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Harnessing Deep Reinforcement Learning to Construct Time-Dependent Optimal
Fields for Quantum Control Dynamics

Yuanqi Gao,∗ Xian Wang,† Nanpeng Yu,‡ and Bryan M. Wong§

University of California-Riverside, Riverside, CA

We present an efficient deep reinforcement learning (DRL) approach to automatically construct
time-dependent optimal control fields that enable desired transitions in reduced-dimensional chem-
ical systems. Our DRL approach gives impressive performance in autonomously and efficiently
constructing optimal control fields, even for cases that are difficult to converge with existing gradient-
based approaches. We provide a detailed description of the algorithms and hyperparameters as well
as performance metrics for our DRL-based approach. Our results demonstrate that DRL can be em-
ployed as an effective artificial intelligence approach to efficiently and autonomously design control
fields in continuous quantum dynamical chemical systems.

I. INTRODUCTION

Inverse problems continue to garner immense interest,
particularly in quantum control dynamics and quantum
computing applications. In this context, quantum opti-
mal control theory seeks to construct an external control
field, E(t), that evolves a quantum system from a known
initial state to a target final state. Predicting the tempo-
ral form of E(t) is essential for controlling the underly-
ing dynamics in quantum computing [1], quantum infor-
mation processing,[2–4] laser cooling,[5, 6] and ultracold
physics [7, 8]. In complex, many-body quantum systems,
the prediction of optimal E(t) fields provides critical ini-
tial conditions for controlling desired dynamical effects
in light-harvesting complexes and many-bodied coherent
systems [9–13].

The conventional approach to solving these quantum
control problems is to maximize the desired transition
probability using either gradient-based methods or other
numerically intensive methods [14–17]. Such approaches
include the stochastic gradient descent over quantum tra-
jectories [18], the Krotov method [19], the gradient as-
cent pulse engineering (GRAPE) [20] method, and the
chopped random basis algorithm (CRAB) [21] approach.
While each algorithm has its own purposes and advan-
tages, the majority of these approaches require complex
numerical methods to solve for the optimal control fields.
Moreover, due to the nonlinear nature of these inverse
problems, the number of iterations and floating point
operations in these algorithms can be extremely large,
sometimes even leading to unconverged results for rela-
tively simple one-dimensional problems [16, 22]).

To address the previously mentioned computational
bottlenecks, our group recently explored the use of su-
pervised machine learning to solve these complex, inverse

∗ Department of Electrical & Computer Engineering
† Department of Physics & Astronomy
‡ Department of Electrical & Computer Engineering;
nyu@ece.ucr.edu
§ Department of Chemical & Environmental Engineering, Materi-
als Science & Engineering Program, Department of Chemistry,
and Department of Physics & Astronomy; bryan.wong@ucr.edu

problem in quantum dynamics [23]. In contrast to su-
pervised machine learning, reinforcement learning (RL)
techniques have attracted recent attention since these
machine learning methods are designed to solve sequen-
tial decision-making tasks, which can be naturally suited
for quantum control problems. However, all prior RL
studies to date have focused on low-dimensional spin-1/2
systems, which generally require a relatively small num-
ber of control pulses (typically 10 - 100) to converge [24–
29]. More specifically, the RL algorithms used in previous
quantum control problems (such as tabular Q learning or
policy gradient) assume a finite set of admissible control
pulses and quantum state representations. While this
is possible for finite-dimensional, spin-1/2 Hilbert spaces,
they are typically ineffective for continuous (i.e., chemi-
cal/material) Hamiltonian systems.

In this work, we develop an extremely efficient RL ap-
proach for solving chemical dynamics systems for the first
time. Our RL formulation utilizes modern deep learning
frameworks and has a computational performance that
scales linearly with the control time horizon. We test
our new machine learning approach against a wide range
of quantum control benchmarks to demonstrate that our
RL approach significantly improves the fidelity and re-
duces the computation time compared to conventional
gradient-based approaches. This paper is organized as
follows: Section II reviews the background of quantum
control in continuous systems and formulates it as a re-
inforcement learning problem. Section III presents the
reinforcement learning techniques. Section IV provides
the numerical results, and Section V concludes the paper
with a discussion and future perspectives on prospective
applications.

II. THEORY AND PROBLEM FORMULATION

We first discuss the basic theory and problem scope
in three sequential subsections: Section A presents the
quantum control problem, Section B briefly reviews the
theory of Markov decision processes (MDPs), and Section
C formulates the quantum control problem as an MDP.
This problem formulation provides the necessary back-
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ground to leverage deep reinforcement learning (DRL)
algorithms for solving the quantum control problem for
continuous Hilbert spaces found in chemical systems.

A. Brief Overview of Quantum Control for
Chemical Systems

Since the main purpose of this work is to harness re-
inforcement learning techniques for controlling dynamic
chemical systems, we only give a brief overview of quan-
tum optimal control and point the interested reader to
several topical reviews in this area. [30–33] For chemical
systems, the quantum optimal control formalism com-
mences with the time-dependent Schrödinger equation
for describing the temporal dynamics of nuclei, which, in
atomic units is given by

i
∂

∂t
ψ(x, t) =

[
− 1

2m

∂

∂x2
+ V (x)− µ(x)E(t)

]
ψ(x, t)

(1)
where x is the reduced coordinate along a chosen reaction
path, m is the effective mass associated with the molecu-
lar motion along the reaction path [34], V (x) is the Born-
Oppenheimer potential energy function/operator of the
molecule, µ(x) is the dipole moment function, E(t) is
the time-dependent external electric field, and ψ(x, t) is
the wavefunction for the motion of the nuclei along the
reduced coordinate path. Both V (x) and µ(x) can be ob-
tained from a quantum chemistry calculation by carrying
out a potential energy scan [35–37].

With the time-dependent Schrödinger equation defined
in Eq.(1), the quantum control problem can be stated as
follows: given a starting state ψ0(x) and a desired final
state ψf(x), what is the temporal form of the electric field
E(t), t ∈ (0, T ) that propagates the state ψ0(x) to ψf(x)?
In other words, the quantum control formalism seeks the
electric field that maximizes the following functional:

J [ψ,E] =

∣∣∣∣∫ ∞
−∞

ψ∗f (x)ψ(x, t = T )dx

∣∣∣∣2 , (2)

where ψf(x) is a desired target final wavefunction given
by the user, and ψ(x, t = T ) is obtained by propagating
ψ0(x) in time (via the time-dependent Schrödinger equa-
tion) to t = T . In short, Eq.(2) measures the similarity
(fidelity) between the target and actual wavefunction at
time T .

In this work, we harness new RL techniques to au-
tomatically construct optimal control fields, E(t), that
enable desired transitions in these continuous/infinite-
dimensional Hilbert-space dynamical systems. To test
the performance of our RL approach, we compare against
the NIC-CAGE (Novel Implementation of Constrained
Calculations for Automated Generation of Excitations)
code [38], which solves the quantum control problem
using a traditional gradient-based approach. Specifi-
cally, the NIC-CAGE code utilizes analytic gradients

based on a Crank-Nicholson propagator, which are com-
putationally more efficient than other matrix exponen-
tial approaches (such as those used in the GRAPE
[39] or QuTIP [40, 41] packages) or higher-order time-
propagation methods [42]. As such, a comparison against
the execution times of the already optimized NIC-CAGE
code serves as an excellent benchmark test of the per-
formance of our RL methods. Before describing our re-
inforcement learning approach, we first provide a brief
review of Markov decision processes (MDPs) in the next
subsection.

B. Review of Markov Decision Processes (MDPs)

MDPs [43] are a class of mathematical formulations
for sequential decision-making problems. In an MDP, we
define a state space S, an action space A, a state transi-
tion probability P (s′|s, a), and a reward function r(s, a).
At each time step t, the state of the “environment” is
represented by an element st ∈ S. A learning “agent”
can interact with this environment by taking some ac-
tion at ∈ A based on st. The environment provides a
reward rt+1 = r(st, at) to the agent and transitions to
other states st+1 according to the state transition prob-
ability function st+1 = P (·|st, at). The above process
repeats iteratively. Given the current state st and action
at, the state transition function dictates that the next
state st+1 is conditionally independent of all previous
state and actions.

The goal of the learning agent is to find a policy π(a|s),
which is a rule for taking actions based on states, such
that the expected discounted return vπ(s) is maximized:

vπ(s) := Eπ
[∑T

t=0 γ
trt+1|s0 = s

]
, (3)

v∗(s) = max
π

vπ(s) ∀s. (4)

The notation Eπ[·|s0 = s] denotes the expectation of the
quantity · starting from a state s, which then follows the
policy π thereafter. The constant γ < 1 controls the
contribution of future rewards to the optimizing objec-
tive, and T is the optimization horizon which may be
infinite. Note that the policy π(a|s) is a probability dis-
tribution over A conditioned on an s ∈ S. The agent
takes action by sampling an element from the distribu-
tion at = π(·|st).

Another function commonly used in reinforcement
learning is the action-value function defined as

qπ(s, a) = Eπ
[∑T

t=0 γ
trt+1|s0 = s, a0 = a

]
, (5)

q∗(s, a) = max
π

qπ(s, a) ∀s, a. (6)

With these quantities properly defined, we formulate the
quantum control problem as an MDP in the next section.
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C. Formulating Quantum Control as an MDP

To formulate the quantum control problem as an MDP,
we must define the time variable, state, action, and re-
ward:

Time variable: The time variable, t, of the MDP
is naturally defined as the time in the quantum control
problem, which we discretize into evenly spaced intervals
of duration τ .

State: The state at time step t is defined as st =[
P 0
t , P

1
t , ..., P

K
t , gt

]
. P kt , k = 0, ...,K is the squared mag-

nitude of the projection of the current wavefunction,
ψ(x, t), onto the kth eigenstate, ψk(x), of the time-
independent Schrödinger equation:

P kt =

∣∣∣∣∫ ∞
−∞

ψ∗(x, t)ψk(x)dx

∣∣∣∣2 (7)

We include the various P kt terms in our state space since
it gives additional information to the reinforcement learn-
ing agent about the current wavefunction. The variable
K is a design parameter that is described further in Sec-
tion IV. The variable gt is the gradient of the fidelity with
respect to the electric field, E, evaluated at E(t− 1):

gt =
∂P kt
∂E

∣∣∣∣
E=E(t−1)

. (8)

To calculate this gradient, we re-express P kt as

P kt =

∣∣∣∣∫ ∞
−∞

ψ∗(x, t)ψk(x)dx

∣∣∣∣2
=

∣∣∣∣∫ ∞
−∞
F
(
ψ(x, t− 1), E(t− 1)

)∗
ψk(x)dx

∣∣∣∣2 , (9)

where F(ψ,E) is an algorithm that performs one prop-
agation step of the wavefunction (i.e., F(ψ,E) propa-
gates one step of the time-dependent Schrödinger equa-
tion in Eq.(1)). We approximate the integral in Eq.(9)
with a finely-spaced Riemann sum and leverage the auto-
differentiation engine from the PyTorch deep learning
framework [44] to calculate the gradient. Adding this
gradient information provides the machine learning agent
with the direction in which the fidelity can possibly be
improved.

Action: The action at time step t is defined as the
amplitude of the electric field at = E(t), where the mini-
mum and maximum amplitude is restricted to Emin and
Emax, respectively.

Reward: The reward to the agent after taking an
action at is defined as rt+1 = Pκt+1 (i.e., the immediate
next fidelity score).

This brief explanation completes the formulation of
quantum control as a reinforcement learning problem.
In the next section, we provide the technical details for
utilizing RL to solve our quantum control problem in
reduced-dimensional chemical systems.

III. DEEP REINFORCEMENT LEARNING FOR
PREDICTING OPTIMAL ELECTRIC FIELDS

In this section, we describe our DRL approach for solv-
ing the MDP problem. An overview of our framework is
illustrated in Fig. 1, which shows the MDP formulation,
RL algorithm, and the interaction between the two. In
the next subsection, we give further details on the theory
and algorithms used in our reinforcement learning agent.

FIG. 1: RL-based QOC framework utilized in this work. Solid
lines represent the interactions between the RL algorithm and
the time-dependent Schrödinger equation, blue dashed lines
represent the training data collection, and black dashed lines
represent the training of the RL algorithm. At each time
step t, the RL algorithm outputs an action at based on the
state st, and at is then converted to an electric field E(t).
The time-dependent Schrödinger equation block performs a
forward propagation and a backward differentiation to obtain
the next state st+1 and reward rt+1. The tuple st, at, rt+1,
and st+1 is stored in the replay buffer D.

A. Overview of Reinforcement Learning

Reinforcement learning (RL) algorithms autonomously
estimate the optimal policy π∗ by interacting with a given
environment. It is well-known that under mild technical
assumptions, a deterministic stationary optimal policy
exists [45], which is given by:

π∗(·|s) = argmax
a

q∗(s, a). (10)

In an optimal policy, the expected discounted return from
state s equals v∗(s), the optimal state value of s. In other
words, v∗(s) = maxa q

∗(s, a). The relationship in Eq.(10)
reveals that estimating π∗(a|s), or q∗(s, a), or both at the
same time are equally useful in solving MDP problems.
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As such, RL algorithms can be classified as policy gradi-
ent methods (estimating π∗), action-value methods (esti-
mating q∗), and actor-critic methods (estimating both π∗

and q∗). For MDPs with a finite state and action space,
the policy and value functions can be maintained in a
table. However, our particular quantum control problem
has a continuous state space that must be represented by
function approximators such as neural networks.

To learn the optimal policy, RL algorithms must prop-
erly balance the conflicting objectives of exploring the
state-action space as much as possible to collect environ-
ment feedback, while only visiting useful portions to act
optimally. This is known as the exploration-exploitation
trade-off. In the terminology of quantum control, the RL
algorithm must explore different external electric fields,
E(t), before it recognizes the optimal one. However, to be
efficient, this exploration should not take too long since it
may undermine computational performance. We briefly
review two of the popular methods to balance exploration
and exploitation in our work.

Epsilon greedy: The Epsilon greedy [46] algorithm
explores the state-action space by following the optimal
policy, while occasionally taking a random action uni-
formly sampled from the action space:

at =

{
argmaxa q(st, a) ξ > ε

at = U(A) ξ ≤ ε (11)

where ξ = U(0, 1) is a uniform distribution between 0
and 1, and ε is a constant between 0 and 1. In practice,
ε may start with a large value and becomes gradually
annealed as the training progresses.

Entropy bonus: In the maximum entropy RL
framework [47], the entropy of the policy H(π(·|s)) =
−
∫
π(a|s) log π(a|s)da is added to the reward to main-

tain high stochasticity of the policy when the collected
reward value is small:

rh(s, a) = r(s, a) + αH(π(·|s)), (12)

where α is the temperature parameter that controls the
influence of the entropy to the reward. Policies learned
from rh(s, a) tend to have a higher stochasticity than the
ones learned from r(s, a) alone. Therefore, the sampled
actions at = π(·|s) have a higher chance of visiting a
larger portion of the state-action space.

In our work, two DRL algorithms are harnessed to
solve the quantum control problem: deep Q learning and
soft actor-critic, both of which are described below.

B. Deep Q Learning

Deep Q learning [46] is a value-based algorithm that
uses deep neural networks to learn the optimal value
function q∗(s, a). A neural network qθ(s, a) was used to

approximate the optimal value function as follows:

J(θ) =
1

B

∑
(s,a,r,s′)∈B

(
r + γmax

a′
qθ−(s′, a′)− qθ(s, a)

)2
,

(13)

θ ← θ − δ∇J(θ), (14)

where B is a mini-batch randomly sampled from the ex-
perience replay buffer D. The latter maintains a fixed
number of the most recent agent-environment interaction
data, B = |B| is the mini-batch size, qθ−(s, a) is another
neural network with an identical architecture as qθ, and δ
is the learning rate. The parameters θ− are copied from θ
after every few iterations to stabilize the training. Since
finding the maximum for the Q network over the action
space is intractable, the deep Q learning algorithm may
only be used for finite and discrete action space MDPs.
Discretization is commonly used when the action is con-
tinuous, and the epsilon greedy algorithm is typically
used in conjunction with deep Q learning. In our MDP
formulation of the quantum control problem, the neural
network qθ(st, a) is interpreted as the discounted cumu-
lative fidelity score calculated from

∑
τ=t γ

τPκτ at time
t, and the electric field is set to E(t) = a. Therefore, the
optimal electric field at time t is a∗ = argmaxa qθ(st, a).

In this paper, we adopt two important extensions to
the basic deep Q learning algorithm, namely, the du-
eling architecture [48] and the double deep Q learn-
ing [49], which have achieved improved performance on
other control benchmarks. The dueling architecture de-
composes the Q value estimate into a state value and
advantage function estimate according to the formula
qπ(s, a) = vπ(s) + Aπ(s, a). As a result, the dueling
Q network replaces the output of the standard neural
network, qθ(s, a), with two intermediate output streams:
vθ,β(s) and Aθ,α(s, a). The final output, which is the Q
value estimate, is given by the following aggregation of
the two intermediate streams:

qΘ(s, a) = vθ,θV (s) +
(
Aθ,θA(s, a)−
1

|A|
∑
u

Aθ,θA(s, u)
)
. (15)

We use the symbol Θ = (θ, θA, θV ) to collectively “ab-
sorb” all parameters of the hidden layers and the two
output streams. Subtracting the average of Aθ,α on the
right-hand side of Eq.(15) resolves the lack of identifia-
bility of the value-advantage decomposition. The dueling
architecture allows the value function to be learned more
efficiently.

The double deep Q learning network (DDQN) ap-
proach modifies the loss function in Eq.(13) as:

Jd(Θ) =
1

B

∑
(s,a,r,s′)∈B

(
r + γqΘ−(s′, a′)− qΘ(s, a)

)2
a′ = argmax

u
qΘ(s′, u)

(16)
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Compared with Eq.(13), Eq.(16) decomposes the max
operator into a separate action selection and evaluation
procedure. This mitigates the overestimation issue with
the max operator in Eq.(13) and leads to a more consis-
tent estimation.

C. Soft Actor-Critic

The soft actor-critic (SAC) [47] approach is an actor-
critic algorithm developed recently using the maximum
entropy framework. The algorithm trains deep neu-
ral network-parameterized policy and value functions,
πφ(a|s) and qθ(s, a), to approximate the optimal max-
imum entropy policy and value functions, respectively.
πφ(a|s) is a neural network that takes s as the input and
outputs a probability distribution over the action space
A. For mathematical tractability purposes, this proba-
bility distribution is often chosen as the tanh-squashed
Gaussian:

ξt = N (u; 0, 1), (17)

ut = ξt · σφ(st) + µφ(st), (18)

at = tanh(ut). (19)

That is, the neural network outputs the mean µφ(s) and
standard deviation σφ(s) of the action for a given state s,
where the distribution is defined by πφ(a|s) = tanh(aφ)
and aφ = N (a;µφ(s), σφ(s)). The tanh function squeezes
the Gaussian variable into a finite range and ensures a
bounded action. In the context of the quantum control
problem, Eq.(17) - Eq.(19) states that the external elec-
tric field, E(t), at time t generated by the SAC algorithm
is a Gaussian random variable, whose mean and variance
is given by some learned neural network. The variance is
maintained to ensure a sufficient exploration of E(t). The
action-value function network, qθ(s, a), takes the (s, a)
pair as input and outputs a single number to represent
the action value.

The SAC algorithm additionally employs the target
neural network qθ−(s, a), similar to the deep Q learning
algorithm. Also, two action-value networks are main-
tained instead of one to stabilize the training. As a result,
four neural networks are responsible for the estimation
of the following functions: qθ1(s, a), qθ2(s, a), qθ1−(s, a),
and qθ2−(s, a).

The training of the policy neural network, πφ(a|s), and
value networks, qθi(s, a) for i = 1, 2, are carried out as
follows. At each iteration, the policy neural network is
trained to minimize the temporal difference error J(θi):

J(θi) =
1

B

∑
(s,a,r,s′)∈B

(qθi(s, a)− r+

γ( min
i∈{1,2}

qθi−(s′, a′)− α log πθ(ã
′|s′)))2 (20)

θi ← θi − δ∇J(θi) i = 1, 2, (21)

where ã′ = πφ(a|s′) is a random sample from the current
policy. The policy neural network is trained using the
following gradient ascent approach:

J(φ) =
1

B

∑
(s,a,r,s′)∈B

min
i∈{1,2}

qθi(s, aφ)− α log πφ(aφ|s),

(22)

φ← φ+ δ∇J(φ), (23)

where aφ = πφ(a|s) is a random sample from the current
policy. Finally, the target network is updated using the
exponential moving average:

θi− ← ρθi− + (1− ρ)θi i = 1, 2. (24)

D. Summary of Our RL Algorithm for Quantum
Control

Our RL-based quantum control framework is summa-
rized in the Algorithm 1 flowchart. For conciseness,
we have summarized the deep Q learning and SAC ap-
proaches in the same pseudocode (they differ by Lines 3
and 8). More detailed descriptions of our implementa-
tion of these algorithms are given in the Supplementary
Information.

Algorithm 1 RL for QOC

1: Initialize neural network weights and s0
2: for t = 0, · · · , do
3: Sample at = π(·|st). The sampling is defined by

Eq.(11) for deep Q learning and Eq.(17) - Eq.(19)
for SAC

4: E(t)← at · Ē
5: Perform one environment step to obtain st+1, rt+1

according to Section II A
6: Store (st, at, rt+1, st+1) into the replay buffer D
7: Sample mini-batch B = {(s, a, r, s′)} from D
8: Train the RL algorithm by performing Eq.(16) for

deep Q learning and Eq.(20) - Eq.(24) for SAC
9: if Pκt > P̄ then

10: Break

At each time step t, the agent takes an action, at, ac-
cording to the state st and converts it to an electric field
E(t) = atĒ, where Ē is the upper/lower limit of the mag-
nitude of the electric field. The environment then transi-
tions to the next state according to the Markov decision
process defined in Section II C. The agent-environment
interaction transition (st, at, rt+1, st+1) is stored in the
replay buffer. Tuples of this form will be randomly sam-
pled to train the neural networks of the deep Q learning
and SAC algorithm. The procedure stops when the fi-
delity Pκt is above a pre-defined threshold P̄ , which we
set to 0.99 in this work.
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IV. RESULTS

In this section, we compare the performance of the var-
ious RL algorithms against the gradient-based approach
from the NIC-CAGE algorithm. Section IV A describes
the algorithm and hardware setup used in this work. Sec-
tion IV B reports the performance of RL compared to
the NIC-CAGE benchmarks, and Section IV C concludes
with a discussion of a particularly difficult case.

A. Numerical setup

Similar to our previous work on quantum control of
molecular systems [23], we generated a set of potentials
{Vi(x)}i=1,2,... of the form:

Vi(x) = −
3∑
k=1

Ai,k exp

(
− (x− µi,k)2

2σ2
i,k

)
, (25)

where Ai,k = U(1, 10), µi,k = U(−3, 3), and σi,k =
U(0.5, 2), and U denotes a uniform distribution. A com-
prehensive listing of the parameters used to generate the
various potentials, Vi(x), in this work can be found in
the Supplemental Information. The functional form of
these potentials mimic a bond stretching or dissociation
process in a photo-induced reaction. The range of x is
restricted to the interval [−8, 8] and discretized into 192
equally-spaced intervals. The entire time duration T is
also discretized into intervals of length 0.1. The range
of the electric field amplitude is constrained to lie within
the [−0.9, 0.9] interval. The total number of states used
to define the state space for our RL algorithms is set to
5 (or K = 4 in the notation of Section II). The dipole
moment function µ(x) in Eq.(1) was set to x.

Algorithm setup: The hyperparameters for our RL
algorithm are provided in Table I, which we manually
tuned on 10 selected potentials. Nevertheless, we found
that the algorithm’s performance was insensitive to small
variations for most of the hyperparameters. Unless spec-
ified otherwise, these values were used for all of our sub-
sequent simulations.

Hardware/software setup: The NIC-CAGE pack-
age is implemented in Python with the NumPy and
SciPy package; the one-step forward propagation of the
Schrödinger equation and the RL algorithms are imple-
mented in Python with the PyTorch deep learning frame-
work. All simulations were executed on the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE)
Comet computing cluster at the University of California,
San Diego. To provide a fair comparison between the
NIC-CAGE and RL approaches examined in this work,
each computation utilized 2 Intel Xeon E5 cores.

SAC DDQN
hidden layers (200, 200) (200, 200)
hidden activation ReLu ReLu
discount factor (γ) 0.99 0.99
minibatch size 64 64
optimizer Adam Adam
learning rate 0.0003 0.0001
electric field bound (Ē) 0.2 0.1
temperature parameter (α) 0.1 -
smoothing coefficient (ρ) 0.005 -
target updating frequency - 100
epsilon max - 0.5
epsilon min - 0.01
epsilon annealing - 1

3
of training

action discretization - 15

TABLE I: Hyperparameters used in our RL algorithms.

B. Fidelity and computation time

For illustrative purposes, we commence with a rela-
tively easy case for a potential with a small effective mass
(m = 1.0) (Fig. 2) to understand the performance of the
RL and NIC-CAGE approaches.

−8 −6 −4 −2 0 2 4 6 8

x (a.u.)

−8

−6

−4

−2

0
V

(x
)(

a.
u.

)

FIG. 2: Example of a potential with a small effective mass
used in this work.

The converged electric field and fidelity, as well as the
power spectrum of the electric field for all methods are
shown in Figs. 3a-c.

All of the ML algorithms examined in this work auto-
matically construct an electric field that propagates the
initial state to the desired target state with a fidelity
larger than 0.99. However, the difference is that the NIC-
CAGE algorithm concurrently updates the electric field
for all time steps in each iteration, whereas the RL al-
gorithms developed in this paper sequentially add a new
electric field data point at each time step (i.e., the RL
“learns” the electric field in an automated fashion). Fig.
3d plots the power spectrum for each of the electric fields
shown in Fig. 3a-c. Interestingly, the NIC-CAGE and
SAC algorithms produce relatively smooth electric fields
and power spectra, whereas the DDQN approach em-
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ploys an action-discretization approach, resulting in an
electric field and power spectrum with significant noise.
As such, the SAC algorithm can be used to improve other
RL methods, such as those used to construct optimal
fields for spin-1/2 systems in quantum computing. The
control fields obtained in these prior studies are typi-
cally not smooth [26], making them difficult to realize in
experiments, whereas the SAC algorithm used here can
ameliorate these artifacts.

FIG. 3: Electric fields, E(t), computed by the (a) NIC-CAGE
algorithm and various reinforcement learning algorithms: (b)
SAC and (c) DDQN. The power spectrum for all cases is
shown in panel (d).

When the effective mass is set to a larger value of
m = 10.0, computing the optimal electric field becomes
significantly more difficult. Large masses pose significant
difficulties since they correspond to quantum optimal
control of macroscopic objects (for example, quantum
mechanical tunneling through a potential energy barrier
is significantly more difficult for a larger mass than a
smaller one). For some potentials, the NIC-CAGE algo-
rithm does not converge to a high-fidelity solution within
a reasonable computation time. To further compare the
performance of the various RL algorithms against the
traditional NIC-CAGE approach, we classified all the po-
tentials into three groups based on the range of fidelities
obtained by the NIC-CAGE algorithm: [0.75, 1.0] desig-
nates easy cases, [0.01, 0.75) are medium-difficulty cases,
and [0.0, 0.01) are hard cases. There are 89, 47, and 149
potentials in each group, respectively.

The fidelity vs. computation time for all methods is
shown in Figs. 4 - 6.
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FIG. 4: Performance comparison between RL and NIC-CAGE
on easy cases.

For the easy cases, the NIC-CAGE benchmark con-
verges to high-fidelity solutions but requires long compu-
tation times. In contrast, the DDQN algorithm gives
a similar fidelity as the NIC-CAGE benchmarks but
with less computational effort. The SAC algorithm is
only slightly worse than the DDQN method. Examining
the medium-difficulty and hard cases (which account for
∼66% of all the tested potentials), we find that both
DDQN and SAC significantly improve on the fidelity
compared to the gradient-based NIC-CAGE approach.
In particular, both RL methods are significantly more ef-
fective in scenarios where the NIC-CAGE algorithm only
gives a low-fidelity solution, as shown by the hard cases
in Fig. 6. It is worth noting that the quantum control
problem for some potentials can be difficult to converge
with RL, as shown by the outliers in each of the bar plots.
We discuss these special cases in the next subsection and
demonstrate that increasing the computation time im-
proves their fidelity for RL (whereas these cases still re-
main unsolvable with the gradient-based NIC-CAGE al-
gorithm).
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FIG. 5: Performance comparison between RL and NIC-CAGE
on medium-difficulty cases.
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FIG. 6: Performance comparison between RL and NIC-CAGE
on hard cases.

As shown in Figs. 4 - 6, DDQN generally produces
better results than the SAC method. In the context of
machine learning, we carried out an ablation study to
show which extension contributes the most to its supe-
rior performance. Table II shows the fidelity for all cases
across Figs. 4 - 6 arranged in the 10, 50, and 90 per-
centile. Each row is a variant of deep Q learning: basic
DQN, double DQN, DQN with dueling architecture, and
double DQN with dueling architecture. In particular, We
found that both extensions improved the performance of
DQN, when used alone or combined.

Easy Medium Hard All
DQN 0.931 0.927 0.833 0.879
Double DQN 0.957 0.949 0.847 0.898
Dueling DQN 0.958 0.958 0.836 0.894
Dueling + double 0.961 0.949 0.862 0.907

TABLE II: Average performance of DQN and its extensions
for easy, medium, and hard cases.

C. Case study: double-well potentials and large
effective masses

As mentioned in Section IV B, although our RL al-
gorithms generally outperform the gradient-based NIC-
CAGE benchmarks, a few outlier potentials can be chal-
lenging to converge with RL. One such example is shown
in Fig. 7a, which has a complex “double well” shape.
These double-well potentials pose significant challenges
since they correspond to quantum mechanical tunneling
processes through a large potential barrier. The opti-
mal electric fields that enable these unique transitions
are typically quite complex. As such, for this poten-
tial, the gradient-based NIC-CAGE algorithm dramat-
ically fails to converge (with P < 10−28) even after five
hours of computation. However, our DDQN method
reaches a much higher fidelity within the same computa-
tion time. Most importantly, our DDQN approach even-
tually reaches a 0.9 fidelity after about 3000 minutes of

computation, which is not possible with the NIC-CAGE
code. Most importantly, Fig. 7b plots the fidelity dur-
ing the training, which shows that our RL approach can
solve these quantum control problems that are not pos-
sible with the gradient-based NIC-CAGE algorithm.

FIG. 7: Learning performance of RL for a (a) potential that is
difficult to solve with gradient-based quantum control meth-
ods. For this particular case, the NIC-CAGE algorithm fails
to converge (with a transition probability of P < 10−28) af-
ter five hours of computation. In contrast, the DDQN-based
reinforcement learning approach gives a higher fidelity and
continues to improve as the algorithm runs longer, as shown
in panel (b).

V. CONCLUSION

In conclusion, we have presented a new reinforce-
ment learning framework for accurately and efficiently
solving quantum optimal control problems for reduced-
dimensional chemical systems. Our approach is formu-
lated as a Markov decision process that leverages RL to
autonomously construct electric fields that enable desired
transitions in these continuous quantum systems. To test
the performance of these techniques, we carried out ex-
tensive numerical studies showing that RL produces high
fidelity solutions significantly faster than numerically-
optimized gradient-based approaches. Regarding the ad-
vantages/disadvantages of the RL algorithms explored in
this work, DDQN is preferred over SAC if the system un-
der study can accept discrete/non-smooth values of E(t)
(the DDQN algorithm is easier to implement and requires
less computation per training iteration). However, if dis-
crete values of E(t) are not realizable/acceptable, DDQN
cannot be directly implemented, and SAC should be used
since it can generate continuous and smooth optimal con-
trol fields. Most importantly, we show that both RL ap-
proaches can significantly improve the fidelity in quan-
tum control problems that are difficult (or even impossi-
ble) to solve with gradient-based methods.

Looking forward, we anticipate that the RL techniques
in this work could be used as efficient (and sometimes
superior) alternatives to gradient-based approaches in
quantum control problems. In particular, our RL ap-
proaches are expected to be even more efficient in high-
dimensional quantum systems or applications with a
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large number of qubits. For both of these examples,
calculations of the high-dimensional gradients would be
computationally expensive, whereas the RL approach
(which does not require these gradients) would be sig-
nificantly more efficient. As such, these new RL tech-
niques could be a viable option for obtaining optimal
control fields of large quantum systems where gradient-
based calculations are intractable or prohibitively out of
reach.
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