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Abstract

Posttranslational modifications (PTMs) are an integral component to how cells respond to 
perturbation. While experimental advances have enabled improved PTM identification 
capabilities, the same throughput for characterizing how structural changes caused by PTMs 
equate to altered physiological function has not been maintained. In this Perspective, we cover the 
history of computational modeling and molecular dynamics simulations which have characterized 
the structural implications of PTMs. We distinguish results from different molecular dynamics 
studies based upon the timescales simulated and analysis approaches used for PTM 
characterization. Lastly, we offer insights into how opportunities for modern research efforts on in 
silico PTM characterization may proceed given current state-of-the-art computing capabilities and 
methodological advancements. 

1. Introduction

The basis of cellular function is rooted in atomistic movement. Irrespective of the molecular form, 

atomistic interactions resulting from these movements signal the need for necessary biophysical 

actions. DNA replication, RNA transcription, protein translation, and related signal transduction 

are all fundamental molecular processes which are dynamically recruited to satiate cellular need. 
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Accordingly, an organism’s genomic architecture equips its cells with the tools necessary to 

maintain homeostasis. The genome encodes genetic and proteinogenic responses to cellular 

perturbation. However, genomic architecture fixture occurs on evolutionary timescales. Thus any 

a priori information available to cellular machinery via the genome may not always possess the 

precision nor efficiency for any given stimulus occurring along physiological and developmental 

timescales. DNA and protein synthesis are essential provisions for maintaining homeostasis and 

cellular feedback mechanisms, but additional forms of spatiotemporal regulation are required to 

guarantee that the cell can acclimate to emergent complexity.1 In turn, cells developed a versatile 

biochemical arsenal through posttranslational modifications (PTMs).2

PTM refers to either reversible or irreversible chemical changes in proteins after translation, which 

often occur on specific amino acid side chains.3 PTM addition or removal is executed by means of 

a covalent modification by bonding or hydrolytic cleavage, typically occurring on side chains 

which may behave as nucleophiles (Cys, Ser, Thr, Tyr, Lys, His, Arg, Asp, Glu).4 Hydroxylation 

of Pro and Asn act as exceptions.4 Approximating almost 700 unique entries in the UniProt 

database to date,5 the most common additive PTMs are phosphorylation, acylation (includes 

ubiquitination), alkylation, glycosylation, and oxidation; less common ones include 

hydroxylation/carboxylation, the addition of peptide moieties to preexisting protein residues, and 

sulfur-sulfur transfers, among others.1,6,7 Proteolysis, deamidation, and eliminylation are examples 

of nonadditive PTMs.8 Some PTMs for commonly modified residues, which can be 

computationally modeled, are shown in Figure 1. Each PTM serves a role in altering the target 

protein in some way, perhaps by introducing stability or redirecting localization and subsequent 

interactions post-installment.9 In effect, target protein structure and function are inherently 
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changed upon PTM introduction, as the PTM fundamentally changes the physicochemical 

properties of its host amino acid.4,6 

Figure 1. Display of modeling capabilities for common PTMs on commonly modified 
residues. Modifications are shown for residues which can be readily modeled using the Vienna-
PTM server.10 PTMs are highlighted with a black raspberry glow. Structures resulting from the 
server are only parameterized with GROMOS force fields. Phosphorylation is shown for (A) 
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lysine, (B) aspartate, (C) threonine, (D) histidine, (E) tyrosine, and (F) serine. Glycosylation is 
shown for (G) serine, (H) threonine, and (I) asparagine. Acetylation is shown for (J) lysine. 
Alkylation is shown for (K) arginine, (L) histidine, (M) glutamine, and (N) cysteine. Oxidation is 
shown for (O) methionine, (P) proline, and (R) glutamate. Amination is shown for (Q) tyrosine. 
A color key is provided at the bottom of the image for distinction of oxygen, nitrogen, sulfur, and 
phosphorous atoms. Colors not mentioned in the key represent carbon for each of the amino acids.

Thousands of proteins exist within individual proteomes, comprising a set of machinery capable 

of “reading”, “writing”, and “erasing” PTMs.11–13 Reader proteins recognize PTMs installed by 

writers (kinases, ubiquitin ligases, acetyltransferases), through molecular interactions for the 

preparation of an adequate biological response to cellular conditions.13 For reversible PTMs, eraser 

proteins (phosphatases, deubiquitinases, deacetylases) terminate molecular signal propagation by 

removing PTMs.13 Furthermore, target proteins may contain multiple PTM sites, resulting in 

combinatoric PTM possibilities which may redefine expected cellular outcomes that would 

otherwise occur from just a single PTM instance.1 Although PTMs may instantiate a sense of 

proteomic crosstalk, they are also capable of intra-protein crosstalk, communicating allosteric 

information about what kind of conformation the target protein should adopt in preparation for its 

next role in cellular signaling and stress response.14 Interrogating how PTMs communicate such 

intra- and inter-protein changes thus becomes central to understanding how protein function is 

regulated throughout any physiological state of the cell.

As experimental advances in mass spectrometry and chemical biology have facilitated PTM 

discovery and methodologies for characterization,13,15,16 the opportunity to systematically describe 

PTM functional outcomes gains clarity. Still, barriers exist to an exhaustive experimental 

interrogation of how PTMs influence protein function. Systematic studies using mass spectrometry 

often consider identification for few modification types of a single PTM rather than considering 

the existence or functional consequences of multiple PTMs.3 Exploration of multisite PTM 
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characterization poses similar challenges as seen for exploring higher-order mutations in variant 

effect prediction with respect to throughput.17 Although cellular assays can be performed to 

examine PTM effects on protein expression, function, and downstream effects, dissecting how 

these modifications relate to individual protein structure and conformational changes requires 

more effort. Throughput for spectroscopy and structure determination experiments is limited by 

large scale efforts of in vitro heterologous expression for both soluble and membrane proteins, as 

well as specialized training for probe/label design or preventing protein precipitation. However, in 

silico approaches to studying PTMs offer an alternative for challenging experimental 

characterization efforts.

In this Perspective, we highlight the foundations laid by PTM in silico research spanning the last 

30 years to offer insights towards future PTM characterization using computation. Recent 

advances in computing power and simulation methodology have rendered in silico molecular 

modeling and molecular dynamics (MD) simulations an important, and increasingly accessible, 

tool to understand biological macromolecules.18–22 Here we compare what MD simulations of 

PTMs have achieved in the past using less computational power and fewer methodological 

advances with what is now capable with more modern resources and simulation techniques. Our 

goal is to illuminate the eventual quality of PTM functional understanding so that it may rival the 

increasing quantity of discovered PTMs.

 

2. Modeling posttranslational modifications for molecular dynamics simulations

2.1. Introducing molecular dynamics simulations

Page 5 of 64 Physical Chemistry Chemical Physics



6

MD simulations require two inputs: initial positions extracted from an experimentally determined 

(or computationally predicted) structure and a force field describing the interactions between 

atoms. A typical force field consists of the following terms: covalent bonds, bond angles, dihedral 

angles, electrostatic interactions, and other non-bonded interactions. According to Newton’s 

second law of motion, the acceleration of each atom can be computed. Using numerical integration 

techniques, the positions and velocities of every atom in the system can be updated as a function 

of time. To ensure numerical stability, the time steps in an MD simulation must be short – typically 

only a few femtoseconds – so that each time step is shorter than the timescale of the fastest 

chemical bond vibration. The output of an MD simulation is a trajectory file containing the position 

of each atom at each time step, describing the motion of the system at the atomic level during the 

simulated time period.23 Preliminary stages of simulation involving heating and restraint relaxation 

are applied first, ensuring thermostability of modeled molecules and their starting conformations. 

After undergoing short simulations where restraints have been removed and the model system has 

converged to a stable state, data can then be reliably recorded from trajectories known as 

“production runs” with minimal fear of simulation artifacts.24

Before committing to any computational study design, the greatest bottleneck to conducting MD 

studies is the availability of computing resources. This caveat is especially important, as the 

simulation of a given biomolecular process must occur over a specified timescale to accurately 

sample the conformational ensemble for the dynamics of interest.19,25,26 Scientific computing costs 

have been alleviated as more powerful hardware has been produced, but simulation throughput has 

historically not been as efficient nor parallelizable as can be seen today. Within the first decade of 

the 21st Century, the acceleration of MD simulations via porting to graphical processing units 
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(GPUs) was retarded by a few lurking variables – namely scaling across multiple GPUs, changing 

how memory was accessed on GPUs versus central processing units (CPUs), and interfacing with 

compilers which would allow for MD software to run on GPU source code.27 By 2010, these 

challenges were eventually overcome by software developers, where MD simulation work 

performed on GPUs became routine and continuous efforts were made to increase simulation 

efficiency.28–31 Naturally, the outcomes of GPU porting achievements were amplified by the 

integration of MD workflows onto large distributed computing as well as supercomputing 

platforms (e.g., private clusters, Folding@Home, D.E. Shaw’s Anton, the National Science 

Foundation’s Frontera, or National Center for Supercomputing Resources like BlueWaters and 

XSEDE initiatives).32–37

MD methodologies can be applied for studying the evolution of specific biomolecular processes, 

evaluating how these processes may be perturbed following a controlled change, or simply 

demonstrating conformational flexibility and stability along some molecular structure.20 Technical  

advances for MD simulation can be divided based on whether they address phase space sampling 

or interpretation of resulting simulation data. While we focus on MD study design with respect to 

PTMs later in this Perspective, the different types of MD simulation techniques, their application 

and development, have been extensively reviewed elsewhere.38 On the other hand, the large deluge 

of results and calculations derived from MD simulations has prompted the use of machine learning 

for improved data representation and analysis.39–41

Regardless of the method used for sampling, measures for uncertainty quantification and sampling 

quality have been communicated as best practices when designing and conducting MD simulation 
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studies.42 A variety of simulation techniques used to calculate binding free energies, 

thermostability, or kinetic rates of transition often come in exact agreement, or occur within error, 

of experimental observations.43–48 Minimally, MD simulation can offer qualitative agreement with 

experimental results. Simulation accuracy is extremely sensitive to the initially modeled 

conditions, but can be strengthened by repeated and systematic sampling of the phase space for a 

given process. Outside of the modeled structure and selected parameterization set quality, the 

predictive power of MD simulations and the minimization of error lies in the attempt for 

approximating statistical convergence of ensemble-averaged properties.49 Today, this is more 

easily achieved by running longer and greater trajectories thanks to better computing and ensemble 

simulation-based approaches.49 

2.2. In silico installation of PTMs for preparing simulation studies

Proteins are highly dynamical systems with functions governed essentially by their dynamical 

behaviors.50 MD simulations thus become a powerful tool for studying PTMs. Notably, MD 

simulations can capture the dynamic behavior of biological systems at atomistic resolution in a 

label-free manner. They can therefore offer a unique structure-dynamics perspective in 

deciphering the roles of PTMs on proteins without any form of perturbation introduced by 

probes.51,52 Furthermore, the simulation conditions can be carefully controlled by the simulation 

practitioner. So by comparing simulations performed under different PTM conditions, one can 

identify the effects of a wide variety of PTMs, which is usually experimentally unfeasible.53 

Accurate PTM modeling is still reliant on appropriate information related to the PTM-bearing 

amino acid site and tools to introduce and parameterize these changes to the protein structure. 
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Databases and informatic methods cataloguing general PTM information,54–66 as well as resources 

depicting experimentally-validated or computationally-predicted sites specific for 

phosphorylation,67–88 glycosylation,80,89–98 and acylation,80,99–119 among other modification 

forms,80,120–132 exist. These resources can be used to identify PTM sites on target proteins for 

improved molecular modeling. Traditionally, if a PTM was not already present on a resolved 

crystal structure, covalent modifications were made to input coordinate and topology files to reflect 

the correct modification using modeling software or through manual text editing of the input files. 

Such hands-on changes can be introduced using either molecular visualization software133–138 or 

system preparation modules found in popular MD simulation engines (e.g. AMBER, CHARMM, 

GROMACS, NAMD).29,30,139,140 Eventually, standalone- and web-tools were developed to 

streamline PTM installation onto protein structures.

As a historiographic example, glycosylation efforts starting from the late 1990s and continuing 

into the mid 2010s were focused on modeling carbohydrate structures, although none of these tools 

could directly merge the resulting sugars onto protein coordinates and generate glycoprotein 

topologies necessary for simulation.141–145 That is, these software offer limited accessibility to 

PTM modeling by making simulation topology generation exceedingly nontrivial for nonexperts. 

In 2005, GLYCAM emerged as a tool developed specifically for modeling glycoproteins and 

solution carbohydrates as AMBER and CHARMM simulation inputs.146 CHARMM developers 

then introduced glycan reading and modeling functionalities into the CHARMM-GUI webserver 

for glycoprotein structure preparation.147–149 Similarly, GROMACS developers made doGlycans 

for modeling GROMACS-compatible glycoprotein structures.150 Although each of these tools 

enabled glycoprotein structure preparation, preference of one MD engine over another confound 
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progress on PTM modeling. Features available in some tools for one engine – i.e., sugar library 

chemical and conformational diversity – may not be available for another, requiring nontrivial file 

conversion and topology preparation strategies using additional or third-party tools. Indeed, 

juxtaposed singularity between different software and computational tools is an inherent obstacle 

in molecular modelling!

By 2017, several MD engine camps had developed their own respective tools for glycoprotein 

structure generation, inspiring force field-independent efforts to make carbohydrate structures 

available and amenable for MD input file preparation.151–153 Outside of common PTMs like 

phosphorylation and ubiquitination, additional tools were developed to facilitate modeling. The 

PyMOL plugin PyTM can model phosphorylation, acetylation, carbamylation, citrullination, 

nitration, methylation, hydroxylation, aldehyde adduct formation, as well as any combination of 

the above.154 The Vienna-PTM server offers residue templates for over 256 (non)enzymatic 

modifications, although modified output structures are designed to be used within a GROMACS 

framework.10 Despite these advances, CHARMM-GUI maintains popularity because of its ease of 

access; its phosphorylating, lipid anchoring (acylate), glycosylating, and peptide stapling 

capabilities; and its file output schemes that maximize compatibility with diverse MD engines 

(Figure 2).155–157 Another reason for the popularity of CHARMM-GUI is its ability to archive 

structures of interest for modelers to download and immediately use in their own research. A great 

example of this is the recent availability of a fully glycosylated, full-length SARS-CoV-2 spike 

protein model in a realistic viral membrane, which has been used directly for subsequent 

computational study.158–164 Regardless of the methods used for PTM installation, modified amino 
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side chain orientations may be further optimized using rotamer libraries or through equilibration 

simulations.165

Figure 2. Modified screenshot of CHARMM-GUI PDB Reader function highlighting specific 
PTM options for input protein structure manipulation.

With protein structure files covalently modified, PTM parameterization is required to ensure that 

simulations accurately depict biophysical behaviors as expected from experiment. Initially, PTM 

models did not necessitate their own specific force fields. MD practitioners could then argue that 

accuracy of PTM-containing simulations was not significantly compromised, as atom parameters 

could be assumed by analogy from preexisting libraries. Such practice was acceptable at the turn 

of the 21st Century, before more PTM-specific force fields were developed. For common PTMs, 

phosphorylation moieties could borrow nucleotide parameters to describe their phosphate groups; 
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likewise, glycosylation, ubiquitination, and acylation additions shared atoms with protein and 

small molecule force fields. Missing parameters were otherwise developed as needed by specific 

research groups without immediately being publicly available. Specific force field developments 

for particular PTMs, such as phosphorylation and glycosylation, were later expanded into addons 

and were incorporated into libraries commonly used for each of the popular MD engines.166–176 It 

is worth noting that the majority of discussed modeling and parameterization efforts were first 

dedicated to characterize biologically common PTMs, suggesting that a need for improved 

modeling of less common PTMs still remains.

3. Designing molecular dynamics approaches for the study of posttranslational modifications

Perhaps the beauty of molecular simulation lies in its unfettered power to describe molecular 

systems in almost unlimited detail. Extent of available computational resources and methodologies 

will always be a bottleneck to data procurement, but the onus of appropriate research design and 

meaningful analyses falls to the MD practitioner.

Generally, trajectory analyses assume either a time-dependent or time-independent form. Time-

dependent data collection regimes incorporate analyses that project some feature against the order 

parameter of time, following observations exactly as they transpired along individual trajectories. 

In contrast, time-independent data collection regimes instead employ analyses that project data 

against order parameters as a timeless ensemble, where data points occupy positions within a 

dimensional phase space with respect to the selected order parameters.177–180 Removing reliance 

on time allows for data to be viewed from a perspective of population density as opposed to mere 

frequency of occurrence within a trajectory. Such a style of data projection can be seen in free 
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energy landscapes (FELs), where aggregate data points occupying highly frequent regions in the 

projected dimensional space can be identified as either metastable or transitionary macrostates. 

Each analysis and data collection approach has its strengths and weaknesses. Time-dependent data 

collection and analyses are typically employed to focus on specific interactions given a starting 

structure and with or without a target structure in mind. These types of results follow “single” or 

“few” trajectory simulation schemes where coordinate and velocity information are retained to 

maintain the existence of a long trajectory. As such, time-dependent data representations offer a 

simplified perspective reinforced by multiple replicates of production runs observing similar 

molecular events. Because data output by individual time-dependent trajectories is not aggregated, 

enhanced sampling methods are often used instead of just classical MD simulations to capture 

molecular transitions occurring along longer timescales. Approaches like accelerated, targeted, or 

steered MD are examples of such techniques.181–183 Although studies following a time-dependent 

data collection regime can utilize time-independent analyses, these studies tend to lack sufficient 

sampling to offer comprehensive conclusions beyond the direct research question in focus.

On the other hand, time-independent data collection and analyses are employed to observe a 

desired transitionary path from one macrostate to another along order parameters which are not 

based in time. Data representation can then naturally take the form of FELs. Studies designed using 

time-dependent approaches are still capable of capturing a FEL but may not be able to do so for 

longer timescale processes. Time-independent approaches achieve this goal by combining the 

results from an aggregation of “brute force” classical MD simulations or by biasing potentials 
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along selected order parameter(s). Such a biasing method includes metadynamics, where the 

choice of order parameters directly affects how easily transitions may be sampled.184 Results from 

brute force simulation of unbiased parallel trajectories need to be “stitched” together using kinetic 

frameworks like Markov state models (MSMs) or milestoning,185–188 while path search and 

optimization protocols can otherwise be biased along potentials using approaches like umbrella 

sampling, replica exchange, or the string method.189–191 Although nontrivial to implement, results 

from unbiased and biased simulations can be augmented into a single multiensemble kinetic 

framework for time-independent data representation.48 Depending on the extent of collective 

variable exploration, time-independent data representation can demand extremely more resources 

than research designs relying on a time-dependent data collection and analysis approach. 

Herein, we describe the evolution of MD studies on PTMs and their effect on protein structure- 

function. We begin by discussing methodologies and results from studies observing how PTMs 

influence protein structure and function along shorter timescales. In these studies, the dominant 

styles of molecular simulation include time-dependent data collection and analysis regimes, as 

well as path optimization methods like replica exchange MD (REMD) given available 

experimental structures. Subsequently, we transition to studies employing FELs for detailing how 

PTMs impact the range of protein function. Thanks to increased computing capabilities and 

methodological advances, PTM MD studies wielding a FEL-based approach have recently become 

more widespread within the literature. 

4. Foundational insights on posttranslational modifications revealed by studies using 

trajectory-specific approaches
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During the mid-1990s, MD practitioners were first challenged with the task of modeling and 

simulating covalently modified proteins. At first, it was questioned whether results from PTM 

simulations could even concur with experiments. The initial quest to address how PTM dynamics 

regulated protein function was confounded by other lurking variables, too. As described in Section 

2, few existing tools to easily modify protein structures were available; therefore, initial works 

were constrained to studying proteins whose resolved structures already contained PTMs. 

Additionally, GPU-based acceleration of MD simulations was not implemented until the late 

2000s, meaning that approaches to modeling PTMs needed to be carefully designed so that they 

could efficiently offer unique insights with minimal data and computing time requirements. As 

such, many of these initial simulation studies between 1990 and 2010 were performed along 

picosecond to nanosecond timescales, focusing on specific regions of protein structures or 

interactions with covalently modified peptides. Short timescale MD studies were capable of 

modeling intramolecular protein sidechain contacts and whether target protein or peptide structures 

were altered by PTM installation. Identifying how hydrogen bonding networks could be altered 

after PTM introduction was a worthwhile contribution for the time, as NMR experiments could 

not always distinguish hydrogen bonding interactions involving PTMs which lacked hydrogens. 

Despite how early computing capabilities limited MD to the study of short timescale transitions 

like changes in hydrogen bonding, any atomistic details offered from experiments alone were still 

incomplete without the help of molecular modeling. 

4.1. Characterization of active and binding site rearrangement through PTM interactions

What was first of interest included the structural consequences of PTMs on sidechain orientation 

and peptide secondary structure within binding pockets and recognition interfaces. In 1995, the 
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basis of aldolase inhibition by a synthetic peptide matching the first 15 residues of human 

erythrocyte peptide band 3 (B3P) was characterized using MD simulation of NMR-resolved 

aldolase structures.192 The structure of the peptide in complex with aldolase was determined via 

NMR, and a phosphorylated version of the peptide was then docked into the aldolase binding 

pocket and simulated for 5 ps. An unphosphorylated hydroxyl moiety of the peptide’s tyrosine 

group was able to experience favorable interactions within the docking site, but pTyr resulted in 

unfavorable interactions and inhibited certain rotational ranges of motion because of electrostatic 

repulsion. These findings offered an explanation as to how B3P phosphorylation inhibited 

glycolytic function of aldolase off phosphate electrostatics alone.192 Using computing capabilities 

available before the year 2000, the binding of unmodified, Pi-bound and phosphopeptide-bound 

phospholipase SH2 domain MD simulations were modeled in a separate study.193 To give 

perspective on the available computing power, SH2 was simulated for 250 ps at a rate of 3 ps/day 

in this study.193 These phospholipase simulations demonstrated how PTMs recruit mostly the same 

residues as their solution-based counterparts (e.g., Pi versus pTyr), as Pi-bound and pTyr 

simulations highlighted the importance of a conserved arginine triad in stabilizing phosphate group 

positioning within the SH2 binding pocket (Figure 3).193 Here, short simulations could suggest an 

evolutionarily conserved role within binding pockets for select residues when handling PTMs by 

maintaining the hydrogen bonding network of the active site.
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Figure 3. SH2 domain phosphate binding pocket hydrogen bonding network. (A) Hydrogen-
bonding network shown for phosphopeptide binding to the phosphate binding site. (B) Hydrogen-
bonding network for inorganic phosphate to the phosphate binding site. Both binding simulations 
depict central role of conserved arginine triad in stabilizing phospho-moieties. Adapted with 
permission from M.-H. Feng, M. Philippopoulos, A. D. MacKerell and C. Lim, J. Am. Chem. Soc., 
1996, 118, 11265-11277.193 Copyright 2022 American Chemical Society.

In other cases, there exists a possibility for active site rearrangement following PTMs, which need 

not necessarily be a result of direct residue-residue interactions with the covalently modified PTM 

site. Comparison between catalytic domains seen in the phosphorylated structures of inactive 

(closed) Src tyrosine kinase and active (open) Lck kinase suggested that phosphorylation-induced 

conformational change along a polypeptide linker was required to reflect kinase active state 

(Figure 4).194 To study this dynamic hinge motion hypothesized for maintaining active versus 

inactive states upon phosphorylation, a targeted MD approach was used where increasing amounts 

of harmonic restraints were applied across increments of 60 ps to the Src kinase hinge region Cα 

atoms.194 From this, targeted MD converted pTyr416 Src kinase from the resolved closed state to 

a target pseudoactive open state based off the Lck crystal structure.194 Targeted MD could not 

exactly mimic an Lck-like extended conformation until bound ATP was replaced with ADP, which 

then forced immediate conformational change within 800 ps in support of experimentally proposed 
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intramolecular autophosphorylation of Tyr416. Thus, in this 2004 study, Src kinase could only 

achieve the active conformation when the active site reorganized around pTyr416 and ADP 

interactions.194 Similar perturbations to cofactor coordination in cyclin-dependent kinase 2 

(CDK2) active site residues were seen during 60 ps classical MD simulations of inhibitory 

phosphorylation along the G-loop.195 Still, the position for phosphorylation is critical for 

determining the effect on active site rearrangement. For CDK2, it was reported from classical 

simulations ranging between 3-10 nanoseconds that pThr160 activation occurred by constraining 

the active site T-loop for phosphotransfer; meanwhile pThr14 and pTyr15 introduced enough 

flexibility in the G-loop to widen the active site, destabilize cofactor placement, and inhibit 

phosphotransfer.196,197 Thus, PTM installation can rearrange loop conformations to alter protein 

function by generating new cavities for accommodating protein-specific activation functions.198

Figure 4. Comparison of Src kinase inactive structure (left) versus Lck active structure 
(right). A common strategy for exploring PTM-induced conformational change at reduced 
computational cost was to use covalently modified starting structures in different conformations. 
This case study used the Lck kinase phosphorylated active structure to create a homology model 
for the active Src kinase structure. Adapted with permission from J. Mendieta and G. Gago, J. Mol. 
Graph. Model., 2004, 23, 189-198.194 Copyright 2022 Elsevier.
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Active site reorganization can also occur through solvation effects. Phosphorylation of human 

eukaryotic translation initiation factor 4E, or eIF4E, found that pSer209 narrowed the dinucleotide 

cap binding pocket after shortening nearby backbone Cα-Cα distances by about 10 Å throughout 

an 800 ps simulation performed in 2003.199 However, this tightening of the dinucleotide binding 

pocket could be accredited to dianionic phosphate recruiting a large solvation shell as a 

consequence of the pSer209 phosphate group’s electronegative charge. This localized 

electronegativity thus created a force that pushed active site residues away and further enclosed 

the dinucleotide binding site.199 Either by electropositive amino acid composition or hydration, 

positive charge is needed in order for phosphopeptide binding or phosphorylation to be 

supported.200 In the case of phosphorylation, constrained conformational change is likely the 

means by which proteins accommodate the introduction of negative charge.

4.2. Influence of PTMs on protein structure, thermostability, and allosteric communication

Outside of active site studies, other short peptide simulations would proceed to computationally 

characterize the effects of phosphorylation by highlighting the importance of electronegativity 

introduced by phosphorylation. Phosphorylation was seen to induce conformational changes in a 

10-residue region of tyrosine hydroxylase where most metastable states depicted peptide 

compression after 5 ps of simulation, unlike what was seen in the unphosphorylated structure.201 

Salt bridges seen in the unphosphorylated tyrosine hydroxylase peptide were broken, leaving many 

charged residues solvent-exposed as the pSer moiety hydrogen bonded with terminal residues. 

New interactions and conformations caused by Ser phosphorylation at one tyrosine hydroxylase 

site were argued to be the cause for cooperative increases seen in experimental phosphorylation at 
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additional sites along the peptide region.201 Peptide compression in response to phosphorylation 

has been reported in additional studies spanning from 2002 to 2012, too, as well as the breaking 

of native salt bridges in order to generate hydrogen bonds for mitigating the negative charge of 

phosphate groups.202,203 Other forms of conformational change for Ser phosphorylation have been 

reported, such as stabilized alpha-helical secondary structure formation based on phosphate-

backbone electrostatic interactions,204 as well as preferred dihedral orientations introduced at the 

phosphorylation site.205 Thr-specific phosphorylation was also seen to increase helicity in 100 ns 

classical simulations of p53 and p73 proteins, although decreases in helical content have been seen 

for other proteins.206,207 Even as recent as 2019 has the interplay of individual PTM forms been 

found to stabilize N-terminal helices through phosphate charge neutralization and backbone-

sidechain hydrogen bonding via advanced REMD simulations.208 From the large body of 

phosphorylation modeling and simulation research, modification along specific amino acids and 

in different local environments will alter the probabilities of distinct resulting conformations. Work 

from the Jacobson group using umbrella sampling and quantum mechanical studies found in 2007 

that hydrogen bond strength with phosphate groups noticeably changes in response to the geometry 

assumed by different phosphorylated residues based on their amino acid identity and their local 

environments.209 Similarly, REMD simulations on glycosylated proteins also showed in 2010 that 

protein secondary structure can be altered in a site-specific manner based on shifted backbone 

dihedral preferences after glycosylation.210 

Intrinsic disorder and repositioning of flexible loops serve as strategies for proteins to rapidly 

change their local environments in response to dynamic processes. PTM installation along 

disordered regions can instead exacerbate cellular perturbation response strategies of proteins by 
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altering thermostability.211 In 2008, the Levy group designed an elegant study by systematically 

modeling glycan groups onto an SH3 domain protein to distinguish the entropic versus enthalpic 

effects of glycosylation on protein function (Figure 5A).212,213 Coarse-grained modeling of the 

glycosylated SH3 structures enabled this systematic study design, where 63 different glycosylated 

SH3 domains could be efficiently simulated at different temperatures and in replicates. By varying 

temperature for the different simulations, Arrhenius-style free energy projections showed how 

increased extent of glycosylation increased protein thermal stability, where both enthalpy and 

entropy were reduced by the addition of glycans (Figure 5B-D). The addition of glycans to SH3 

was found to rigidify the protein structure, thereby lowering the enthalpy as the glycan moieties 

restrict protein dynamics. Similar results and effects on dynamics were seen on a variety of 

glycosylated protein structures by the Im group in a 2015 study.214 Given the breadth of collected 

simulation data for the time, Shental-Bechor and Levy’s study could offer direct insights towards 

SH3 stabilization that could not be offered by experiments alone.212,213 Even the restriction of 

potential dynamics by PTM installation could impose significant biological implications, as the 

PTM offers other contributions to the target protein structure. For example, the Woods group found 

through 1 µs simulations of various SARS-CoV-2 spike protein glycoforms that glycosylation 

shields on average approximately 40% of the glycoprotein surface from antibody recognition.159 

In this case, the evolutionary advent of a PTM enables the SARS-CoV-2 virus to better bypass 

human immune systems and promote host infection.164
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Figure 5. Glycosylation effect on thermodynamic stability of SH3 domain protein. (A) SH3 
domain represented as a blue ribbon, with glycosylation moieties represented as grey sticks. This 
modified protein was simulated using a coarse-grained native topology model rather than the all-
atom version presented here. (B) Folding free energy (ΔGf) of the SH3 domain protein. (C) SH3 
domain protein folded state thermodynamics, broken down by enthalpic and entropic 
contributions. (D) SH3 domain protein unfolded state thermodynamics, broken down by enthalpic 
and entropic contributions. Panels B-D represent free energy as a function of the length of the 
glycan chains added. Adapted with permission from D. Shental-Bechor and Y. Levy, Proc. Natl. 
Acad. Sci. U.S.A., 2008, 105, 8256-8261.212 Copyright 2022 National Academy of Sciences.

Even if PTMs may not principally operate through electrostatic perturbations, the entropic and 

enthalpic contributions offered by a specific covalent modification contribute to how the effects 

of a PTM manifest in a site- and modification-specific manner. Modeling and simulation by the 

Levy group have accurately predicted glycosylation-induced destabilization of WW-domain 

protein in regions where large numbers of contacts in native topology models preexist, as glycan 
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installation would disrupt otherwise stabilizing interactions.215 However, the opposite is not 

necessarily true when comparing simulation to experiment. The same 2010 study found that just 

because a glycosylation site along the WW-domain scaffold appears as if it can sterically 

accommodate a glycan does not universally imply that such a modification will result in 

stabilization.215 Entropic stabilization could instead arise through PTM-based dehydration, as 

WW-domain protein PEGylation simulations suggest that solvent removal from the protein surface 

by PEGylation improves solubility and folded state preference.216 Thus, it can be expected that 

entropy-based PTM effects are tied to the hydrophobicity and stericity inherent to that 

modification. In 2016, the Jacobson group found that the entropic effects of ubiquitination on a 

human kinase could not be replicated when performing acetylation at the same site, as an active-

like conformation caused by ubiquitination was not observed across 10 ns simulations of an 

acetylated structure.217 The difference in effect between acetylation versus ubiquitination could be 

attributed to the difference in size and bulk between the two types of covalent modification, a 

finding which likely applies to other forms of PTMs as well. For instance, a 2020 modeling and 

MD simulation of diverse PTMs onto the central coiled-coil connector of fibrinogen varied from 

having zero to severe structural effects.218

The impacts of PTMs on protein conformation extend beyond local environments and into long-

range contacts and allosteric communications. As the Levy group helped identify how loss in 

natively stabilizing interactions upon glycosylation underscored structural destabilization in 2015, 

they further showed how interactions lost from glycosylation also include long-range contacts in 

the case of simulations of glycosylated MM1 protein.219 Additionally, long-range communication 

between covalently-modified residues is also site-specific, as only modifications on certain regions 
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of a protein may induce conformational change in regions distinct from the site of modification.220 

For example, terminal phosphorylation only increased cross-correlated motion between the SH2 

and SH3 peptide binding domains in c-Src kinase, but not for other parts of the protein during 

simulations from 2001.221 In the case of multiple PTM sites, only acetylation on a specific H4 

histone tail lysine residue uniquely altered the simulated conformational ensemble in 100 ns 

REMD simulations, although acetylation at any lysine along the tail increased long-range 

backbone contacts.222 Synchronous residue-residue contacts can also been influenced by PTM 

crosstalk. Different REMD system setups modeling combinatoric acetylation of High Mobility 

Group Box (HMGB) protein lysines found that contact networks in HMBG:DNA complexes 

differed despite each combination being minimally comprised of the same two to four lysine site 

acetylations.223

4.3. Summary of PTM simulations using “single” or “few” trajectory approaches

Despite using short trajectories analyzed in time-dependent manners, most of the works discussed 

above illustrated key findings with respect to how PTMs impact protein dynamics and function. 

Binding of covalently modified peptide substrates indicated direct interactions between protein 

binding interfaces, where side chain reorientation accommodated new electrostatic or steric forces 

brought by the PTM. When installed onto part of the target protein structure, PTMs were seen to 

alter secondary structure of disordered regions by affecting backbone hydrogen bonding 

preferences and again calling for side chain reorientation to offset any destabilizing interactions 

with stabilizing ones. Conformational preference thus reciprocates the nature by which a protein 

structurally responds to a particular PTM. Subversive changes in local side chain environments in 

response to changed hydrophobicity or electrostatic potential nearby the PTM site are perhaps the 
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driving forces which help guide a modified protein towards a metastable state. Systematic 

modeling of PTMs indicative of yeast stress responses have shown that covalently modified 

structures simulated for 20 ns classical MD simulations do demonstrate conformational change, 

but that the extent of conformational change largely persisted as side chain fluctuations instead of 

backbone movements.224 Site-specificity underlies all PTM effects on the ability for a protein to 

bind and function. In an enormous study on the effect of phosphorylation on G-protein-coupled 

receptor activation and arrestin binding in 2020, the Dror group performed 1 ms of independent 

simulations to show that site-specificity of phosphorylation patterns results in different extents of 

activation and arrestin binding.225 In reference to other studies mentioned so far, each PTM 

position and type were shown to display unique effects per protein, which may not necessarily be 

confined to the neighborhood of the PTM site. This point was emphasized by the Shukla group in 

their 2022 study on the effects of N-linked glycosylation on SLC6 transporters.226 From over 1 ms 

of independent simulations using combinatoric glycosylation patterns across four different SLC6 

transporters, Chan and Shukla concluded that the impacts of glycosylation should be characterized 

at a per-protein level regardless of shared function within a family.226 And amazingly, across all 

studies implementing the “single” or “few” trajectories approach, decent extents of conformational 

change, and the conversion between different states, could be observed in very short amounts of 

simulation time.

What one should notice about this style of MD simulation and analysis is that its popularity as a 

design strategy has remained popular throughout the entire history of PTM simulations. That is, 

sufficient observations could be made from either classical or biased MD performed along shorter 

timescales. Conversely, these types of studies still have their limitations. Thermodynamic and 
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kinetic insights are often not obtained from studies utilizing a “single” or “few” trajectory 

approach. However, the descriptive power of these studies is enabled because of the dramatic 

conformational changes caused by introduction of steric bulk or electrostatics by the specified 

PTM(s). Because of computational expense, a number of studies enumerated within this section 

simulated regions of proteins as peptides, which may affect how their findings translate to the 

effects PTMs have on their respective protein’s global structure. In most of the exemplary literature 

cited in this section, a chief complaint written in their discussion sections was that not enough 

simulation could be performed because of available computing resources. Given how substantive 

conformational change could be seen even along the pico- to nano-second timescales, these 

foundational studies underscore the impact PTMs have on their local and distal environments. Still, 

one cannot help but wonder what could be seen from PTM simulations ranging from micro- to 

milli-second timescale trajectories, generating aggregate datasets, and/or implementing more 

advanced enhanced sampling methodology.

5. Using aggregate datasets for the modulation of conformational free energy by 

posttranslational modifications

Free energy landscape (FEL) representations of MD datasets are useful in that they represent a 

probability distribution as to how often a particular protein macrostate is observed given a finite 

extent of sampling. Because FELs represent distributions, they involve sampling to observe a given 

process. The extent of sampling required for a given process depends on its timescale, where rare 

events require enhanced sampling because they are higher energy. Rare events occur on slower 

timescales and are therefore less likely to record during unbiased simulation. Sufficient FEL 

coverage offers a comprehensive view of all possible conformations related to a protein’s function 

Page 26 of 64Physical Chemistry Chemical Physics



27

(as described with a given order parameter set). Sampling rare events is then necessary to fully 

understand how a protein uses intermediate states as transitions between metastable states; note 

that these transitionary conformations are very difficult to resolve experimentally and can often 

only be observed computationally. Thus, time-independent data collection regimes using FELs of 

datasets gathered by enhanced sampling methods offer the unique opportunity to describe how 

PTMs affect entire protein conformational ensembles. The timeframe for PTM studies 

implementing FEL-based approaches is primarily split across two time periods: the turn of the 21st 

Century and after 2015.

5.1. Ensemble-based sampling of short timescale processes using classical molecular dynamics

Depending on the timescale of the modeled process, PTM studies implementing a time-dependent 

research design can offer useful FEL-based insights. Examples of this include demonstrating how 

phosphorylation of a peptide shifts backbone torsion or dihedral angle conformational 

preferences.204,205,207,227,228 Another process with a relatively short timescale includes dynamics of 

reasonably sized loops. Comparing 2.5 µs classical MD data of loop movement versus solvent 

accessible surface area of an E2 ubiquitin ligase enzyme showed that phosphorylated variants 

could only occupy an open, but not a closed, conformation because of the increased solvation 

required to satiate electronegativity along the installed phosphate groups.229 FEL projection of 

principal component analyses for 1 µs WNK1 kinase simulations were also able to isolate specific 

activation loop conformations, demonstrating that a ~3 kcal/mol free energy barrier prevented the 

unphosphorylated activation loop from adopting an extended conformation readily seen in 

phosphorylated WNK1 simulations.230 More stringent FEL analyses using dihedral angles further 

showed that unphosphorylated WNK1 data hardly had any conformational overlap with structures 
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seen during phosphorylated simulations (Figure 6). However, the free energy difference between 

phosphorylated and unphosphorylated WNK1 in regions of shared dihedral angle conformational 

sampling still approximated ~3 kcal/mol.230 

Figure 6. Free energy landscapes for WNK1 kinase activation loop dynamics projected using 
order parameters derived from dihedral principal component analysis. (A) Unphosphorylated 
WNK1. (B) Phosphorylated WNK1. Note that the minima for one proteoform’s landscape is 
distinct from the other’s, where any regions of overlapped sampling experience opposite 
favorability depending on phosphorylation state. Adapted with permission from N. A. Jonniya, M. 
F. Sk, and P. Kar, ACS Omega, 2019, 4, 17404-17416.230 Copyright 2022 American Chemical 
Society.

5.2. Use of biasing potentials for simulating PTM dynamics

When following single trajectory analyses, sometimes “vanilla” MD simulations performed at 

standard temperature and pressure conditions are insufficient for capturing processes associated 

with PTM-based conformational change. High temperature simulations have been used to facilitate 

unfolding of covalently modified proteins within the nanosecond timescale, suggesting how 
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different helices stabilize binding interactions involving covalent modification by projecting 

helical unfolding FELs.231 High temperature simulations can also facilitate FEL exploration by 

lowering transition barriers. Work from the Gervasio group done in 2017 combined high 

temperature unbiased MD with parallel tempering metadynamics to obtain more than 115 µs of 

total simulation data on p38α kinase activation upon phosphorylation.232 Metadynamics 

simulations of up to 25 µs each for unphosphorylated, apo and holo dually phosphorylated p38α 

resolved conformational FELs were performed, where the order parameters used were distances 

distinguishing the active from inactive conformations (Figure 7). These p38α kinase FEL 

landscapes demonstrated that the unphosphorylated apo protein is unable to sample the active 

conformation, although phosphorylated apo protein can but at a much higher energetic cost. 

However, introduction of ATP-Mg2+ encouraged deeper minima formation for phosphorylated 

p38α kinase surrounding an active conformation, whereas binding of ATP-Mg2+ and the MK2 

docking peptide drastically smoothened barriers between and deepened minima for 

phosphorylated intermediate and active states. That is, p38α kinase phosphorylation was shown to 

decrease the probability of inactive state conformations during metadynamics simulations. To 

confirm the thermo-stability or -instability of the metastable states seen for each system setup 

during metadynamics simulations, Gervasio and coworkers ran ten independent 1 µs-long classical 

MD simulations at 380 K from the respective p38α kinase crystal structures, extending simulation 

durations for any runs which happened to cross barriers into minima observed from metadynamics 

simulations. The independent unbiased runs showed strong agreement with the metadynamics 

results, as projecting the time-based progression of the independent data runs over the FELs 

showed that classical simulations resided in the aforementioned minima for longer periods of 

time.231 While there was agreement between the biased and unbiased datasets, the conformational 
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requirements for existing in a relatively active versus inactive conformation were further supported 

by FEL exploration from longer metadynamics trajectories. Otherwise, reliance on just the 

respective crystal structure conformations may have made comparisons between simulated states 

too stringent, possibly limiting how well phosphorylation was understood to impact extent of p38α 

activation.231

Figure 7. Free energy surface for differentially phosphorylated p38α proteoforms. The shared 
axes indicate functions representing the distance from the reference inactive (CV1) and active 
(CV2) structures for p38α. Representative structures from the reference publication are included 
to visualize differences between active- and inactive-like p38α states. Reproduced with permission 
from A. Kuzmanic, L. Sutto, G. Saladino, A. R. Nebreda, F. L. Gervasio and M. Orozco, eLife, 
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2017, 6, e22175.232 This article was originally published and distributed under the terms of the 
Creative Commons Attribution License, permitting unrestricted reproduction and adaptation 
provided proper crediting to author and source. Copyright 2022 eLife Sciences Publications Ltd. 

Other biased methods can be used to explore how PTMs affect transitions between metastable 

states. The impact of seven different combinatoric phosphorylation states on the activation and 

ATP-binding of plant receptor kinase BAK1 was explored via independent 500 ns Gaussian 

accelerated MD trajectories in 2020.233 Comparing these phosphorylated proteoforms to 

unphosphorylated BAK1, the activation loop in unphosphorylated BAK1 was found to have the 

largest computed root-mean-square fluctuations. By contrast, the activation loop root-mean-square 

fluctuations for each of the other phosphorylated BAK1 proteoforms was reduced, suggesting a 

stabilizing role. Specifically, Thr455 phosphorylation appeared to be of secondary importance, 

further stabilizing the activation loop only when Thr450 was also phosphorylated. Comparison of 

each of the FELs, simulations involving pThr450 in any PTM combination always resulted in free 

energy minima surrounding an active BAK1 conformation. Thus, phosphorylation of Thr450 was 

suggested to be essential for stabilizing the BAK1 activation loop in an active conformation. 

Estimates of unbiased potentials of mean force through multistate Bennett acceptance ratio 

reweighting demonstrated that pThr450 uniquely engaged in salt bridges in each BAK1 

phosphorylation scenario.233 

Using the phosphorylated and unphosphorylated cystatin and NtrC crystal structures as case study 

proteins, the Wolynes group implemented an associated memory Hamiltonian for transferable 

structure prediction to model the effect of phosphorylation on each protein’s folding FEL.234 Here, 

the authors mutated the residue occupying the phosphorylation site into glutamic acid, where the 

Hamiltonian-based method enabled “supercharging” of the phosphorylation mimic. For cystatin, 
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these Hamiltonian simulations predicted that phosphorylation makes transitions between the 

unfolded and folded states more energetically favorable for a simple two-state folding model 

(Figure 8A-B). Principal component analysis of cystatin snapshots from both the phosphorylated 

and unphosphorylated simulation datasets showed that transitionary semi-unfolded states were 

most similar, suggesting that cystatin is likely phosphorylated when occupying an intermediary 

structure somewhere closer to the unfolded state (Figure 8C). Meanwhile, NtrC FELs derived from 

the Hamiltonian simulations suggested that NtrC folding proceeds through a three-state folding 

model with a well-defined intermediate structure, regardless of phosphorylation status (Figure 6D-

E). For NtrC, the largest extent of overlap for principal component analysis of simulation snapshots 

showed that the unfolded states for phosphorylated versus unphosphorylated states are most 

similar, suggesting that phosphorylation would likely occur on unfolded NtrC (Figure 8F).234 Here, 

FELs enabled direct comparison between phosphorylated and unphosphorylated dynamics, where 

overlap in accessible conformations suggested which kinetic states could undergo phosphorylation 

in cellulo.
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Figure 8. Structure prediction Hamiltonian free energy landscapes of cystatin folding (A-C) 
and NrtC folding (D-F) in the phosphorylated and unphosphorylated forms. Global order 
parameters reflecting how similar simulated structures are to the crystal structures for the 
phosphorylated (Qp) or unphosphorylated (Qu) proteoforms (A-B, D-E). Principal component 
analysis (PCA) was performed to project the simulation data with respect to folded state (PCfold) 
and phosphorylation state (PCphos) (C, F). For PCA plots, green data describes the 
unphosphorylated proteoform while purple data describes the phosphorylated proteoform. Cystatin 
folding was found to exhibit two-state behavior for the unphosphorylated (A) and phosphorylated 
(B) forms. Cystatin PCA suggested that phosphorylation could occur along a slightly unfolded 
transitionary state, due to the overlap in data sampled (C). NrtC folding was found to exhibit three-
state behavior for the unphosphorylated (D) and phosphorylated (E) forms. NrtC PCA suggested 
that phosphorylation must occur in a completely unfolded state based on overlap seen in the 
landscape (F). Adapted with permission from J. Latzer, T. Shen, and P. G. Wolynes, Biochemistry, 
2008, 47, 2110-2122.234 Copyright 2022 American Chemical Society.

5.3. Aggregate sampling for elucidating the impact of PTMs on conformational dynamics

Another way to summarize a biomolecular process through FEL coverage is to run multiple 

parallel trajectories and then project the aggregate data against appropriate order parameters. Note 

that kinetic reweighting schemes (e.g., MSMs, milestoning) should accompany aggregate dataset 

projections, as the selection of seed structures for even classical MD trajectories does bias the 

resulting FEL.

5.3.1. Ensemble-based sampling of short timescale processes using classical molecular dynamics
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Aggregate sampling approaches have been applied to study the effects of PTMs. One flavor of 

aggregate sampling studies is to run several trajectories from any given point and to then evaluate 

the total data based on some order parameters. For example, up to 5 µs of aggregate simulation for 

site-specific and additive villin headpiece carbonylation simulations were performed to examine 

the effects of carbonylation on villin thermostability in 2011.235 Although time-dependent analyses 

demonstrated consistent increases in root-mean-square deviation; increased solvent accessible 

surface area within the hydrophobic core; and decreases in alpha-helical content as a result of 

carbonylation, the exact conformational effects differentiating villin headpiece native topology 

from carbonylated variations of villin could best be discerned using FEL projections.235 

Specifically, FELs comparing molecular hydrophobicity potential versus the sum of distances 

between phenylalanines occupying the villin hydrophobic core demonstrated that combinatoric 

carbonylations experienced a distinct metastable state, but could sample molecular hydrophobicity 

potentials and hydrophobic core compactness indicative of native or fully carbonylated minima. 

However, the opposite is not true, as the native and fully carbonylated villin structures 

predominantly occupied metastable states at either end of the distribution.235 

5.3.2. Markov state models on distinguishing PTM-based thermodynamic and kinetic changes

Another flavor of aggregate sampling study designs is to use adaptive sampling to explore a 

conformational landscape. In adaptive sampling, the MD practitioner guides FEL exploration by 

running multiple, short, and parallel, unbiased trajectories in tandem as part of a “round” of 

simulation.236–239 Seed structures for subsequent rounds are selected based on certain selection 

criteria that help facilitate efficient exploration of a landscape based on some order parameters. 

Methodology has been proposed for making seed state selection as statistically unbiased as 
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possible, as adaptive sampling can use any frame from a previous trajectory as a starting seed for 

the next round.240–244 Because adaptive sampling regimes incorporate selection of multiple 

trajectories per round based on preexisting landscape coverage, they can improve statistical 

characterization of rare high energy regions between minima; traditionally, long trajectories 

struggle to capture rare events in more than one transition. Adaptive sampling workflows – and 

their representation through FELs – are easily amenable to Markov state model (MSM) 

generation.41,185–187,245–251

MSMs and adaptive sampling have been used to study the structural and regulatory effects of PTM 

on protein function. What matters most in these types of studies is that there is sufficient coverage 

of the FEL. In a 2017 study on the effect of S-glutathionylation on the plant receptor kinase BAK1, 

the Shukla group first used accelerated MD to accumulate ~22 µs of simulation data, from which 

starting structures were taken to seed an aggregate 132 µs of classical MD through an adaptive 

sampling workflow.252 For this study, four simulation systems were constructed and compared: 

nonglutathionylated BAK1 core kinase domain (BAK1-SH) as a reference system, and then three 

singly glutathionylated on each possible glutathionylation site. After MSM construction, the 

authors quantified the global effects of S-glutathionylation on BAK1 conformational dynamics 

using the Kullback-Leibler divergence, a measure of similarity between two probability 

distributions.253 These analyses suggested that one of the glutathionylation sites, Cys408, may 

serve as an inhibitory S-glutathionylation site responsible for the decrease of activity in ABK1. 

Firstly, glutathionylation on C408 caused dramatic effects on BAK1 structure throughout the 

kinase domain, whereas little changes were observed during the other glutathionylation simulation 

datasets. Furthermore, C408 glutathionyation shifted the free energy landscapes away from the 
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active-like state, while modifications of other sites retained most features of the unmodified 

protein. Here, adaptive sampling-based exploration of the BAK1 kinase activation FEL provided 

sufficient input data for explaining how S-glutathionylation allosterically controlled kinase 

activity.252

The Shukla group constructed an MSM from ~320 µs of aggregate MD data on plant abscisic acid 

(ABA) receptors to delineate the role of tyrosine nitration ABA signaling inhibition during 

2019.254 Comparing the conformational FELs of the PYL5 receptor with and without nitration 

revealed that ABA cannot bind to PYL5 after tyrosine nitration (Figure 9). Instead, ABA was 

stabilized by multiple hydrogen bonds formed by residues surrounding one of the nitrotyrosine 

residues. Tyrosine nitration was found to significantly shift nearby residue backbone positions 

when compared to unmodified PYL5. Collectively, tyrosine nitration of the PYL5 receptor 

rearranged the binding pocket to prevent ABA from reaching the final binding site and therefore 

inhibiting ABA signaling.254 Although MSMs offer a kinetic framework based on the aggregate 

stitching of individual trajectories, their resulting transition probabilities calculated for 

interconversion between different clustered microstates can be used to instantiate a single 

trajectory. Often sampled using Monte Carlo simulations along the MSM, a single unbiased 

trajectory can then be generated which directs a biomolecular system from one conformation to 

another, all while simultaneously capturing each of the transitions identified along the specified 

path. The Shukla group’s PYL5 receptor study used Monte Carlo sampling to generate a 3 ms 

trajectory depicting unmodified PYL5 activation.254 While the same analysis was not performed 

on nitrated PYL5 because its FEL did not sample an activated state, trajectories formed from 
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MSM-based Monte Carlo sampling could be used to consolidate data from aggregate sampling for 

time-dependent analyses. 

Figure 9. The effects of tyrosine nitration on ABA binding. The free energy landscapes of ABA 
binding to the (A) unmodified and (B) nitrated PYL5 receptors. The structure closest to the active 
ABA-bound pose, labeled as a red star in (B). Adapted with permission from S. Shukla, C. Zhao, 
and D. Shukla, Structure, 2019, 27, 692-702.e3.254 Copyright 2022 Elsevier.
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In addition to demonstrating how PTMs perturb the likelihood of a certain conformation being 

accessed, MSMs can also provide information about the timescale for kinetic transition between 

different macrostates observed along a FEL. The Shukla group did so by implementing transition 

path theory in their NRT1.1 phosphorylation study.255,256 The plant nitrate transporter NRT1.1 is 

regulated by phosphorylation. With affinity inverse to the levels of environmental nitrate, NRT1.1 

is either a low-affinity transporter during saturating nitrate conditions or a high-affinity transporter 

during desaturating nitrate conditions.257 Additionally, the phosphorylation state determines the 

oligomeric state of NRT1.1, as the transporter is known to dimerize when in the unphosphorylated 

state.258,259 To explore the effects of phosphorylation on enhanced transport and transporter 

oligomerization, the Shukla group performed unbiased MD simulations for four systems: 

unphosphorylated NRT1.1 (UnpNRT1.1) (~9 µs) and phosphorylated (pNRT1.1) (~5 µs) dimer, 

as well as UnpNRT1.1 (~142 µs) and pNRT1.1 (~63 µs) monomer.255 Cross-correlation analyses 

among all Cα atoms within each system demonstrated that dynamic coupling disappeared at the 

dimeric interface for pNRT1.1 versus UnpNRT1.1 dimer (Figure 10A-C). Meanwhile, dynamic 

correlation within each monomer in pNRT1.1 was enhanced compared with the UnpNRT1.1 

dimer. Thus, phosphorylation appeared to decouple the dimer and allow the two monomers to 

behave independently. Increasing independent behavior by each participating monomer enhanced 

their respective structural flexibility, leading to a higher transport rate. Using transition path theory 

calculations, the average time required for one complete cycle from inward-facing to outward-

facing conformations was 5 ± 2 µs and 18 ± 3 µ for pNRT1.1 and UnpNRT1.1 monomer, 

respectively. FELs further reflect these differences in transport rate (Figure 10D-E). UnpNRT1.1 

and pNRT1.1 monomer FELs show how phosphorylation stabilized the outward-facing state while 

eliminating unnecessary intermediate state, thereby facilitating transport by hastening the 
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transition from inward-facing to outward-facing states. Overall, this study suggested that 

phosphorylation accelerates necessary conformational transitions, resulting in a higher transport 

rate.255

Figure 10. The effects of phosphorylation on NRT1.1. (A,C) Dynamic cross-correlation matrix 
(DCCM) analysis for all alpha carbons in UnpNRT1.1 and (B,C) pNRT1.1 dimer. DCCM results 
displayed in loop representation for (A) and (B). Dimer interface is colored purple and cyan for 
Chain A and B, while the remaining parts are colored in green and yellow, respectively. Red lines 
linking residue pairs represent strong dynamic pairwise coupling between residues. (D) 
Conformational free energy landscapes for UnpNRT1.1 monomer. (E) Conformational free energy 
landscapes for pNRT1.1 monomer. Intermediate states are labeled as (1) inward-facing (IF), (2) 
occluded (OC), (3) outward-facing (OF), (4) partial IF-OF (inward-outward facing), and (5) 
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hourglass-like state, respectively. Adapted with permission from B. Selvam, J. Feng, and D. 
Shukla, bioRxiv, 2022.255 Permission directly granted from authors for use of preprint figures.

5.4. Summary of PTM simulations using ensemble-based approaches for free energy landscape 

construction

Studies implementing aggregate sampling approaches to cover a FEL still fundamentally provide 

similar insights as studies strictly following single trajectories and their time-dependent analyses. 

As the Shukla group constructed MSMs on over 600 µs of aggregate simulation data to 

demonstrate that Thr276-phosphorylated human serotonin transporter experienced lower relative 

free energy barriers for transitions between occluded to inward-facing states, the basis for this 

lower free energy barrier was due to rearrangements in nearby hydrogen-bond networks lining the 

intracellular gate.260 Time-dependent approaches to studying PTM with MD simulation have 

indeed declared similar results; changes in hydrogen bonding networks or sidechain orientations 

are indeed the immediate response mechanism to local PTM installation, where these changes may 

allosterically communicate the need for long-range structural rearrangements as well. But what 

separates previous studies from those implementing aggregate sampling and/or MSMs is that the 

latter works are able to define what constitutes a specific conformational state, as well as identify 

the path by which one conformational state transitions into another. That is, aggregate simulation 

studies can evaluate the thermostability of different conformations through more rigorous 

statistical sampling. Based on the ergodic assumption that all MD trajectories will eventually 

sample the same phase space for a given biomolecular process, aggregate sampling just uncovers 

a greater extent of the stationary density for the process under inspection. MSMs, however, also 

provide kinetic insights on the evolution of a given molecular process. A specific PTM may not 
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alter the phase space but instead change the kinetics required to traverse across FELs. Trajectory-

driven results can offer a relative perspective on the residence time for a given molecular event, 

but are otherwise unable to provide kinetic rates for transitioning between metastable states 

separated by larger extents of conformational change. Said calculations do come at a cost, requiring 

more involved simulation and analyses workflows, often accompanied with greater computational 

resource needs. Additionally, uncertainty estimates and other postprocessing for statistical 

validation are necessary to ensure convergence around ensemble averages.42,49

6. Outlooks on PTM modeling and simulations

It has proven difficult to say exactly how any given PTM universally affects some proteins’ 

structures and functions. Experimental throughput makes characterization at atomistic resolution 

difficult, leaving much of the burden to molecular modeling for explaining cause-and-effect 

relationships between site-specific PTMs, structural changes, and altered protein function. 

Luckily, molecular modeling and simulation are perfectly poised to embrace the challenge of PTM 

characterization laid ahead. Structural and informatic modeling of PTMs in kinases has shown 

their phosphorylation sites to be relatively conserved, suggesting a potential for in silico PTM 

characterizations to at least universally apply to proteins within the same family.261 Still, proteins 

and their covalently modified proteoforms need to be systematically studied so that the relationship 

between regulatory roles and structural effects of PTMs can be fundamentally understood. Much 

of the advances seen in machine learning capabilities have been applied towards the prediction 

and identification of PTMs and their respective sites for covalent modification. As the input data 

for PTM prediction and identification is based on mass spectrometry results, machine learning-

based predictions on functional characterization will require larger datasets focused on 
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characterizing PTM function. In this sense, molecular dynamics simulations are unrivaled in their 

ability to generate large swaths of data from which distributions of molecular descriptors can be 

compared to covalent modification status using regression-based models.

Changing focus from simulation outputs, innovation in computing capabilities means that 

simulation inputs and their parameterization can also be expected to improve. PTM chemical 

diversity must be appropriately covered by all force field sets for more amenable simulated 

applications to any research problem. The GROMOS force field library offers tremendous 

coverage of PTMs. Still, MD practitioners gravitate towards specific force field libraries when 

tackling specific research problems. For instance, plans to simulate membrane proteins may result 

in CHARMM force field parameterization given its fantastic coverage of lipid diversity with over 

2000 lipid molecules in different starting conformations for lipid bilayer building.262,263 Still, 

CHARMM parameterization with compatible force fields for less common PTMs are not 

necessarily automatically, nor easily, incorporated into existing computational tools as is seen per 

the GROMOS library.10,264 As observed in the development of a membrane protein-specific OPLS-

AA force field,265 it is only a matter of time before force field libraries recognize their application-

specific deficiencies and offer the same research opportunities for modeling PTMs with equivalent 

ease of access. That is, until efforts like the Open Force Field Initiative and machine learning-

based force field libraries can consistently offer the accuracy of ab initio methods without 

incurring the same computational cost.266–268 The same argument applies to the efficient use of 

polarizable force fields when dealing with PTM protonation state.269,270

Aside from parameterization improvements, advances in structure prediction methodology raise 

the possibility of predicting covalently modified proteoform conformations. Software like 
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DeepMind’s AlphaFold, along with the Baker lab’s RoseTTaFold, have now revolutionized 

protein structure prediction with their machine learning-based template-free methods that, in most 

cases, can rival experimental structure quality.271–274 How these software are learning from 

numerous multiple sequence alignments and pairwise evolutionary constraints to generate a 

distribution of probable models suggests that incorporating the effects of PTMs in state-of-the-art 

conformer prediction is not so farfetched. Previous efforts using molecular mechanics showed that 

it was possible to predict protein conformational change upon covalent modification given an 

unmodified structure.275 Now, tools like Privateer have already been developed to graft glycan 

PTMs directly onto AlphaFold predicted structures.276 Inter-residue impacts of PTM-containing 

structures in the Protein Data Bank could be learned and included as a stage within these state-of-

the-art structure prediction pipelines.277 Given how a majority of PTMs (excluding ubiquination) 

occur along intrinsically disordered regions of proteins, integrated modeling of PTMs onto even 

difficult-to-predict protein structures is more feasible than ever because of AlphaFold.278 Including 

post-predictional modifications could offer a unique opportunity for seeding MD simulations from 

more unique starting structures for more efficient PTM characterization.

Regardless of the inputs provided, future PTM simulation studies that will capture vast free energy 

landscape coverage should strive to standardize analyses as to leverage their extensive sampling 

of macrostate population densities. As PTM installment can mirror the effects of mutation in 

shifting free energy landscapes, performing routine allosteric analyses on vast PTM simulation 

datasets could make the interpretation of long-range effects of PTMs more systematic across 

different proteins.279–282 PTM studies incorporating MSMs should report the exact transition 

probability matrix weights and calculate macrostate kinetic flux rates via transition path theory.185–
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187,256 In doing so, how often a PTM proteoform exists in a specific conformation (e.g., active 

versus inactive) can be ascertained. Offering probability distributions relative to the specific 

activity of a protein after PTM installation could drastically improve the accuracy of systems-scale 

kinetic analyses for multiscale modeling endeavors.1,283–285 State-of-the-art structure predictions 

and faster computing hardware now unleash an array of in silico opportunities to realistically 

characterize PTMs for proteins that lack experimentally resolved structures or are simply 

understudied.286 Together, modern MD simulations can join theory and experiments in informing 

us as to how the structure-dynamic perturbations caused by PTMs impact whole-cell 

physiology.284,285

Despite the opportunities they provide in characterizing PTMs, it is worth recognizing the caveats 

of molecular simulations. A major caveat to molecular simulations is that the process of covalent 

bond breakage and formation is extremely expensive to model. This reality is a major driver for 

the development of machine learning-based force fields so that molecular mechanics simulations 

can be performed with parameterization done at the accuracy level of quantum mechanics 

simulations. Thus, simulations are likely unable to provide as valuable insights as experiments 

when it comes to dynamical modeling for the direct instance of PTM, such as the rate of covalent 

modification or cellular trafficking. Experimental characterization can further delineate spatio-

temporal factors underlying PTM effects which are not easily, if entirely possible to be, modeled 

using MD simulations. What is a simple task for computational research is often an arduous one 

for experiments, and vice versa. Still, the level of control and atomistic resolution offers a glimpse 

as to what could be happening given explicit conditions and sufficient sampling.
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Throughout this perspective, we have highlighted almost 30 years’ worth of PTM research using 

in silico molecular modeling and simulation techniques. Much of this work has demonstrated how 

molecular dynamics simulations can characterize the structural consequences induced by PTMs. 

With recent computing developments and simulation methodologies enabling MD to be more 

efficient than ever before, the future of PTM-based molecular dynamics research can more easily 

employ currently established enhanced sampling and structure prediction methodology. 

Computational research efforts surrounding PTMs and their modeling will shift towards 

identifying new conformations caused by PTMs, and the frequency at which these conformations 

are sampled within the stationary density for the specified proteoform. Systematic computational 

characterization leveraging larger extents of sampling will lead to systematic translational gains in 

experimental efforts surrounding therapeutic developments and bioengineering. The predictive 

power of MD simulations is limited insofar as the realism used to model the system. As efforts 

have been cast to make the modeling of lipid bilayers and membrane proteins match experiments 

with improved realism,287 so too shall efforts surrounding PTM simulation strive to make our 

biophysical understanding of processes regulating protein function more complete.
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