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The modular path integral (MPI) formulation for one-dimensional 
extended systems, such as spin arrays or molecular aggregates, 
allows evaluation of spin- or exciton-vibration dynamics with effort 
that scales linearly with the number of units. This work presents a 
small matrix decomposition of MPI, which eliminates tensor 
storage and enables iterative long-time propagation.

Systems composed of segments with a basic one-dimensional 
topology are common in chemistry. Molecular aggregates, such 
as those found in photosynthetic light harvesting complexes 
and structures of stacked chromophores, are of interest from 
the perspective of understanding and optimizing excitation 
energy transfer. Spin arrays are encountered in magnetic 
materials and are also important for understanding quantum 
phase transitions as well as qubit coherence and entanglement. 
Each unit in such systems is often characterized by two or more 
discrete (electronic or spin) states, which are coupled to a large 
number of intramolecular vibrations. The ensuing dynamics can 
be quite complex, and behaviours observed in experiments may 
be hard to decipher. 

Theoretical analysis combined with simulation can offer 
invaluable information for understanding the complex interplay 
of electron- and spin-vibration dynamics. Further, the insights 
gained from studying Hamiltonian-to-dynamics relations can 
aid in the design of molecular units with optimal parameters. 
However, the full quantum mechanics of such large systems is 
inaccessible to conventional methods. Even if only the 
electronic (or spin) states are included, the resulting Hilbert 
space can be very large. For example, a chain or 10 two-level 
systems (TLS) gives rise to 210 states. When each of these states 
is coupled to ~102 intramolecular vibrational degrees of 
freedom, each of which may have several thermally populated 
states, obtaining the dynamics through wavefunction-based 
methods becomes impractical. 

A significant advantage in this regard is offered by the path 
integral formulation of quantum mechanics,1, 2 which replaces 
wavefunction computation and storage by a sum of amplitudes 
along all paths. The main difficulty in the path integral is the 
exponential scaling of the number of paths with propagation 
time, which leads to astronomical numbers of terms. Early work 
developed optimal discretized path integral representations 
that minimize the number of path integral variables and 
formulated a time-iterative decomposition of the path sum for 
a small system coupled to a dissipative harmonic bath.3, 4 The 
underlying principle that enables this decomposition is the 
finite length of correlations (the “memory”) between path 
integral variables. The resulting quasi-adiabatic propagator 
path integral (QuAPI) algorithm accounts for such correlations 
within the memory length, which serves as a convergence 
parameter, achieving linear scaling with propagation length.5 
Recent work showed that the path integral variables can be 
disentangled even within the memory length, replacing the 
QuAPI tensors by matrices of size equal to that of the system’s 
reduced density matrix (RDM). The fully quantum mechanical 
small matrix decomposition of the path integral6, 7 (SMatPI) 
allows the treatment of multistate quantum systems coupled to 
diverse harmonic environments whose parameters may be 
obtained from phonon spectra or from molecular dynamics 
simulations.

The modular decomposition of the path integral8, 9 (MPI) is 
a spatial tensor decomposition, which is designed for extended 
one-dimensional systems characterized by short-range 
interactions. In the case of nearest-neighbour interactions 
between units that are local in the single-unit basis states, the 
path integral variables form a rectangular lattice8, 9 where 
connections between adjacent vertices along the time direction 
correspond to short time propagators within each unit, while 
the lines connecting different units represent coupling terms. 
(In the more general case where the coupling terms are not 
diagonal, the MPI lattice becomes slightly more complex.10) In 
general, the algorithm proceeds by linking the path variables 
between units sequentially, achieving linear scaling with 
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aggregate length. The dynamical effects from any number of 
intramolecular vibrations, at zero or finite temperature, can 
also be included through an influence functional, which is 
available analytically and does not increase the computational 
cost.11 The MPI path linking process can be further factorized, 
such that the cost of treating each unit scales almost linearly 
with the number of paths.12 Filtering criteria13-15 may be 
employed to reduce the number of contributing paths in each 
unit. The MPI methodology has been used to obtain fully 
quantum mechanical results for the dynamics of excitation 
energy transfer in bacteriochlorophyll aggregates and the 18-
unit LH2 ring, where 50 normal modes on each molecule were 
included with parameters from experimental Huang-Rhys 
factors,16 and also in 25-unit J-aggregates of perylene bisimide 
(PBI).17 

The main limitation of the MPI algorithm is the path storage 
requirement, which effectively restricts the accessible time 
length. For example, unless filtering procedures can eliminate 
the majority of paths, MPI calculations of spin arrays are 
practical only up to  path integral time steps. While the 10N ;
resulting time length is often sufficient for extracting the 
dynamical properties of interest, there are many situations 
where accessing longer simulation times is highly desirable. 

The present paper removes this limitation by devising a 
small matrix formulation of the modular path integral 
(SMatMPI). Such a formulation does not appear feasible at first 
glance, as the influence functional arising from coupled spin 
units is not expected to have the simple Gaussian form that led 
to the SMatPI decomposition6, 7 in the harmonic bath case, and 
is not even available in analytical form. However, the small 
matrix decomposition may also be applied to the path 
amplitudes, where the relevant matrices are obtained through 
a generalization of the SMatPI procedure. Once the path 
amplitudes are available, the MPI linking algorithm is easily 
performed, sequentially summing the path amplitudes of 
successive units until the tagged unit (the “system”) is reached. 
The obtained SMatMPI matrices for the system contain all the 
effects from the rest of the spin chain. In most situations, e.g. in 
quantum Ising Hamiltonians, the large Hilbert space of a multi-
unit chain produces effects to the system that mimic those from 
a dissipative environment, regardless of whether the individual 
units are coupled to harmonic baths. As a result, the SMatMPI 
matrices may be used to obtain long-time dynamics through 
repeated small matrix operations. 

Consider a single-file arrangement of units, labelled , l 
which are coupled through nearest-neighbour interactions, and 
suppose that the tagged system of interest is the last unit. (This 
assumption is only used for convenience and is not a limitation 
of the algorithm.) Each unit consists of  discrete (electronic or n
spin) states which are coupled to a harmonic bath. The i


total Hamiltonian can be written as
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The unit operators  include harmonic bath degrees of 0Ĥ 

freedom arising from molecular vibrations, which are assumed 
diagonal in the unit basis.  

The first step in the MPI algorithm involves constructing the 
arrays  and  of paths for the first two units, linking these 1R 2R
paths by multiplying their amplitudes by phase factors that arise 
from the potential interactions between the two units18 in the 
discretized path integral expression19 and summing the 
amplitudes of unit 1. Earlier implementations of MPI required 
storing the array of paths for one unit at a time, updating this 
array after it is linked to the adjacent unit.8, 9 In the absence of 
filtering procedures, the original MPI algorithm requires the 
storage of  amplitudes for propagation to  (where 2( 1)Nn  N t

 is the path integral time step). Factorization of the linking t
process12 leads to almost linear scaling with the number of 
paths. Thus, the storage requirement is the main obstacle that 
prevents application to very long propagation times. 

The starting point of the new formulation is the general 
small matrix (SMat) decomposition of path integral amplitudes, 
whose sum produces the RDM of a single unit. For a system 
interacting with a general environment, the amplitude of a path 
of length N time steps can be written in the SMatPI form,

                 (5)
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Here  denotes the states of this unit at the time  ks
kt k t 

along a particular forward-backward path, and  are  ( )kk S 2 2n n
matrices. In the special case of a harmonic bath, these are the 
SMatPI matrices , which encode (through a ( )kk M
decomposition of the analytical influence functional20) the 
effects of the harmonic modes of this unit on the discrete 
system along the particular path and are obtained by evaluating 
the path integral for the RDM at all time points . 1, ,kt N K

The SMat representation of path amplitudes invites a   
formulation of MPI that eliminates array storage. To begin, the 
array of amplitudes for units 1 and 2 (which are initially isolated) 
are expressed in terms of the SMatPI matrices  according ( )kk M
to Eq. (5). The units are then linked through the appropriate 
potential factors at each time point and the amplitudes are 
summed with respect to the variables of unit 1, excluding the 
path endpoints , without storing these arrays, to obtain 0,Ns s 

the RDMs for unit 2 at the times . These RDMs are 1, ,kt N K
then used to decompose the path amplitudes for unit 2 in terms 
of new matrices , which provide the SMat representation ( )

2
kk S

of this unit.  Note that the effective influence functional for unit 
2 is no longer that of a harmonic bath alone, thus the ( )

2
kk S

matrices are not equal to the SMatPI matrices . ( )kk M

Page 2 of 4Physical Chemistry Chemical Physics



Journal Name  COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

Once the SMatMPI matrices  are available, the ( )
2
kk S

amplitudes are linked to those of the next unit, which initially is 
uncoupled and thus is described by the  matrices. ( )kk M
Applying the linking procedure with the potential interaction 
factors to obtain the RDMs for unit 3 and repeating the 
SMatMPI decomposition, one obtains the matrices .  This ( )

3
kk S

process is performed until the last unit is reached. Note that a 
simple modification of the MPI algorithm yields the RDM of 
non-terminal units, and can also lead to results for branched 
chains or ring structures.9

In the system-bath case, the expansion of path amplitudes 
is performed up to a length  , where  is the influence maxN r maxr
functional entanglement length,6 which in practice  is equal to 
the length of memory induced by the system’s enrivonment. 
Unlike the harmonic influence functional, in the more general 
case memory arises through the trace with respect to the other 
units of the aggregate, which may or may not be coupled to 
dissipative baths. Once converged with respect to this 
parameter, the SMatMPI procedure yields the RDM of the unit 
of interest over the time points .max1, ,kt r K

Provided that the remaining units of the chain introduce 
adequate dissipative effects, the projected dynamics is a finite-
memory process. Under these conditions, all matrices  for ( 0)NSl

 are smaller than the acceptable error and may be maxN r
dropped. SMatMPI matrices may be used to iteratively 
propagate the tagged unit to longer times. If the observables of 
interest pertain to the last unit, the RDM at future times is given 
by6, 7 

                    (6)
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To illustrate the SMatMPI approach, consider a quantum 
Ising chain21 of  units, described by the Hamiltonian of Eq. 10l
(4), which is rewritten in the form

                          (7)2
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The quantum Ising chain has attracted much interest as a simple 
paradigm of a quantum phase transition.21, 22 Further, the 
coherence and entanglement dynamics of coupled qubits is of 
interest in quantum computing. Each unit in Eq. (7) is a two-level 
system (TLS),  is the tunnelling matrix element, and   h ˆ x


and are Pauli spin matrices for each unit. The strength of ˆ z


coupling between adjacent units is . The frequencies and J
coupling coefficients to harmonic bath modes are collectively 
specified through the bath spectral density,23 which is assumed 
to have the common Ohmic form,  where   c/1

2J e      h
the Kondo parameter  quantifies the strength of dissipative 
effects and  is the bath cutoff frequency. Note that the MPI c
methodology is not restricted to this form of system-bath 
coupling, and that each TLS may have its own parameters. 

Figure 1 shows the survival probability of the edge spin for 
Ising chains with weakly coupled spins, , which are 0.2J  h
not attached to dissipative baths, for lengths  and . 2l 10l

All spins are initially placed in the “up” state (i.e. the same 
eigenstate of ). The spin population dynamics is the result of z
phase interference among  eigenvalues, which leads to a very 2l

complex composite density matrix, and the apparent damping 
is a consequence of averaging the populations with respect to 
the  unobserved spins. It is seen that the peaks are initially 1l
synchronized with those of an isolated TLS, but a jitter is 
observed around , after which the population oscillates 8t ;
out of phase. This is a consequence of the non-uniform level 
distribution of the Ising chain. From the perspective of 
convergence, this regime is challenging, as the memory induced 
by the Ising chain in the absence of harmonic bath effects is very 
long. The lack of adequate damping in this regime is evidenced 
by the persisting oscillatory dynamics of the edge spin 
population. With only two coupled spins a full revival is 
observed early on. In the chain of  recurrences are 10l
expected much later. The population dynamics of an isolated 
TLS, obtained using the quasi-adiabatic propagator path integral 
(QuAPI) algorithm,5 is also shown for reference. 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
t

Fig. 1. Survival probability for the edge TLS in two quantum Ising chains 
with , which are not coupled to dissipative baths. All spins are 0.2J  h
initially placed in the same eigenstate of .  Blue: . Red: . z 2l 10l
For reference, results for a single TLS are also shown in gold. 

The edge spin population dynamics with  are 0.2J  h
compared to those obtained in the presence of harmonic 
dissipative environments of different parameters in Figure 2. In 
the first case the bath is characterized by ,  and 0.05  5 h

. The weak dissipation and low temperature leads to c 5  
underdamped dynamics. The jitter effect is still noticeable on 
the edge spin of the Ising chain, although the feature is strongly 
diminished in the presence of a bath. Comparison against Fig. 1 
indicates that the damping effect of a long Ising chain whose 
spins are not coupled to bath modes is somewhat stronger than 
that of a harmonic bath with the present parameters. A seen in 
Fig. 2, interaction of the probed TLS with this bath and the Ising 
chain leads to faster damping, suggesting that the effects from 
these two environments are cumulative. However, the specifics 
of the spin dynamics differ in important ways. 
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In the second case the TLS-bath coupling is stronger, given 
by , and the bath is at an intermediate temperature 0.25 
with  and . These conditions lead to faster 1 h c 5  
damping, causing the population to fall below the equilibrium 
value of 0.5 only once. In this case the harmonic bath is 
primarily responsible for the quenching of the TLS coherent 
oscillation, and the additional damping effects from the weakly 
coupled TLS chain are relatively minor. Since the chain effects 
are not felt during the first half of the oscillation cycle with this 
weak spin-spin coupling and the TLS populations equilibrate 
rapidly with these parameters, the dynamics of the quantum 
Ising and single spin dynamics are nearly indistinguishable in 
this case.

 The dynamics of system-bath Hamiltonians can be followed 
accurately in many regimes of interest using several 
approaches. The MPI methodology has extended treatment to 
arrays of multiple units, each interacting with harmonic baths 
representing intramolecular vibrations, but the time length 
reachable this way was previously limited by the need for 
storing the array of path amplitudes for each unit.
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Fig. 2. Survival probability for the edge TLS in two quantum Ising chains 
with , which are coupled to dissipative baths. All spins are 0.2J  h
initially placed in the same eigenstate of . Blue markers and line: Ising z
chain with , , . Cyan line: same bath parameters 10l 0.05  5 h
for a single TLS.  Red markers and line: , , . Gold 10l 0.25  1 h
line: same parameters for a single TLS.

The SMatMPI decomposition described in this 
Communication circumvents the need for array storage by 
representing the unit path amplitudes in terms of small 
matrices, whose dimension is the same as the unit’s RDM. This 
way the MPI linking can be performed over longer segments 
and potentially for multistate units. Once the linking process is 
complete over the memory length, the constructed SMatMPI 
matrices are used in an iterative fashion to generate long-time 
RDM dynamics for the tagged unit. Thus the SMatMPI algorithm 
combines the ability of the MPI algorithm to treat multi-unit 
arrays with the long-time capabilities of time-iterative methods. 
The absence of tensor storage requirements opens up the road 
to the treatment of aggregates where each unit is composed of 

multiple states that may also be coupled to long-memory 
environments. 

The interplay of spin-spin coupling in TLS arrays and the 
dissipative effects from intramolecular vibrations leads to rich 
dynamical behaviours, which will be reported in other 
publications. 
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