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An outstanding challenge in the field of origami-inspired multistable structures is to actively control 
the number of possible stable states and their reconfiguration paths. In this work, we present an 
integrated experimental and computational study on how they can be systematically tailored and 
controlled via two effective and easy-to-control parameters, creasing and compressive strains. 
Computationally, we construct a detailed design phase diagram for a representative ribbon structure 
showing how the number of stable states can be reversibly varied. Furthermore, we predict the non-
linear reconfiguration paths and their corresponding energy barriers to transition between stable 
states. Experimentally, we realize origami-inspired structures composed of ferromagnetic composite 
thin films under various creasing and compressive strain conditions, where fast, remote 
reconfigurations are achieved using a portable magnet. The computational and experimental results 
are in excellent agreement. We believe the new insights generated from our work are valuable for 
diverse applications exploiting origami-inspired structures. For instance, here we design and 
demonstrate programmable structure arrays, biomimetic insect flexion, and an origami robot that 
can be actuated by remote magnetic forces.
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Abstract

Origami-inspired multistable structures are gaining increasing interest because of their potential 

applications in fields ranging from deployable structures to reconfigurable microelectronics. 

The multistability of such structures is critical for their applications but is challenging to 

manipulate due to the highly nonlinear deformations and complex configurations of the 

structures. Here, a comprehensive experimental and computational study is reported to tailor 

the multistable states of origami-inspired, buckled ferromagnetic structures and their 

reconfiguration paths. Using ribbon structures as an example, a design phase diagram is 

constructed as a function of the crease number and compressive strain. As the crease number 

increases from 0 to 7, the number of distinct stable states first increases and then decreases. The 

multistability is also shown to be actively tuned by varying the strain from 0% to 40%. 

Furthermore, analyzing energy barriers for reconfiguration among the stable states reveals 

dynamic changes in reconfiguration paths with increasing strain. Guided by studies above, 

diverse examples are designed and demonstrated, from programmable structure arrays to a soft 

robot. These studies lay out the foundation for the rational design of functional, multistable 

structures. 
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1. Introduction

Origami, the ancient art of folding two-dimensional (2D) thin sheets along predefined 

creases to create three-dimensional (3D) objects,1-3 has inspired the design of many engineering 

structures for a wide range of applications, including deployable systems,4-6 self-folding 

machines,7 reconfigurable metamaterials,8-10 and DNA origami.11 For those applications, a key 

design feature of the structures is their ability to have multiple stable states as well as the 

tailoring of those states for tunability and adaptability. Existing works so far have primarily 

focused on bistable systems for rigid origami patterns (like the Miura folding12 and its 

derivates13) and deformable origami (like the twisted square pattern14). For example, Sadeghi 

and Li realized rapid and reversible folding by harnessing the asymmetric bistability of 

designed origami structures15. Liu et al.  demonstrated that a folded hypar origami, obtained by 

folding a piece of paper along concentric squares and their diagonals to arrive at a seemingly 

smooth saddle shape, exhibits bistability between two symmetric configurations.16 More 

recently, Melancon et al. realized pressure-deployable origami structures characterized by two 

stable configurations — one compact and one expanded – at the meter scale.5 Furthermore, 

Fang et al. showed that the potential energy landscapes of stacked Miura-ori and the Kresling-

ori structures, and therefore their stability profiles and constitutive force–displacement relations, 

can be effectively tuned by embedded magnets17. 

In addition to multistability, reconfiguration among the different stable states of origami-

inspired structures in a well-controlled manner is demanded in many engineering devices and 

structures. Theoretical and experimental studies have been performed on reconfiguration paths 

in origami-inspired structures. For example,  Zhai et al. created an origami-inspired mechanical 

metamaterial that can be deployed and collapsed along different configuration paths.18 

Silverberg et al. showed that hidden degrees of freedom in square twist origami structures give 

rise to a critical transition from mono- to bi-stability.14 Moreover, significant advances have 

been made to improve the tunability and adaptability of origami-inspired structures by 
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incorporating stimuli-responsive materials, such as shape memory polymers,19-22 hydrogels,23, 

24 liquid crystal elastomers,25, 26 and magnetic composites,27 into origami-inspired structures to 

achieve self-folding and on-demand shape morphing under external actuations (i.e., variations 

in temperature, light, pH, and magnetic fields). Such self-actuating materials have also enabled 

the assembly of origami structures at the microscale to provide opportunities for micro robotics, 

biomedical devices, and many others.28-32 

Previous studies have laid solid foundations for the design and development of origami-

inspired structures with bistability and tunability. One of the remaining challenges in the field 

of origami-inspired multistable structures is to actively control the number of possible stable 

states and their reconfiguration paths. Here, we demonstrate how the multistability of origami-

inspired structures that are buckled from ferromagnetic composite thin films19, 33 can be tailored 

via creasing and compressive strains. Ribbon structures are chosen as an example for the study 

because of their very rich nonlinear buckling behavior while having a simple geometry and 

their potential as basic building blocks for more complicated structures, thus providing an ideal 

platform to explore our design strategy. The two key control parameters, compression strains 

and creasing in the ribbon, are selected because they are easy to tune and very effective to alter 

the multistable behaviors of the structure for real applications. In this work, the experiments are 

thoroughly complemented with systematic simulations. A computationally efficient discrete 

shell model,34, 35 which is used to simulate non-linear deformations in thin films, is combined 

with a random search algorithm for energy minimization36-38 to construct phase diagrams 

showing how the available stable states sensitively depend on the compressive assembly strain 

and the creases of structures. The predictions from the phase diagram are experimentally 

verified for cases at a representative constant strain (15%) and varying crease numbers, as well 

as those at a given crease number (3 creases) and varying strains. In addition, reconfiguration 

paths between the stable states are identified using energy landscape exploration algorithms,39, 

40 where the transition states connecting the minima are first located with a double-ended search 

Page 5 of 27 Materials Horizons



5

method, then the full pathways are computed using the downhill routes to each stable state. Our 

approach allows the computation of reconfiguration paths with the lowest energy barriers 

systematically without the need to assume a predefined path for structure morphing.41 Fast, 

remote reconfigurations among the multistable states of the ferromagnetic structures are 

performed experimentally with a portable magnet, the pathways of which are shown to be 

consistent with those from computational predictions. Finally, guided by tightly integrated 

numerical and experimental analysis, we demonstrate diverse complex origami-inspired 

structures, including structure arrays that can display various patterns based on the 

multistability of the structural unit, a biomimetic insect, and a soft robot. 

2. Results and Discussions

2.1 Concept of origami-inspired, multistable 3D magnetic structures

Figure 1 schematically illustrates the assembly process and reconfiguration of origami-

inspired structures compressively buckled from ferromagnetic composites.19, 42, 43 

Ferromagnetic composites are used as the constitutional material of the origami-inspired 

structures in this study to enable fast, remote reconfiguration among their mutistable states.44-

46 The scheme begins with the fabrication of soft ferromagnetic composite films (130 μm thick) 

made from polydimethylsiloxane (PDMS) embedded with magnetic NdFeB (neodymium-iron-

boron) microparticles (~5 μm in diameter). Laser patterning (VLS 2.30, University Laser 

System, Norman, OK) of the film defines the geometry and the crease of the 2D precursor with 

a thickness ratio of 46.15% between the crease- and non-crease regions. The location of the 

crease region and the reduced thickness of the corresponding segments (2.5 mm of unit length) 

determine the location of hinges that affect potential multistable reconfigurations.47 To 

assemble origami-inspired structures, the 2D precursor is laminated onto a pre-stretched 

silicone elastomer substrate (Dragon skin; Smooth-on, Easton, PA), followed by the release of 

the pre-strain to geometrically transform the 2D precursor into the corresponding 3D structure. 

Page 6 of 27Materials Horizons



6

Under an external magnetic field generated by a manually manipulative magnet, the assembled 

origami-inspired structure can be reconfigured into up to four distinct stable states: state 1 (S1, 

one center peak), state 2 (S2, one side peak), state 3 (S3, two peaks), and state 4 (S4, twisted 

two peaks). Remarkably, due to their mechanical stability, the reconfigured states remain stable 

after the removal of the applied magnetic field. 

2.2 Phase diagram of multistable states of magnetically reconfigurable, origami-inspired 

structures

We first study the effect of two essential parameters, the number of creases and 

compressive strains, on the number and configurations of stable states by using a ribbon 

structure as an example. A phase diagram, indicating the stable states of the structure with up 

to seven creases and at strain levels of 0%-40%, is shown in Figure 2A and serves as a 

theoretical foundation for the multistability design. The phase diagram is constructed 

computationally by identifying the local minima in the energy landscape of the structure under 

various conditions of strain levels and crease numbers. To obtain these minima, we use a 

discrete model combined with a random search algorithm for energy minimization (see the 

Experimental Section for full details). The discrete model has been widely used to simulate 

non-linear deformation in thin films and shells, and it has been shown to be in good agreement 

with more accurate but computationally more expensive finite element method39, 48.  In our 

computational strategy, at selected points (typically 5 different strain levels for each crease 

number) across the phase diagram, the structure is randomly initialized several hundreds of 

times, after which it is relaxed to the minima. Once the qualitatively distinct configurations are 

identified, we systematically vary the compressive strain to observe the full range over which 

each state is stable. It is worth noting that while it is difficult to guarantee that all possible stable 

states are obtained, we do not find additional states when more points in the phase diagram are 

sampled. Hence, we consider the identified stable states to be representative in this study. 
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As shown in Figure 2A, the number of creases (ncrease) has notable effects on the number 

and configurations of stable states. To better illustrate this point, we demonstrate the available 

states of structures as ncrease is increased from 0 to 7 under a constant compressive strain of 15% 

in Figure 2B, with the computational and experimental results shown side by side. When the 

ncrease is zero, i.e., the continuous ribbon structure, only S1 (one center peak) exists at all strain 

levels (e.g., point i). An additional asymmetric state S2 becomes available when ncrease rises to 

two at a compressive strain of 15% (point ii). A further increase to three creases causes the 

structure to admit state S3 (two peaks) at a strain of 15% (point iii) and S4 (twisted two peaks) 

at a higher strain level. As ncrease increases above three, the number of stable states begins to 

decline, with S2 becoming unstable for structures with four creases (point iv). For structures 

with five creases and above, only S1 remains stable at a compressive strain of 15%, although 

S3 is still stable under lower strains for ncrease=5 and 6. This can be expected because we are 

approaching the continuous case when the number of creases is large.

The available stable states also depend strongly on the magnitude of the applied 

compressive strain used in the assembly process of the structure. We illustrate this using a 

structure with three creases due to its rich phenomena that will be discussed in the following. 

Based on the number and configurations of stable states, five regimes are identified: a) two 

distinct stable states (S1 and S2; 0-10% strain), b) three distinct stable states (S1, S2, and S3; 

10-17% strain), c) two distinct stable states (S1 and S3; 17-19% strain), d) three distinct stable 

states (S1, S3, and S4; 19-30% strain), and e) two distinct stable states (S1 and S4; 30-40% 

strain). Figure 2C shows experimental and computational results of distinct stable states at 

representative strain levels for the five regimes. Under a relatively low compressive strain of 8% 

(point vi), states S1 (one center peak) and S2 (one side peak) exist, which can be reversibly 

reconfigured into each other via manually controlling the magnetic force and direction. 

Increasing the strain to 15% (point iii) leads to the appearance of a third state, S3 with two 

peaks, which increases the number of stable states to three. However, when the strain is further 
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increased to 18% (point vii), S2 with one side peak disappears. Further increasing the strain to 

24% (point viii) causes the formation of an interesting twisted state (S4) and therefore increases 

the number of stable states to three (S1, S3 and S4). As the strain becomes even larger, S3 

disappears and only S1 and S4 exist at the strain of 34% (point ix). The experimental and 

computation results shown above agree reasonably well. The discrepancy in the configuration 

of some stable states (e.g., (v) S1 in Figure 2B) between experiments and modeling likely results 

from the friction between the structure and the substrate in experiments, which is neglected in 

computational modeling. The effect of friction will be further discussed in section 2.3. 

Furthermore, by continuously changing the strain levels from 0% to 40% using the 3-crease 

structure, we record the dynamic progression of the five regimes and the fast, remote magnetic 

reconfiguration among the stable states within each regime in Supplementary Movie S1, 

which is highly consistent with the predictions of the phase diagram in Figure 2A. We also 

show that the states are stable under perturbations perpendicular to the vertical surface (along 

the height direction) of the ribbon, except in cases where S4 (twisted two peaks) is present.  By 

using S1 as an example, the structure is shown to maintain its S1 configuration after the 

perturbations caused by a tweezer-induced external mechanical force (Figure S1).

The studies above provide important guidelines for tailoring the number and 

configurations of stable states in origami-inspired structures by tuning the number of creases 

and the assembly strain. For example, for applications like digital logics where multiple stable 

states are desired, structures with three creases may offer more design space and tunability, 

while structures with a lower or higher number of creases is preferred for applications where a 

single stable state is needed. Furthermore, from the phase diagram, we observe that structures 

with two and three creases have multistable states under a wide range of strain (15%-40% strain 

for the case of two creases and 0%-40% strain for the case of three creases), which can be used 

for applications of multistable structures that demand a wide working strain range. It is also 

worth emphasizing that a major advantage of employing the assembly strain as a control 
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parameter is that varying strain levels and therefore tunable multistability can be repeatedly 

achieved by using a simple mechanical stage, as we will demonstrate later in Section 2.4.

We also study the effects of the crease thickness ratio and the crease length ratio (defined 

in Figure S2) on the multistability by using the 3-crease ribbon under a strain level of 14% as 

an example. Table S1 and Table S2 show that both ratios have a significant effect on the 

multistability of the ribbon structure. In this work, we focus on the study of how the 

multistability can be tuned by the crease number and the strain levels. More detailed studies on 

the effects of the crease thickness ratio and the crease length ratio will be pursued elsewhere.

2.3 Reconfiguration paths among distinct stable states of origami-inspired ferromagnetic 

structures

In addition to locating the stable configurations, we also investigate available pathways 

that the structure can be reconfigured along among its stable states, which is important for many 

applications. The pathways are computationally identified by first locating the saddle points 

that connect the local minima on the energy landscape, also known as the transition states, using 

the so-called Binary Image Transition State Search model (see the Experimental Section for the 

description of the algorithm). A full pathway is then given by the steepest-descent paths from 

the transition state to the energy minima, which are found by tracing the route of a minimization 

from each downhill side of the transition state. 

Here we use the three-crease structure as a representative case for study because of its 

complexity in the configurations and the number of stable states, which results in a large number 

of reconfiguration paths. As illustrated in Figure 3A, we identify four distinct pathways among 

the stable states of the structure: P1-2 for the transition path between S1 and S2, P1-3 between S1 

and S3, P2-3 between S2 and S3, and P3-4 between S3 and S4. It is worth noting that in cases 

where one or more of those states are not stable, the corresponding individual paths may merge 

into one, as we will detail below. 
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Figure 3B shows the available pathways and the associated energy profiles for a 

representative case in each of the five regimes for a 3-crease ribbon (identified in Figure 2A) 

as the strain is increased from 0% to 40%. In the first regime (0-10% strain), only states S1 and 

S2 exist, with a single pathway (P1-2) to reconfigure between them, as shown in Movie S2. In 

the second regime (10%-17% strain), state S3 appears, so two additional pathways, P1-3 and 

P2-3, become accessible (Movie S3). Our analysis also highlights that there are not only multiple 

stable states existing in the structure, but also multiple available paths for transforming the 

structure from one state to another. For example, we can observe that there are two main 

pathways that can be taken from state S1 to S3. The first path, initially following P1-2 to 

reconfigure S1 to S2, subsequently involves the creation of an asymmetric peak at one side of 

the structure to form state S3 from S2 (P2-3). Due to symmetry, there are two equivalent 

scenarios depending on which side the peak is created to form S3. The second path, P1-3, directly 

reconfigures S1 to S3 by forming two edge peaks simultaneously while maintaining symmetry.  

As the strain increases to the regime of 17%-19%, state S2 becomes unstable, so P1-2 and P2-3 

merge into a single path P1-2*-3 (Movie S4), where 2* denotes that state 2 is no longer stable. 

Above the strain of 19%, pathway P3-4 appears between state S3 and twisted state S4, while the 

two pathways from S1 to S3 still exist (Movie S5). Finally, at the strain of 30% and above, S3 

is no longer stable leaving just two merged paths P1-2*-3*-4 and P1-3*-4 between S1 and S4 (Movie 

S6), where 3* denotes that state S3 is no longer stable. 

We further investigate the energy barriers of each pathway as a function of strain. For 

each pathway, there are two relevant energy barriers, as illustrated in Figure 3B using P1-2 in 

the case of 8% strain as an example. We label ΔEf for the energy required to transition from a 

lowered numbered state to a higher numbered state in each pathway (here, S1 to S2), while ΔEb 

is the energy required for the opposite transition (here, S2 to S1). We summarize the values of 

the energy barriers for all the available pathways in Figure 3C, where ΔEf and ΔEb for each 
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pathway are represented by solid and dotted lines, respectively. We can see that the energy 

barriers for pathways reconfiguring from S1 to other states including S2, S3 and S4 depending 

on the strain levels (P1-2, P1-2*-3, P1-2*-3*-4, P1-3, P1-3*-4; solid blue and orange lines) is much larger 

than their corresponding reverse barriers (dotted blue and orange lines, respectively). Such 

difference suggests that state S1 is more stable than the other states (S2, S3 and S4), which is 

consistent with the phase diagram in Figure 2A, where S1 is almost always stable for cases 

under all crease numbers. It is also seen that the energy barriers of paths P2-3 (green lines, 

transition between S2 and S3) and P3-4 (red lines, transition between S3 and S4) are significantly 

lower than those of pathways involving state S1 represented by solid blue and orange lines. 

This suggests that reconfigurations among states S2, S3, and S4 are much easier than those 

between S1 and S2/S3/S4. Correspondingly, the required forces to disturb the reconfiguration 

paths or trap locally stable states are low. Hence, forces like friction between the structure and 

the substrate (assembly platform) in experiments may be sufficient to trap the structure along 

these paths or at states S2, S3 and S4. This may explain why experimentally the structure 

appears to get trapped in some states which are shown to be unstable in computational results 

(Movies S4-6). For example, in Movie S4, when the structure is reconfigured from S2 to S3, 

the 2nd edge peak is not fully formed due to possible friction between the structure and the 

substrate, causing the slight asymmetric configuration of S3.

From Figure 3C, we can also see that the energy barriers for the majority of the 

reconfiguration paths increase monotonically with the strain, implying that it becomes more 

difficult to reconfigure the states at larger strains. Exceptions occur for reconfiguration paths 

P2-3 (solid green line, transition from S2 to S3) and P3-4 (solid red line, transition from S3 to 

S4), the energy barriers of which decrease with increasing strain levels. Here, the cases when 

the energy barriers tend to be zero correspond to the instances where S2 and S3 become unstable, 

i.e., the instability modes of these states. Overall, the energy barrier analysis reinforces the 
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previous observation that, as the strain is varied from 0% to 40%, state S1 always exists while 

the availability of states S2, S3 and S4 strongly depends on the strain imposed. 

2.4 Origami-inspired multistable ferromagnetic structures of multi-ribbon configurations 

         The multistable ribbon configurations studied above can serve as building blocks for 

complicated geometries and diverse types of origami-inspired structures. Figure 4A and 

Figure S3 show a 3×3 array of ribbons with three creases at different strain levels, which is 

consistent with the prediction of the phase diagram in Figure 2A and demonstrates the 

scalability and versatility of the technique. Particularly, as predicted by the phase diagram, three 

distinct stable states exist at the strain levels of 14% (S1, S2, and S3) and 28% (S1, S3, and S4), 

respectively. In experiments, each individual ribbon unit is separately addressable and therefore 

the structure array can be magnetically tuned in a sequential manner to display all the three 

stable states (S1 in row 1, S2 in row 2, and S3 in row 3 at a strain of 14%; S1 in column 1, S3 

in column 2, and S4 in column 3 at a strain of 28%). Such capability of dynamically and 

reversibly tuning the patterns in a structure array represents an important option for applications 

including digital coding and smart switches, especially when integrated with other functional 

materials or elements. In addition, the complexity of origami-inspired structures and the number 

of stable states can be increased by incorporating a larger number of interconnected structural 

units, like ribbons with two creases. Figure 4B presents a structure consisting of two creased 

table structures connected with a creased ribbon, which can be magnetically reconfigured into 

six distinct stable states that are enabled by the multistability of the ribbon units. Furthermore, 

the multistable origami-inspired structures can be extended to diverse geometries. Figure 4C 

and Figure S4 demonstrate structures that mimic insect flexion, standing states, and a series of 

biomimetic movements. More examples including those that resemble two stable states of a 

butterfly structure, a cage and a drug-release system are shown in Figure S5.
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2.5 Application in soft robotics 

Based on the multistability of origami-inspired structures and the flexibility of 

ferromagnetic actuation, we further assemble two 3-crease ribbon structures (side by side) into 

a 3D origami robot to achieve fast, remote response to an external magnetic field.  Figure 5A 

shows the design concept and assembly process, which begins with two buckled ferromagnetic 

ribbon structures of 3 creases (150 µm thick) attached to an elastomer substrate (400 μm thick). 

The center peak of the two structures act as the “feet” of the robot, which can drive the robot to 

move forward under magnetic actuation. To actuate the robot, a portable magnet is placed 

directly underneath the structure to bring the front “foot” forward, while the other one as a 

fulcrum at the back. Once the magnet is removed, the hinge on the front “foot” recovers its 

original shape, driving the robot forward. The actuation process above is recorded in Figure 5B 

and Movie S7. Future opportunities include the fabrication and actuation of freestanding 

biomimetic structures by using the shape fixing effect of shape memory polymers19, 49 or liquid 

crystal elastomers50 for applications including remotely controlled soft robotics.

3. Conclusion

To sum up, we show from experiments and simulations that the multistability and the 

associated transition paths of origami-inspired, compressively buckled ferromagnetic structures 

can be tailored by controlling the number of creases and assembly strain. Our constructed phase 

diagram of a representative creased ribbon structure from the energy landscape analysis is 

validated by our experiments and provides important guidelines for the targeted number of 

stable states by varying the two control factors. In addition, transition pathways among the 

distinct stable states are computed and illustrate how the structure can be manipulated to be 

reconfigured along different pathways. The experimental results of our origami-inspired 

ferromagnetic structures show targeted multistable states following designed pathways, which 

highly agrees with modeling. The fundamental understanding of the multistability of creased 
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ribbon structures provides important guidelines for the design and application of complex 

classes of origami-inspired systems that are capable of multiple shape reconfigurations. 

Demonstrated examples include the arrays of creased ribbon units, a series of biomimetic states 

of a developed “insect” structure, and a double-ribbon structure that mimics a soft robot. These 

results highlight potential opportunities in the future to exploit multistable, origami-inspired 

ferromagnetic structures for intelligent and adaptive systems such as programmable logic array 

by integrating complex structure design and functional materials like stimuli-responsive 

polymers and electronics. It will also be interesting to explore the concept of actively 

manipulating the number of stable states and their reconfiguration paths in the design of other 

types of functional structures by using alternative control parameters.

4. Experimental Section

Fabrication of 2D ferromagnetic composite precursors: The fabrication of ferromagnetic 

film began with using a planetary mixer (AR-100, Thinky) to homogeneously mix (2000 rpm 

for 2 min, then defoaming at 2000 rpm for 1 min) NdFeB (neodymium iron boron) 

microparticles (average diameter: 5 μm, Neo Magneuench) into uncured PDMS 

(Polydimethylsiloxane, made with a volume ratio of part A over part B of 5:1) resin at a volume 

ratio of 1:5. Then the obtained ferromagnetic PDMS composite was spin coated onto a petri-

dish at 500 rpm for 15s, and the completely cured ferromagnetic film (thickness=180-200 µm) 

was obtained after 2 days and laser cut into desired 2D patterns. The raster mode of the laser 

(VLS 3.50, University Laser System, Norman, OK) was used to create the crease segment of 

origami structures. 

3D assembly: The assembly of origami structures was conducted using the previously 

introduced 3D buckling technique.42 The 2D precursor was transferred onto a prestreched 

elastomer substrate (1 mm thick, Dragon Skin; Smooth-On, Easton, PA). Strong adhesion was 

formed at bonding sites by applying a thin layer of superglue. More specifically, a needle tip 
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was used to apply a tiny drop of the superglue to the center of the bonding site, followed by 

physical lamination of the film onto the elastomer substrate to spread the superglue into a very 

thin layer.  Releasing the prestrain in the assembly platform transforms the 2D pattern into a 

3D structure and completes the assembly process. 

Magnetic actuation: A cylinder magnet (D8Y0, K&J magnetics) was used to actuate the 

targeted structure, and the ferromagnetic field was generated from the circular surface (diameter: 

1.27 cm) of the cylinder magnet. The working distance of the magnet for effective actuation 

was first identified to be 3-22 mm for this specific magnet. Through adjusting the distance 

within this range and the angle (0-180°) between the circular surface and the targeted part of 

the targeted structure, the strength and direction of applied ferromagnetic field were controlled 

to address the needs of reconfigurations. The magnet was moved from one location of the 

targeted structure to another, and the above operation is repeated to reconfigure the targeted 

structure from one stable state to another.

Fabrication and assembly of soft robot: 3D buckling technique was used to conduct the 

fabrication and assembly of soft robot. Two 2D precursors of origami ribbon structures with 3 

creases were patterned from ferromagnetic films by using a laser (VLS 3.50, University Laser 

System, Norman, OK), then was transferred onto a prestreched elastomer substrate (400 μm 

thick, Dragon Skin; Smooth-On, Easton, PA). Strong adhesion was formed at bonding sites by 

applying a thin layer of superglue. Releasing the prestrain in the assembly platform transforms 

the 2D patterns into to an origami structure array in their symmetric one-arc state. Then we used 

laser to cut the substrate around the structure into a rectangle of 16 mm × 5 mm. The whole 

process ended with upside down 2 buckled crease ribbons.

Modeling

The structures are discretized as a 2D triangular mesh using a Delaunay refinement with an 

optimal mesh size equal to an eighth of the ribbon width. The energy of the structure is 

calculated by considering contributions from the stretching and bending of the mesh, as well as 
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a repulsive potential with the substrate. A bar-and-hinge model is used for the stretching and 

bending components. This involves treating the bonds in the triangulation as elastic springs and 

with elastic hinges connecting adjacent triangular faces. The resulting expression for the energy 

is

,                                       (1)𝐸 = ∑
𝑏𝐾𝑠,𝑏(𝑟𝑏 – 𝑟0

𝑏)2 + ∑
ℎ𝐾𝑏,ℎ (1 + cos 𝜃ℎ)

where the summations are over each of the bonds, , and hinges, , respectively. For each bond 𝑏 ℎ

 is its length and  is the relaxed length when in the flat precursor, while  is the dihedral 𝑟𝑏 𝑟0
𝑏 𝜃ℎ

angle of each hinge. The spring coefficients are obtained by considering the stiffness and 

flexural rigidities of the individual triangular elements. They are

,                                                                   (2)𝐾𝑠,𝑖 =
3

4 𝐸𝑡𝑖

,                                                         (3)𝐾𝑏,𝑖 =  
𝐸𝑡𝑖

3

12(1 ― 𝜈2)

𝑟𝑖

𝐴𝑖,1 + 𝐴𝑖,2

where  is the Young’s modulus,  is the Poisson ratio,  is the thickness, which is smaller at 𝐸 𝜈 𝑡𝑖

the creases, and  and  are the areas of the triangles either side of the hinge. The values 𝐴𝑖,1 𝐴𝑖,2

used were a Young’s modulus of 1.4 MPa51 and a thickness of 130 μm (for the ribbon stripes) 

or 60 μm (for the creases). As to the Poisson ratio in Eq. (3), the current discrete shell leads to 

a fixed value of 𝑣 = 1/3,34 smaller than the usual Poisson ratio for polymeric materials (~0.5). 

However, we do not expect this will significantly influence the results as the thin film 

deformation is mainly determined by the two stiffnesses (stretching and bending) defined in 

Eqs. (2) and (3). For the repulsive substrate interaction each node in the triangulation is subject 

to a Lennard-Jones 9-3 potential which is shifted and cutoff to remove the attractive region,

,                              (4)𝐸(𝑟) = 𝜖[ 2
15( 𝜎

𝑟 + 𝑟0)
9

― ( 𝜎
𝑟 + 𝑟0)

3] ― 𝐸0 for 𝑟 < 0

where  is the distance at which the unshifted potential is minimal, and  is the value of the 𝑟0 𝐸0

potential at that location. The values used are  mm and  J.𝜎 = 1 𝜀 =  10 ―10
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Finding stable states: The stable states correspond to configurations which lie at the local 

minima in the energy landscape, so they are found by minimizing the energy of the system. The 

L-BFGS algorithm is used for this because it is efficient for large numbers of degrees of 

freedom. To enable different states to be obtained, we carefully sample the available states at 

selected points in the phase diagram, typically at 5 different strain levels for each crease number. 

At such a point, random forces are applied to each of the creases and the structure is buckled 

by moving the binding sites according to the strain over the first 10,000 iterations, after which 

the structure is allowed to relax. This process is repeated several hundred times. Once the 

qualitatively distinct configurations are identified, the strain is then varied for each 

configuration to observe the range over which they are stable. To ensure our procedure is robust, 

we have increased the sampling frequency of each configuration and we reliably find the same 

states. 

Finding transition states: To identify the transition states for use in locating the pathways, the 

binary-image transition state search (BITSS) method is used. Briefly, this method uses two 

states,  and , which are initialized at the two minima. The energy of this pair of states is 𝒙1 𝒙2

then minimized subject to two constraints. Firstly, the distance between the two states is set to 

a value , which is steadily reduced to zero such that the states converge at the transition state. 𝑑0

The second constraint requires the energies of the individual states,  and , to be equal. This 𝐸1 𝐸2

prevents one state from passing over the saddle point, which would result in the convergence 

occurring at one of the minima instead. These two constraints are applied as penalty terms in 

the total energy to be minimized:

,                (5)𝐸𝑡𝑜𝑡(𝒙1, 𝒙2) = 𝐸1 + 𝐸2 + 𝐾𝑒(𝐸1 – 𝐸2)2 + 𝐾𝑑(𝑑(𝒙1, 𝒙2) ― 𝑑0)2

where  is the distance between the two states, defined by the root mean square 𝑑(𝒙1,𝒙2)

separation between corresponding vertices in the two states; and  and  parametrize the 𝐾𝑒 𝐾𝑑

strength of the constraints. These coefficients are computed at regular intervals as the separation 
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 is reduced so that all the energy terms remain relevant. The coefficient for the energy 𝑑0

constraint is set by the expression , where  is an estimate for the current energy 𝐾𝑒 =  10 Δ𝐸 Δ𝐸

barrier between  and , obtained by linearly interpolating between them. For a given , the 𝒙1 𝒙2 𝑑0

distance coefficient  is initially set to the reciprocal of the separation between the minima. If 𝐾𝑑

the states converge with a relative error in distance from d0 greater than 1%,  is increased by 𝐾𝑑

a factor of 10. This is repeated until the relative error is within 1%, in which case we then 

continue with the BITSS method with a smaller distance constraint. Typically, we reduce  by 𝑑0

30%. After finding a transition state at a given strain parameter, a continuation approach can 

then be used in conjunction with the BITSS method to find the state for nearby parameters. By 

repeating this process, the transition states, and hence energy barriers, are identified for the 

whole parameter range of interest.
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Figure Captions

Figure 1. Schematic illustration of the assembly and magnetic reconfiguration schemes of 
multistable origami-inspired ribbon structures.

Figure 2. Multistability of origami-inspired ferromagnetic ribbon structures under 
varying creases and compressive strains. (A) Design phase diagram showing the effect of the 
crease number and compressive strain on the number and configurations of distinct stable states 
of the ribbon. (B) Experimental and computational results of multistable states under a constant 
strain of 15% and varying crease numbers, corresponding to points i-v labelled in Figure 2A. 
Scale bars, 2 mm. and (C) Experimental and computational results of multistable states at a 
constant number of creases (ncrease = 3) and varying strain levels, corresponding to points vi-ix 
in Figure 2A. Scale bars, 2 mm.

Figure 3. Reconfiguration paths among distinct stable states of origami-inspired 
ferromagnetic ribbon structures. (A) Possible pathways between the stable states. Scale bars, 
2 mm. (B) Energy profiles of pathways for the 3-crease ribbon structure at various strain 
levels. (C) Minimum energy barriers for pathways in Figure 2B as a function of the strain. The 
solid lines indicate the energy barriers from the lower numbered states to the higher numbered 
states (illustrated by ΔEf in Figure 3B), and the dashed lines are the barriers from the higher 
numbered states to the lowered numbered states (illustrated by ΔEb in Figure 3B). Here, the line 
colors follow those of the pathways labelled in Figure 3A. The blue and orange lines also 
encompass the extended pathways P1-2*-3, P1-2*-3*-4, and P1-3*-4. 

Figure 4. Diverse origami-inspired, multistable ferromagnetic structures that can be 
actuated by magnetic forces. (A) An array of 3-crease ribbon structures showing different 
patterns formed by the multistable states of the ribbon under the strain of 14% and 28%, 
respectively. Scale bars, 3 mm. (B) Multistable states and magnetic reconfiguration of a double-
table structure composed of creased ribbon segments. (C) A multistable biomimetic “insect” in 
its flat and standing states, respectively. Scale bars, 2 mm. 

Figure 5. An origami-inspired magnetic “robot” composed of two ribbon structures of 3 
creases. (A) Fabrication of the “robot”. Scale bars, 2 mm. (B) Motion behaviors of the “robot” 
under magnetic actuation. Scale bars, 2 mm.
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Figure 1. Schematic illustration of the assembly and magnetic reconfiguration schemes of multistable 
origami-inspired ribbon structures. 
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Figure 2. Multistability of origami-inspired ferromagnetic ribbon structures under varying creases 
and compressive strains. (A) Design phase diagram showing the effect of the crease number and 

compressive strain on the number and configurations of distinct stable states of the ribbon. (B) Experimental 
and computational results of multistable states under a constant strain of 15% and varying crease numbers, 
corresponding to points i-v labelled in Figure 2A. Scale bars, 2 mm. and (C) Experimental and computational 

results of multistable states at a constant number of creases (ncrease = 3) and varying strain levels, 
corresponding to points vi-ix in Figure 2A. Scale bars, 2 mm. 
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Figure 3. Reconfiguration paths among distinct stable states of origami-inspired ferromagnetic 
ribbon structures. (A) Possible pathways between the stable states. Scale bars, 2 mm. (B) Energy profiles 

of pathways for the 3-crease ribbon structure at various strain levels. (C) Minimum energy barriers for 
pathways in Figure 2B as a function of the strain. The solid lines indicate the energy barriers from the lower 
numbered states to the higher numbered states (illustrated by ΔEf in Figure 3B), and the dashed lines are 
the barriers from the higher numbered states to the lowered numbered states (illustrated by ΔEb in Figure 
3B). Here, the line colors follow those of the pathways labeled in Figure 3A. The blue and orange lines also 

encompass the extended pathways P1-2*-3, P1-2*-3*-4, and P1-3*-4. 
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Figure 4. Diverse origami-inspired, multistable ferromagnetic structures that can be actuated by 
magnetic forces. (A) An array of 3-crease ribbon structures showing different patterns formed by the 
multistable states of the ribbon under the strain of 14% and 28%, respectively. Scale bars, 3 mm. (B) 
Multistable states and magnetic reconfiguration of a double-table structure composed of creased ribbon 

segments. (C) A multistable biomimetic “insect” in its flat and standing states, respectively. Scale bars, 2 
mm. 
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Figure 5. An origami-inspired magnetic “robot” composed of two ribbon structures of 3 creases. 
(A) Fabrication of the “robot”. Scale bars, 2 mm. (B) Motion behaviors of the “robot” under magnetic 

actuation. Scale bars, 2 mm. 
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