G < 0). This behavior
has been anecdotally observed in experimental measurements of
LMEE composites16,18 and could guide future work in controlled
assembly of LM particles where control of electromechanical cou-
pling is desired.

Other Patterns

Beside the three classes of configurations described above, we
also studied the following LM arrangements: the 2D diamond
pattern shown in Fig 2e, the rectangular pattern in Fig 2d, the
3D tetrahedral pattern in Fig 2f, and the pentahedral pattern in
Fig 2g. Results for these alternative geometries are presented in
Fig 7 alongside the 2D patterns discussed previously. As expected
from our previous analyses, G is largest for the more linear pat-
terns and is smallest for configurations with more meandering
pathways.

Interestingly, the 2D diamond, which is comprised of two saw-
tooth patterns that are mirrored along the axis of stretch exhibits
greater electromechanical coupling than the sawtooth arrange-
ment of Figure 2b. This increase in electromechanical coupling
is because the hydrostatic pressure in the diamond configuration
is distributed more in 3D compared to a 2D configuration and so
less fluid flows into the narrow connections between the adjacent
droplets when the composite is stretched. Therefore, the inter-
facial area that form connections between LM droplets does not
increase as much as it does in the sawtooth configuration, where
the hydrostatic pressure is greater during strain. Similarly, the
tetrahedral and pentahedral arrangements exhibit increased elec-
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Fig. 7 The change of normalized electrical resistance for different micro-
structural patterns for LM fillers.

tromechanical coupling relative to the 2D diamond case. In these
3D configurations, the liquid metal is less confined and can flow
in more directions during mechanical deformation.

Together, these results suggest that the low electromechanical
coupling that has been observed in experimental measurements is
most likely driven by the tortuosity of the meandering conductive
pathways within the liquid metal’s percolating network. While
the hydrostatic pressure and its effect on the interfacial area be-
tween adjacent LM droplets subjected to strain also appear to
have a role, it is not sufficient to account for the virtual absence of
electromechanical coupling (G ≈ 0) that has been experimentally
observed.

Comparison with Experiment
The model that we proposed here is capable of explaining the
range of experimentally observed electromechanical coupling val-
ues for LMEE composites in the literature. By restricting our-
selves to the various geometric classes and parameterizations in-
troduced in Figure 2, we were able to generate theoretical pre-
dictions for electromechanical coupling that conform to experi-
mental measurements. As shown in Fig 8, the sawtooth geome-
try matches well with the higher electromechanical coupling ob-
served for an open-foam LM-PDMS sponge36. In contrast, theo-
retical results for the horseshoe geometry appear to be in reason-
able agreement with measurements obtained for LMEE compos-
ites with fully enclosed LM inclusions. In all cases, comparison is
done by fitting the geometric parameters. In this sense, the theory
is intended to show that the low electromechanical coupling that
has been observed experimentally is consistent with predictions
for LM microstructures that are within the space of admissible
geometries.

Conclusions
In contrast to other conductive elastomers, LMEE composites ex-
hibit only modest electromechanical coupling – i.e. the end-

to-end electrical resistance does not increase significantly with
stretch. While demonstrated experimentally by several research
groups, this surprising property and the influence of various LM
morphologies had not been fully examined using analytic or com-
putational techniques. In this study, we perform simulations in
FEM that show that electromechanical coupling is influenced by
LM droplet spacing and shape of the connected pathway. In the
simplified case of serpentine paths with horseshoe-shaped turns,
we observe electromechanical properties that are similar to what
is observed experimentally. For other classes of 2D and 3D droplet
arrangements, the gauge factor is below the value predicted for
a homogeneous, incompressible conductive material but larger
than what has been experimentally measured in LMEE compos-
ites produced using shear mixing techniques. These results may
provide guidance if control of assembly of LM droplets could be
achieved, where the control of the arrangement into prescribed
shapes could be used to control the electromechanical coupling.

By comparing strain response for seven classes of geometries,
we find two principle contributions to the reduction in electrome-
chanical coupling. One contribution is the pressure-controlled
opening of the narrow, neck-like connection that forms between
connected droplets. These narrow connections are a significant
source of electrical resistance when the composite is in its un-
stressed state. When the LMEE is stretched, fluid will flow into the
neck and cause an expansion that will reduce the electrical resis-
tance between the contacting droplets. However, this reduction in
resistance doesn’t fully compensate for the increase in resistance
that arises from elongation and narrowing of the droplets them-
selves. Instead, our FEM results suggest that the primary source
of reduced electromechanical coupling arises from the serpentine
arrangement of the droplets. Stretching will cause these mean-
dering paths to stretch out but will not significantly alter their
length or average cross-sectional area, thereby preserving their
end-to-end electrical resistance. Such coupling is captured using
a dimensionless tortuosity parameter γ that corresponds to how
straight the conductive pathways are within the percolating LM
network.

In this study we have not examined the influence of LM volume
fraction of the entire LMEE composite on its electromechancial
properties. Instead, we examine the electromechancial coupling
of a single chain of connected LM droplets. Nonetheless, it is
possible that LM volume fraction could have an influence on the
types of network topologies that are more statistically likely to oc-
cur within the composite. Such an analysis could be an interesting
topic for future study. Moreover, further computation will be re-
quired to extend the simplified analysis presented here to more
complex 3D geometries that more accurately represent the statis-
tically uniform but random distribution of LM droplets within a
LMEE composite. Such an analysis should account for stochas-
ticity in both spatial distribution of droplets as well as in size,
shape, and orientation of LM droplet. Nonetheless, the current
analysis succeeds in demonstrating LM microstructures with theo-
retical electromechanical properties that are consistent with what
are observed experimentally. The analysis confirms that experi-
mental measurements showing the constant electrical resistance
of LMEE composites are consistent with foundational principles
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of electrostatics, hyperelasticity, and fluid-structure interaction.
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Fig. 8 Comparison of electro-mechanical coupling response of the LMEE
observed experimentally in the literature with models generated in this
work.
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