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Machine learning image recognition and classification of particles and materials is a rapidly 
expanding field. However, nanomaterial identification and classification are dependent on the image 

10 resolution, the image field of view, and the processing time. Optical microscopes are one of the most 
widely utilized technologies in laboratories across the world, due to their nondestructive abilities to 
identify and classify critical micro-sized objects and processes, but identifying and classifying 
critical nano-sized objects and processes with a conventional microscope are outside of its 
capabilities, due to the diffraction limit of the optics and small field of view. To overcome these 

15 challenges of nanomaterial identification and classification, we developed an intelligent nanoscope 
that combines machine learning and microsphere array-based imaging to: (1) surpass the diffraction 
limit of the microscope objective with microsphere imaging to provide high-resolution images; (2) 
provide large field-of-view imaging without the sacrifice of resolution by utilizing a microsphere 
array; and (3) rapidly classify nanomaterials using a deep convolution neural network. The 

20 intelligent nanoscope delivers more than 46 magnified images from a single image frame so that we 
collected more than 1,000 images within 2 seconds. Moreover, the intelligent nanoscope achieves a 
95% nanomaterial classification accuracy using 1,000 images of training sets, which is 45% more 
accurate than without the microsphere array. The intelligent nanoscope also achieves a 92% bacteria 
classification accuracy using 50,000 images of training sets, which is 35% more accurate than 

25 without the microsphere array. This platform accomplished rapid, accurate detection and 
classification of nanomaterials with miniscule size differences. The capabilities of this device wield 
the potential to further detect and classify smaller biological nanomaterial, such as viruses or 
extracellular vesicles.

Introduction
30 Machine learning is a powerful tool for identifying and 

classifying material. One of the growing fields of machine 
learning applied to image recognition and classification is deep 
learning.1-7 Deep learning is a part of the mathematically 
revolutionized machine learning algorithms which analyzes 

35 information continuously with a given logic structure to draw 
similar conclusions as humans might. Within the field of deep 
learning, the convolutional neural network (CNN) is the most 
common tool for visual image analyzation and classification.8-

14 CNN exploits the spatial locality of an image by using 
40 convolutional filters, and CNN image classification methods 

have demonstrated high accuracy while saving computational 
cost for size-based image classification, ranging from large 
objects (e.g., firearms) to small objects (e.g., nanomaterials).15-

22 However, image identification and classification of 
45 nanomaterials is limited by the image resolution, the field of 

view of the sample, and the processing time.
 Several inventions have been developed in order to assist in 

identifying and classifying smaller objects. For example, the 
invention of the optical microscope altered the course of history 

50 for the identification of smaller material. Critical biological 
organisms and scientific processes have been analyzed and 
discovered through its use.23-30 Recently, an electron 

Fig. 1 (a) Schematic of the intelligent nanoscope setup, process, and 
data collection for deep learning training. The microsphere array and 
fluidic channel was fabricated to obtain deep learning training dataset 
images by super resolution imaging. (b) Schematic of the neural 
network process and nanoparticle classification. The gathered training 
datasets of each nanoparticle sample were used for feature learning by 
a convolutional neural network method. The trained model then 
classified the different sizes of nanoparticle samples. 
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microscopy assembled with nanofluidic coulter counting 
system was established for detection of drug-induced viruses.31 
Unlike some of the more advanced microscopy methods, the 
optical microscope is a universal instrument that is used in 

5 many research and industrial areas, due to its nondestructive, 
inexpensive, and real-time imaging capabilities.32, 33 Moreover, 
the rapid development of low-cost and high-frame-rate digital 
cameras makes fast sample identification and classification 
possible.34-36 For example, recently a flow cytometric cell 

10 sorting system with real-time intelligent image processor was 
developed to achieve high-throughput cell imaging and 
sorting.37 Since the first generation of optical microscopes, the 
resolving power has significantly improved with the superior 
design of the objective lens. This high-resolution imaging has 

15 been especially impactful in order to identify critical micro- 
and nano-sized particles, viruses, and bacteria that have been 
found to greatly impact humanity.38-48 However, the 
identification and classification of nanomaterial targets through 
a conventional optical microscope has several limitations. For 

20 example, the diffraction limit or resolution of a 20x objective 
lens is around 580 nm,49 which makes it hard to resolve 
structures smaller than 580 nm. An objective lens with a higher 
NA can be used to increase the resolution but at the cost of a 
reduced field of view.

25 One particular method that has been employed to overcome 
the diffraction limit of a conventional optical microscope is by 
using optically transparent microspheres.50-59 A microsphere 
focuses an incoming light to form a so-called photonic nanojet, 
which breaks the diffraction limit and essentially renders the 

30 microsphere into a super-resolution imaging lens. Recently, a 
microsphere lens allowed for the successful detection of 50 nm 
gratings,60 protein,61 and plasmid DNA.62, 63 Although the field 
of view of one microsphere is small, the field of view can be 
significantly increased by increasing the amount of 

35 microspheres or scanning them in a controllable way.64-68 This 
increase in the field of view increases the sample size of the 
images taken, thereby reducing sampling time. For example, 
single-nanomaterial detection with a microsphere array has 
recently been demonstrated.69, 70 

40 By combining the innovations from the microsphere array 
optical imaging with CNN machine learning classification 
methods, we have developed the intelligent nanoscope. This 
platform can rapidly identify and classify nanomaterials with 
miniscule size differences. A large dataset of high-resolution 

45 nanomaterial images can be quickly obtained from a 
microsphere array as training data for the CNN algorithm to 
rapidly distinguish and classify different sized nanomaterials. 
The intelligent nanoscope offers the following innovations: (1) 
simultaneous large field-of-view and super-resolution imaging 

50 significantly reduces the sample data collection time and 
reveals additional training information for the CNN; (2) a deep 
CNN is applied to process the images and increase the accuracy 
for nanomaterial identification and classification. The 
intelligent nanoscope significantly reduces the number of 

55 training data by 90 times and improves the training accuracy by 
two times compared to an optical microscope without the 
microsphere array. Moreover, we classified four different kinds 
of bacteria by using the intelligent nanoscope. Recently, 

various research groups have reported bacteria classification 
60 using optical microscopic images as training datasets for a 

CNN classification method.71-73 These studies showed that 
target bacteria classification performance is dependent on its 
shape and size. By utilizing a microsphere array imaging 
method, we magnified the target sample image to acquire 

65 detailed training datasets to enhance bacteria classification of 
bacteria of varying shapes and sizes. Some applications that can 
be used with this technology include bacteria type detection for 
infection diagnostic or nanoparticle size detection for 
nanomaterial synthesis feedback measurements. Overall, this 

70 device achieves nondestructive, rapid, and accurate size-based 
classification of nanomaterials, showing great promise to 
extend to classifying smaller biological nanomaterials, such as 
extracellular vesicles or viruses, in the future.

Materials and methods
75 Training data collection and deep neural network process 

Fig. 1 gives an overall depiction of the training image collection 
and deep neural network experiment process. The left panel of Fig. 
1(a) shows a schematic of the intelligent nanoscope. The intelligent 
nanoscope consists of a microsphere array that can be placed on 

80 the sample stage of a conventional optical microscope (20x, NA: 
0.45, Eclipse LV100, Nikon, Japan). Magnified images were first 
captured through each barium titanate microsphere, as seen in the 
middle panel of Fig. 1(a), and then imaged on a camera through a 
low-magnification objective lens on the optical microscope. 

85 Therefore, high-resolution images and a large field of view can be 
obtained simultaneously by incorporating the super-resolution 
capability of an array of microspheres.
      Captured images were then categorized as training input 
datasets for deep learning (Fig. 1(a) right panel). To have 

90 consistent image data acquisition, we imaged different sized SiO2 
nanoparticles (0.26 µm, 0.50 µm, 0.69 µm, 0.89 µm, 1.18 µm, 
Cospheric, USA) within the same microfluidic chip. SEM images 
and specification data of the properties of the nanoparticles are 

Fig. 2 Fabrication process of the microsphere array. 40 µm of barium 
titanite microspheres are immobilized with PDMS curing in a 7 µm 
tall microfluidic channel.
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shown in Supplementary Fig. 1. Between each experiment, the 
microfluidic channel was flushed with water and ethanol to ensure 
accurate training images. Furthermore, the microscope stage was 
also fixed to make sure all dataset’s focal points were the same.

5       As shown in Fig. 1(b), we used a deep convolution neural 
network based on AlexNet to train and decompose class layers and 
then extract the distinctive features of each class.74 The model 
architecture comprises of 5 convolution layers, 3 fully connected 
layers, and 3 × 3 max pooled, normalized, flattened, and dense 

10 layers for reducing the overfitting with the rectified linear unit 
activation function. This model was then applied to separate 
known nanomaterial sizes to determine the model’s accuracy for 
nanomaterial identification and classification.

Microsphere array fabrication

15 The microsphere array is fabricated by using standard soft-
lithography procedures as depicted in Fig. 2.75 First, a 
polydimethylsiloxane (PDMS) channel with a height of 7 µm 
is fabricated as follows: a photoresist (SU-8 10, MicroChem 
Inc., USA) was spin coated (4,000 RPM, 30 sec) on a 4-inch 

20 polished single-sided silicon wafer (783, University Wafers, 
USA). After soft baking for 2 mins at 65 ℃ and 5 mins at 95 ℃, 
a carefully designed photomask was aligned to subsequently 
cure with UV for 10 seconds. Then, after post exposure baking 
(1 min at 65 ℃, 2 mins at 95 ℃), the uncured area was 

25 developed by a SU-8 developer (Y020100 4000L1PE, Fisher 
Scientific, USA). In the following step, 40 µm sized barium 
titanite microspheres (refractive index: 2.2, Cospheric, USA) 
were mixed with DI water and dropped on the 3 mm2 square 
channel in the fabricated mold. Next, after drying in room 

30 temperature for 3 hours, mixed PDMS base and cross-linker in 
a 10:1 ratio (Sylgard 184, Dow Corning, USA) was applied 

onto the barium titanite particle array mold and cured in a 65 ℃ 
oven for 24 hours. The cured PDMS channel was then peeled 
off from the wafer mold and punched at the inlet and outlet 

35 connecting positions. Finally, the PDMS channel was bonded 
to an oxygen-plasma-treated 24 mm × 60 mm cover glass with 
no. 1 thickness (SuperSlips™ Micro Cover Glasses, VWR, 
USA) and incubated at 65℃ overnight.

40 Experiment and microscope imaging setup

The microsphere array is placed on the sample stage of an 
upright microscope (Eclipse LV100, Nikon, Japan) with a 20x 
objective lens (NA: 0.45, Nikon, Japan). A transmitted light 
source with a colored bandpass filter (FGV9 - Ø25 mm VG9, 

45 Thorlabs, USA) was used to reduce chromatic aberration, and 
a 3.1 Mega pixels color CMOS camera (DFK 33UX265, 
Imagingsource, USA) was connected to the microscope. 
Particles of different sizes are injected to the microsphere array 
and imaged with the microsphere array on the microscope. The 

50 sample nanomaterial was loaded and injected into the device by 
hand using a 1 ml syringe. As the flow reached a speed of  
approximately 15 to 20 μm/s in which the images would not be 
blurry at a 15 frames per second acquisition speed, the 
nanomaterial in the channel was captured using a CMOS 

55 camera with a 20x objective lens.  

Results and discussion
Finite element method simulation

A photonic nanojet is typically formed around a microsphere in a 
60 homogenous medium. In order to validate that the PDMS and 

water boundaries did not significantly affect the formation of the 

Fig. 3 (a) Finite element method simulation of electric field distribution around a barium titanite microsphere. Outer medium of microsphere is PDMS (n 
= 1.43), and the water (n =1.33) channel is beneath the PDMS and microsphere (n = 2.2). (b) Focal distance measurement from simulation results. (c) Full 
width half maximum of the photonic nanojets from 40 µm barium titanite microsphere simulation result. (d) Magnified images through a microsphere and 
bare nanoparticle images without a microsphere of the target SiO2 nanoparticles. Scale bar is 5 µm.
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photonic nanojet, and in order to optimize the size and material of 
the microsphere and the microfluidic channel height, we 
performed a finite element method simulation, as seen in Fig. 3(a-
c). To visualize the optical waves’ propagation through the PDMS 

5 and 40 µm barium titanite microsphere, simulations were 
performed using the electromagnetic wave module in COMSOL 
Multiphysics software. The scattering boundary condition was 
applied on all the boundaries with an incident out-of-plane electric 
field amplitude of 1 V/m on the top. Fig. 3(a) shows the simulated 

10 electric field distribution around a barium titanite microsphere. 
The simulation result confirmed that the PDMS and water 
boundary did not significantly affect the formation of the photonic 
nanojet, as shown in Fig. 3(a). To determine the microfluidic 
channel height, we calculated a focal length of the microsphere, 

15 which is defined as the distance between the front surface of the 
microsphere and the center of the nanojet as shown in Fig. 3(b). 
The calculated focal distance was 6.8 µm, so we selected 
approximately 7 µm for the optimum channel height. In addition, 
to verify the image capability, we calculated the full width at half 

20 maximum (FWHM) of the photonic nanojets. The resulting 
FWHM of the photonic nanojet was 319.5 nm, indicating that the 
intelligent nanoscope could achieve around 115 nm ~ 201 nm of 
lateral resolution.52 This is comparable to the 100x objective lens 
resolution. To compare with the resolution and the field of view 

25 size between intelligent nanoscope and conventional microscope, 
we added a quantitative table in the Supplementary Table S1.

Image acquisition and comparison in different conditions

Although a microsphere could help to resolve and magnify the 
30 target sample, imaging the target sample without the microsphere 

array (bare imaging) needed to be considered in order to compare 
the machine learning performance with and without the increased 
resolution. Thus, we collected both microsphere imaging and bare 

imaging for the machine learning training datasets. Nanomaterial 
35 images obtained through the microsphere array are shown in the 

first row of Fig. 3(d). Nanomaterial images in the absence of the 
microsphere arrays are shown in the second row of Fig. 3(d). The 
field of view was the same for both the microsphere and bare 
images for comparison. Due to the lack of microsphere 

40 magnification in the bare images, more nanomaterials are seen 
within the image. In this process, we maintained the same 
experimental conditions, including light intensity, imaging 
resolution, camera shutter speed, and field of view. The only 
changed condition was the change in focal point when collecting 

45 the bare images, in order to focus on the nanomaterials at the 
surface of the microfluidic channel. Images collected from these 
two conditions were used for the same deep learning training 
process. Each homogenous nanoparticle and bacteria samples were 
prepared in this work for reliable data collection. The nanomaterial 

50 concentration of the sample was selected to contain the greatest 
number of particles to form a single layer of nanomaterials in the 
field of view. This nanomaterial concentration was chosen in order 
to reduce the machine learning training dataset biases. These biases 
include the bias from an increase in empty space for the smaller 

55 sized nanomaterial, the bias from the increase in the probability of 
empty microspheres, and the bias from overlapping nanomaterial 
samples. Although the bias between empty space and the number 
of nanoparticles cannot be isolated, this concentration was applied 
to reduce the various biases of the system. This concentration was 

60 applied to both the microsphere imaging and bare imaging 
methods. By utilizing this nanomaterial concentration, a high 
classification performance is achieved for both imaging methods.

Deep learning training data preparation 

Fig. 4 (a) Schematic of the two different focal points used through the 
microsphere. (b) Circle finding process from an image with focal point 
#1. Circle location information is stored. (c) The stored location is 
applied at image frames with focal point #2. Cropped image’s edges are 
removed for making training data.
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For images collected from the microsphere array, we collected 
images at two different focal planes as shown in Fig. 4(a). The 
image at focal plane #1 shows the image of the barium titanate 
microsphere that was utilized to locate the field of view of each 

5 microsphere lens and provides accurate radius and center 
coordinates for image analysis. The focal plane #1 was fixed at 
the middle point of the barium titanate microsphere, which was 
around 20 µm from the microsphere’s bottom, as depicted by 
the red line in Fig. 4(a). After taking a single image frame at 

10 focal plane #1, the image focus was moved to focal plane #2, 
where the sample is located as shown in Fig. 4(a). At this focal 
plane, we could observe the magnified image through the 
microspheres, and the main data images were collected by a 
sequential image saving function from image capturing 

15 software (IC capture – image acquisition, Imagingsource, USA) 
at 15 frames per second. We used a MATLAB circle finding 
function to obtain certain information such as the center 
coordinates and radius of each microsphere from an image at 
focal plane #1, as shown in Fig. 4(b). In total, 46 microspheres 

20 were found from the image along with each microsphere’s 
stored information. These 46 microspheres covered 51.16% of 

the original field of view of the 20x objective lens. This allowed 
for a similar percentage of the field of view to compare both 
the microsphere and the bare imaging methods with the same 

25 experimental conditions. Then, by applying the stored 
microsphere center coordinates and radius information, we 
could crop each magnified image belonging to the focal plane 
#2 dataset images, as seen in the left panel of Fig. 4(c). Since 
each cropped image had an unnecessary edge area which could 

30 cause error for deep learning training, we removed the 
remaining edges and preserved the microsphere area from the 
cropped images, as shown in the right panel of Fig. 4(c).

Comparison between microsphere images and bare images 

To verify the performance of nanomaterial classification, we 
35 tested classification accuracy based on the size of the training 

datasets. Each category contained 1,000 images for each 
particle size, ranging from 0.26 µm to 1.18 µm. A range from 
100 to 110,000 images were used for these training datasets. In 
each training procedure, we prepared 5,000 separate validation 

40 data images and 1,000 prediction test images for each category 
of nanomaterials. Fig. 5(a) shows that the training model 
accuracy is dependent on the size of the training dataset. The 
imaging through the microsphere array has shown comparatively 
higher accuracy in categorization from a smaller dataset size. For 

45 the case of a microsphere image, validation accuracy ranged 
from 67% to 97% with a corresponding training size of 100 to 
1,000 images. This result indicates that datasets of 11 image 
frames can achieve higher than 85% classification capability, 
since a single image frame has 46 microsphere images as 

50 training datasets. When the training dataset size is higher than 
1,000 (e.g., 22 image frames), the prediction test accuracy rises 
above 95%. In contrast, bare nanomaterial image without the 
microspheres showed that the prediction test accuracy could not 
exceed 95% until 90,000 images of training dataset sizes were 

55 used. In order to achieve the same test accuracy of 97.5% from 
microsphere imaging, the bare imaging required 90 times more 
images for its training dataset. Fig. 5(b) and (c) show the 
classification results of the different sized particles for the two 
imaging nanomaterial methods for a given number of training data.

60 Bacteria classification experiment 

Fig. 5 (a) Nanoparticle classification accuracy for the different imaging methods with varying amounts of training data. 100 to 110,000 data images 
were used for the model training. (b), (c) Classification test results for each (b) microsphere image and (c) bare image of the five different sized 
particles for a given number of training images. 1,000 separately selected images from each category is inputted for the prediction test.

Fig. 6 (a) Magnified images through a microsphere and bare 
microscopic images without a microsphere of the target bacteria 
samples with a 20x objective lens. Scale bar is 5 µm. (b) Bacteria 
classification accuracy for the different imaging methods with varying 
amounts of training data. 100 to 110,000 data images were used for 
the model training. 
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To demonstrate the capabilities of critical biological 
nanomaterial classification, we conducted a classification study 
of four different species of bacteria using the same 
experimental conditions. We used S. aureus JE2, B. subtilis 

5 3610, E. coli BW25113, and P. aeruginosa PA14 in our 
experiments. A single colony was inoculated into 5 ml of Luria-
Bertani (LB) broth medium in a test tube. Cultures were grown 
overnight (~17 hours) in a 37°C shaker shaking at 225 rpm. For 
imaging, the overnight culture was diluted 1:5 to the same 

10 medium and 1 µl of the diluted culture was loaded on the glass 
slide. Detailed bacteria images were taken under a Nikon Ti-E 
microscope with 100x objective lens (Supplementary Fig. 2). 
The average size difference from the microscope data for each 
bacteria type is in Supplemental Fig. S2e. Although the average 

15 size of each bacteria ranges from ~1 to 5 µm, the size difference 
between similarly shaped bacteria is on the nanoscale (<1 μm). 
Using the same protocols, we tested bacteria classification 
accuracy based on the size of the training datasets. We collected 
images through the microsphere array as shown in the first row 

20 of Fig. 6(a) to obtain each bacteria sample image for the 
machine learning training. Bacteria sample images in the 
absence of the microsphere arrays were also collected for 
comparison without the microsphere array imaging method, as 
shown in the second row of Fig. 6(a). A range from 100 to 

25 110,000 images were used for the training datasets. 5,000 
separate images of each bacteria sample were processed for test 
accuracy validation and 1,000 other separate images were 
prepared for prediction testing. Fig. 6(b) shows the training 
model accuracy for both the microsphere array imaging and the 

30 bare imaging methods. To achieve a test accuracy of ~92%, the 
bare imaging method took more than twice the amount of 
images for its training dataset. The classification results of the 
four different kinds of bacteria for the two imaging methods are 
shown in Supplementary Fig. 3. To test whether the present 

35 approach is distinguishing the bacterial cells by their shapes, 
we examined a bacteria classification accuracy for the different 
shaped bacteria subsets with varying amounts of training data 
in the supplementary figure S4. The results show that the 
different shaped samples require less training data, and that 

40 similarly shaped samples require 5 times larger data size to 
reach a 99% classification accuracy. A comparison between our 
bacteria classification technology and other bacteria 
classification technologies is provided in Supplemental Figure 
S2.

45 Conclusions
Here, we introduced the intelligent nanoscope imaging 
platform that utilizes a microsphere array to optically image 
and classify nanomaterials using a deep learning network. The 
microsphere array achieved a large field of view with high 

50 resolution for rapid data collection. By combining the 
microsphere array and machine learning, the intelligent 
nanoscope imaging platform achieved rapid classification of 
similarly sized particles. Greater than 95% nanomaterial 
classification test accuracy was achieved by 1,000 dataset 

55 images, which only took 2 seconds of collection time with a 15 
frames/second camera. Also, nearly 92% bacteria classification 
test accuracy was achieved by 50,000 dataset images, which 

only took ~73 seconds of collection time with a 15 
frames/second camera. Given these features, this work could 

60 greatly assist in treating imperative biological nanomaterial 
threats, such as bacterial or viral infections, by rapidly and 
accurately classifying and identifying the biological 
nanomaterials. Future works of this technology include the 
classification of heterogenous samples and smaller 

65 bionanomaterial, including fluorescently tagged viral particles 
or small extracellular vesicles.
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