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Water Impact Statement
A range of modelling approaches have been developed to assess green roof performance to manage 
stormwater. The appropriateness and efficacy of a given model depend on its capabilities and 
complexity. This comprehensive review of existing tools, including parameterization, evaluation, 
and identification of key research gaps can facilitate model improvements to critically evaluate 
green roof implementation for stormwater management. 

Page 1 of 26 Environmental Science: Water Research & Technology



1

1 Modeling the Hydrological Benefits of Green Roof Systems: Applications 
2 and Future Needs
3 Zhaokai Dong, a Daniel J Bain, b Kimberly A Gray, c Murat Akcakaya d and Carla Ng *a

4 a Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, 
5 PA 15261 USA.

6 b Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 
7 15261 USA.

8 c Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 
9 60208 USA.

10 d Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 
11 15261 USA.

12 * Corresponding author email: carla.ng@pitt.edu

13 Abstract
14 Green roof (GR) systems provide a promising stormwater management strategy in highly 
15 urbanized areas when limited open space is available. Hydrological modeling can predict the 
16 ability of GR to reduce runoff. This paper reviews three popular types of GR models with 
17 varying complexities, including water balance models, the U.S. EPA’s Stormwater 
18 Management Model (SWMM), and Hydrus-1D. Developments and practical application of 
19 these models are discussed, by detailing model parameter estimates, performance evaluations 
20 and application scopes. These three models are capable of replicating GR outflows. Water-
21 balance models have the smallest number of parameters ( 7) to estimate. Hydrus-1D requires ≤
22 substantial parameterization effort for soil hydraulic properties but can simulate unsaturated 
23 soil water flow processes. Although SWMM has a large number of parameters (>10), it can 
24 simulate water transport through the entire GR profile. In addition, SWMM GR models can be 
25 easily incorporated into SWMM’s stormwater model framework, so it is widely used to 
26 simulate the watershed-scale effects of GR implementations. Four research gaps limiting GR 
27 model applications are identified and discussed: drainage mat flow simulations, soil 
28 characterization, evapotranspiration estimates, and scale effects of GR. The literature document 
29 promising results in GR simulations for rainfall events, however, a critical need remains for 
30 long-term monitoring and modeling of full-scale GR systems to allow interpretation of both 
31 internal (substrate) and external (meteorological characteristics) system effects on stormwater 
32 management.

33 Key words: green roof, hydrological modeling, stormwater management, green infrastructure 

34 1 Introduction
35 Urban flooding and water pollution are common in cities. Urbanization increases impervious 
36 surfaces, increasing velocity/volume of stormwater runoff and downstream pollutant loads  to 
37 waterbodies.1–3 To mitigate potential environmental impacts of stormwater, alternative 
38 approaches for stormwater management have been developed. These approaches shifted from 
39 traditional practices (sewer systems) to source control methods that detain, store and treat 
40 stormwater on-site.4 Green infrastructure (GI) aims to restore, mimic and maintain natural 
41 hydrological conditions by using decentralized nature-based practices5 and has emerged as one 
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42 of the most promising and popular stormwater management strategies6–8. 

43 Green roofs (GR) are vegetated rooftops, a GI approach that can provide green space in 
44 developed areas with limited space for ground-level implementation of GI. In addition, their 
45 benefits such as esthetics and thermal performance make them popular in highly urbanized 
46 areas.9,10 For example, in 2019, there were 763 projects across North America (approximately 
47 289190 m2 green roofing).11 Based on estimates, the areas of installed GRs can retain 0.14 
48 million m3 of stormwater per year. Although the GR industry is estimated to have grown by 5-
49 15% since 2013, there is still an enormous potential roof area of billions of m2 for new GRs to 
50 be installed at a more rapid rate. 

51 GR often consist of a multi-layered construction: a waterproof membrane, a drainage layer, a 
52 filter fabric and a substrate layer (soil and plants), built sequentially upward on the roof deck.12 
53 Based on the substrate depth, GRs are usually categorized as intensive or extensive: intensive 
54 GRs have a soil depth larger than 15 cm while extensive GRs have a medium depth less than 
55 15 cm.13 Extensive GRs are cheaper and require less maintenance14, but they may be less 
56 efficient, compared to intensive GR  in stormwater retention and flow rate attenuation15. 
57 However, considering the applicability of retrofitting existing rooftops without adding large 
58 loads and additional strengthening, the extensive GRs are more widely used.16–19

59 Numerous studies have reported GR can reduce stormwater runoff up to 90% and peak flow 
60 rates up to 80% during rainfall events.20–25 However, the effectiveness of GR to reduce 
61 stormwater runoff varies across sites and depends largely on physical properties (substrate 
62 depth, roof slopes and vegetation cover)21,26,27 and  local climate characteristics28. To promote 
63 and guide GR implementation, many  models of  GR hydrological behavior have been created 
64 to evaluate GR intrinsic structural properties and the role of external mereological forcing.28–30 

65 GR simulations can be classified in two categories: individual scale simulations and 
66 watershed/citywide scale simulations. A large portion of the research focuses on developing 
67 models to predict GR on-site hydrological processes. These models varied from simple 
68 conceptual models25,31–33 to complex mechanistic models34–37. Their ultimate goals are to 
69 develop robust models that can evaluate water transport within GR with varied designs under a 
70 range of climatic conditions. However, although studies achieved promising modeling results 
71 that replicated GR outflow, uncertainties in model performance remain. For example, 
72 Broekhuizen et al. compared the performance of four different models of Urbis, SWMM, 
73 Hydrus-1D and Mike SHE to predict GR outflow in Lyon, France and Umeå, Sweden.37 They 
74 found inconsistent predictions of flow rates among models suggesting the four models suffer 
75 from inadequacies in representations of GR physical processes. In addition, large-scale 
76 simulations are vital tools for better understanding the effects of GR implementation in urban 
77 stormwater management. Several studies simulated the effects of different GR retrofiring 
78 scenarios on runoff/pipe flow reduction.38–40 Yet, compared to building scale simulations, 
79 research on watershed scale simulations is still less common, because the reliability of GR 
80 models is often questioned as a design tool.41 As a result, efforts are needed to identify model 
81 limitations and improve model applicability.

82 Li and Babcock (2014) conduced an early review that briefly compared 15 case studies of GR 
83 modeling, including SWMM and Hydrus-1D, among others.42 However, given limited 
84 modeling applications prior to 2010, this review did not cover the modeling techniques that 
85 have become available in recent years. While four more recent reviews have discussed GI 
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86 modeling applications and future needs, they focused on various other types of GI technologies 
87 rather than GRs.43–46 Different types of GI may require different modeling strategies due to their 
88 varied structural designs. For example, a storage zone for exfiltration is commonly used in 
89 bioretention systems but is rare in GR systems45. None of the previous modeling reviews 
90 focused specifically on parameter estimates, evaluation, applications, and gaps in GR modeling. 
91 A comprehensive review covering model theoretical developments through practical uses, thus, 
92 could provide valuable insights to address the challenges in current applications and future 
93 improvements.

94 Focusing on GR modeling techniques and strategies, literature was reviewed to document 
95 currently available knowledge, potential challenges and future research needs in GR modeling. 
96 More specifically, this review focused on evaluating widely used free and open-source models 
97 or software, including water balance models, SWMM, and Hydrus-1D. The review addressed 
98 two specific areas: 1) GR model developments and potential applications; 2) identifying and 
99 discussing the key limitations in current GR modeling practices with suggestions for future 

100 model improvements. 

101 2 Methods
102 This review was carried out in the database of Web of Science and ScienceDirect focusing on 
103 peer-reviewed primary literature (up to 2022) that aimed to model the hydrological performance 
104 of GR. Models built based on full-scale installations as well as pilot-scale experiments were 
105 included. To efficiently connect pieces of information most relevant to GR hydrological 
106 modeling, the literature search was based on the following keywords: “green roof AND (model 
107 or simulation) AND (water balance or hydrology or water or retention) NOT (heat or energy)”. 
108 The initial exclusion criteria include review papers, non-English publications and duplicates. 
109 We then screened the results based on their abstracts and main content to exclude data analyses, 
110 field monitoring, or design papers that are irrelevant to modeling. Meanwhile, additional 
111 articles were identified by reviewing the cited references of reviewed papers for articles related 
112 to hydrological modeling. Ultimately, 76 peer-reviewed papers were considered as relevant 
113 studies and included in the literature review. The review is organized into four sections (Section 
114 3 – Section 6). The Section 3 gives an overview of existing GR models and their theoretical 
115 developments. In the Section 4, we discuss GR models in practical uses. In the Section 5, we 
116 identify potential limitations and challenges for GR model applications. The Section 6 discusses 
117 future research needs to improve model applicability.

118 3 Green roof model development
119 3.1 Overview of GR models 
120 To physically characterize a GR, it is often simplified as a vertically layered structure with 
121 uniform properties within each component (Fig. 1), in which vegetation, soil (substrate), 
122 drainage mat and storage can be described separately. GR modeling requires the 
123 characterization of the water cycle within these components. The main hydrological processes 
124 include rainfall entering soil through infiltration, soil water percolating into drainage mat and 
125 water leaving GR by drainage (outflow), evapotranspiration and surface overflow that might 
126 occur. Hence, the main research question for GR simulation becomes how to reasonably 
127 establish a model incorporating estimates of water budget terms and physical representations 
128 of GR structure. 
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129

130 Fig. 1 Components and water fluxes of a simplified GR model. Four layers from top to 
131 bottom: vegetation, soil, drainage mat and potential storage units, such as a cistern32, for water 
132 storage and reuse purposes

133 Existing GR models varied from simple conceptual models to complex mechanistic models, 
134 depending on model complexity and the level of detail required to run simulations.14,47 A 
135 conceptual model keeps the physical basis of GR but requires little structural detail, such as a 
136 water balance model. Mechanistic models use finite difference equations to model soil water 
137 movement. These models often relate to solving Richard’s equations (partial differential 
138 equations to describe water moving through unsaturated soil) or simplified infiltration 
139 equations (often assume saturation). For example, two free software packages, SWMS_2D and 
140 hydrus-1D48–50, apply Richard’s equations to numerically derive soil water movement under 
141 unsaturated conditions, with model parameters based on specific soil textures51,52. Solving 
142 Richard’s equations usually requires a high level of computational cost. As an alternative, 
143 simplified physically based infiltration equations are utilized by modelers. For example, She 
144 and Pang (2010) used the Green-Ampt infiltration method to simulate GR and successfully 
145 replicated the outflow from a GR in Portland, Oregon.53 This method was also used in the 
146 popular industry standard US EPA’s Storm Water Management Model (SWMM) to simulate 
147 infiltration.54 

148 The sections below discuss the theoretical developments of popular GR models and simulations 
149 of major hydrological processes within GR. The discussions focus on GR models with physical 
150 basis that can be easily interpreted. Therefore, empirical models are not included, because they 
151 are built based on empirical rainfall-runoff relationships and may not be directly applicable in 
152 GR forecasting contexts, for example the Curve Number method25,31,37,55. In addition, in recent 
153 years, data-driven methods such as machine learning techniques have been investigated56. Yet, 
154 data-driven methods will not be discussed either, because field data scarcity is a common issue 
155 that managers and developers face to train and test models. Other software packages, such as 
156 MUSICX57, have previously been considered for green roof modeling, but as these are not as 
157 widely used and either require licenses for use or are not open source, they will not be discussed. 
158 A summary of all the reviewed GR models can be found in Error! Reference source not found. 
159 and Error! Reference source not found. (Supporting Information, SI).
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160 Three models were selected to be discussed in detail: water-balance models, SWMM and 
161 Hydrus-1D. The complexity of the three models varied from describing conceptual 
162 hydrological processes to solving complex partial differential equations. These models focus 
163 on one-dimensional vertical flow simulations. Because GR substrate is thin compared to roof 
164 surface flow length, water travels more quickly through the substrate vertically than laterally 
165 across it.58 Descriptions of the models’ capabilities to simulate hydrological processes within 
166 GR are discussed below. 

167 3.2 Modeling soil water transport 
168 Stormwater control mostly relates to the mechanical process of water movement (infiltration) 
169 within GR substrate.30,56,59 Simulation of soil water transport, thus, is the key to building GR 
170 models. In the next subsections, we discuss the simulations of soil water transport processes in 
171 different models.

172 3.2.1 Water balance model
173 A water balance model uses simplified descriptions of water fluxes based on water balance to 
174 account for all sources and fluxes of water through the GR19,29. Simulations can vary from 
175 minutes to daily timesteps19,32. The processes can be described by a finite difference (eq. 1). 

176    eq. 1
𝑑𝑠
𝑑𝑡 = 𝑃 + 𝐼 ― 𝐸𝑇 ― 𝑞 ― 𝑞𝑠 ―𝐿

177 Where the  represents the water storage ( ) per unit time ( ),  is precipitation,  is irrigation, 
𝑑𝑠
𝑑𝑡 𝑠 𝑡 𝑃 𝐼

178  is evapotranspiration,  is drainage (outflow),  is surface runoff,  is vegetation 𝐸𝑇 𝑞 𝑞𝑠 𝐿
179 interception; the irrigation and surface runoff terms are often assumed to be negligible. 

180 Soil water flow is generated when soil water exceeds the maximum water storage capacity in 
181 the GR substrate.60–62 This capacity can be estimated as the soil depth multiplied by the 
182 difference between the soil field capacity and the permanent wilting point.19,60,63 The flow 
183 condition can also be written in the format of soil moisture content exceeding the field 
184 capacity.29,61 Therefore, the outflow from beneath of the substrate can be directly derived based 
185 on measured or estimated water budgets of  and , described as eq. 2, where   is rainfall 𝑃, 𝐸𝑇 𝑠 𝑃𝑡

186 rate at the current time step t,  is the soil water storage capacity and  is water storage at 𝑠𝑓𝑐 𝑠𝑡 ― 1

187 the previous time step. 

188   eq. 2𝑞 = { 𝑃𝑡 + 𝑠𝑡 ― 1 ― 𝑠𝑓𝑐 ― 𝐸𝑇𝑡 ― 1,  𝑠𝑡 ― 1 > 𝑠𝑓𝑐
0, 𝑠𝑡 ― 1 < 𝑠𝑓𝑐

189 However, this method ignores the dynamics of soil water transport (hydraulic conductivity) 
190 related to water potentials. That is, all the water will drain away within one time step if no 
191 governing equations on moisture transport was introduced, when . Therefore, to 𝑠𝑡 ― 1 > 𝑠𝑓𝑐

192 enable predictions of water storage in the substrate, modelers utilize linear or non-linear 
193 (exponential) lumped reservoirs to describe  based on s, by incorporating two parameters that 𝑞
194 approximately represent the ease of water movement32,63–66. The process can be described by 
195 eq. 3, where , ,  and are fitting parameters, and  is the surface ponding head. A linear 𝑘1 𝑘2 𝜑1 𝜑2 ℎ
196 reservoir model corresponds to  and  equal 1. 𝜑 𝑘
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197  eq. 3𝑞 = { 𝑘1 ∙ (𝑠𝑡 ― 1 ― 𝑠𝑓𝑐)𝜑1 + 𝑘2 ∙ ℎ𝜑2, 𝑠𝑡 ― 1 > 𝑠𝑓𝑐 
0, 𝑠𝑡 ― 1 < 𝑠𝑓𝑐

198 3.2.2 SWMM
199 SWMM is a dynamic rainfall-runoff model primarily used for urban water quantity and quality 
200 simulations. It allows simulation of interactions among precipitation, urban sewer systems, land 
201 surface, groundwater and GI.67 Simulations of GR in SWMM have been developed in several 
202 phases. Before the low impact deign (LID) modules were released, GR simulations were built 
203 solely based on SWMM hydrological and hydraulic packages. Alfredo, Montalto, and 
204 Goldstein (2010) developed two strategies based on storage node and the Curve Number 
205 method, respectively, to simulate the GR runoff.68 Even though the two approaches could 
206 replicate actual roof discharges, their performance mainly depended on model calibration and 
207 lacked structural representation of GR. With demands for generalizable GI simulations, the LID 
208 modules were released in SWMM 5.0.19 (2010), including modules of bioretention cells, 
209 pervious pavers and infiltration trenches. These modules were built based on process-based 
210 continuous equations to describe water transport within each GR layer (Fig. 1.54 The GR module 
211 was added to SWMM 5.1, in which the storage layer was replaced by a drainage mat to simulate 
212 GR underdrains. Because SWMM can easily combine GR models into its stormwater model 
213 framework, it has become a powerful and popular tool to understand city-level hydrological 
214 benefits of GR.36,40,50,69–71

215 GR simulations can be achieved by SWMM GR module or SWMM bioretention module. The 
216 infiltration ( , eq. 4) is modeled using Green-Ampt equation72 in the two modules.𝑓

217   eq.  4𝑓 =  𝐾𝑠(1 +
(𝜙 ― 𝜃𝑖)(𝑑 + 𝜓)

𝐹 )
218 Where  is the saturated hydraulic conductivity,  is the soil porosity,  is initial soil water 𝐾𝑠 𝜙 𝜃𝑖

219 content,  is the ponded water depth on the surface,  is the soil suction head at the wetting 𝑑 𝜓
220 front,  is the accumulated infiltration volume during the rainfall event. 𝐹

221 3.2.3 Hydrus-1D 
222 Hydrus is a public domain Windows-based software that can simulate the movement of water, 
223 heat, and solute in variably saturated media. Two- and three-dimensional versions of also exist, 
224 but one-dimensional version of Hydrus-1D is more widely used in GR simulations. The 
225 governing equation in Hydrus-1D is the one-dimensional form of Richard’s equation73 (eq. 5):

226   eq.  5
∂𝜃
∂𝑡 =

∂
∂𝑧[𝐾(𝜃) ∙ (∂ℎ

∂𝑧 + 1)]
227 Where  is the volumetric water content,  is the unsaturated hydraulic conductivity as a 𝜃 𝐾(𝜃)
228 function of , z is the vertical coordinate, t is time and h is the hydraulic head.𝜃

229 The unsaturated soil hydraulic properties can be simulated with several analytical models in 
230 Hydrus-1D, in which the van Genuchten-Mualem method74 is widely used to obtain the soil 
231 water retention curve and hydraulic conductivity function. The Van-Genuchten relationships 
232 can be written as:
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233 eq.  6𝜃(ℎ) =  { 𝜃𝑠                           ℎ ≥ 0;

𝜃𝑟 +
𝜃𝑠 ― 𝜃𝑟

[1 + (𝛼ℎ)𝑛]𝑚            ℎ < 0           

234             eq.  7𝜃𝑒 =
𝜃 ― 𝜃𝑟

𝜃𝑠 ― 𝜃𝑟

235    eq.  8𝐾(𝜃) = 𝐾𝑠
𝜆 𝑆𝑒[1 ― (1 ― 𝑆

1
𝑚

𝑒 )
𝑚]

2

236 Where  and  are the saturated and residual water content;  is the saturated hydraulic 𝜃𝑠 𝜃𝑟 𝐾𝑠

237 conductivity,  is the effective saturation;  and  (often assumed to be 𝜃𝑒 𝛼, 𝑛, 𝑚(1 ― 1
𝑛) 𝜆

238 0.515,35,50,75) are fitting parameters of the soil water retention curve.

239 3.3 Water-leaving simulations 
240 Water leaves GR through surface runoff, drainage mat flow and evapotranspiration. However, 
241 compared to simulating infiltration, these processes are not universal modeling considerations.  
242 Water-leaving simulations are model-specific. Therefore, in this section, we discuss the 
243 common modeling strategies to simulate drainage mat flow and evapotranspiration.

244 3.3.1 Drainage mat flow
245 Among the three models, only SWMM provides the capability to physically simulate bottom 
246 drainage. The water balance model may simulate drainage by adding a cascade reservoir model. 
247 In the SWMM modules, water percolates from the substrate into the drainage mat ( , eq. 9), 𝑓𝑝

248 described with Darcy’s Law. Drainage mat flow is then simulated by using Manning’s 
249 equations ( , eq. 10); while, in bioretention module, it is simulated with an empirical power 𝑞1

250 law ( , eq. 11).40,76–79𝑞2

251  eq.  9𝑓𝑝 = 𝐾𝑠𝑒𝐻𝐶𝑂(𝜙 ― 𝜃𝑡)

252 Where  is a decay constant that describes hydraulic conductivity as a function of soil 𝐻𝐶𝑂
253 moisture content; is soil moisture content at time t. 𝜃𝑡

254  eq. 10𝑞1 =
𝑊

𝐴𝑛2
 𝑆𝜙2(𝑑2)

5
3

255 eq. 11𝑞2 = 𝐶3𝐷(𝑑3)𝜂3𝐷  

256 Where  and  are the Manning ’s roughness for drainage mat,  is the width of the green 𝑛1 𝑛2 𝑊
257 roof,  is the area of the roof,  is the depth of water in the drainage mat,  is the roof slope, 𝐴 𝑑2 𝑆
258  is the void ratio of drainage mat,  is the underdrain discharge coefficient, is hydraulic 𝜙2 𝐶3𝐷 𝑑3

259 head,  is underdrain discharge exponent. It should be noted that  is not limited to the total 𝜂3𝐷 𝑑3

260 depth of storage unit, which can also be added by surface ponding.

261 3.3.2 Evapotranspiration 
262 During event simulations, evapotranspiration (ET)  is often neglected, because the ET rates are 
263 often assumed to be much smaller than precipitation.47 However, ET is an important water 
264 budget term for long-term GR simulations, because it is the only way for GR to recover its 
265 retention capacity.80 ET is difficult to directly measure, so it is often estimated based on two 
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266 widely used methods: the Hargreaves method81 (e.g., SWMM) (eq. 12) and the FAO-56 
267 Penman Monteith method82 (eq. 13), also known as potential ET and reference ET, respectively. 
268 Potential ET is a temperature-based estimate, while reference ET takes short grass as reference 
269 and includes meteorological data as an input to estimate ET.16,83,84 ET is divided, in Hydrus-
270 1D, into evaporation and transpiration separately. Because none of the reviewed literature used 
271 Hydrus-1D to simulate ET, we do not discuss more detail. 

272  eq.  12Potential 𝐸𝑇 = 0.0023 ∙ (0.48 ∙ 𝑅𝑎) ∙ (𝑇𝑚𝑒𝑎𝑛 + 17.8) ∙ (𝑇𝑚𝑎𝑥 ― 𝑇𝑚𝑖𝑛)0.5

273  eq.  13Reference 𝐸𝑇 =
0.408 ∙ (𝑅𝑛 ― 𝐺) + 𝛾 ∙

900
273 + 𝑇𝑚𝑒𝑎𝑛

∙ 𝜇2 ∙ (𝑒𝑠 ― 𝑒𝑎)

∆ + 𝛾 ∙ (1 + 0.34 ∙ 𝜇2)

274 In these equations  is the daily total extraterrestrial radiation,  is daily mean air 𝑅𝑎 𝑇𝑚𝑒𝑎𝑛

275 temperature,  is daily maximum temperature,  is daily minimum temperature,  is 𝑇𝑚𝑎𝑥 𝑇𝑚𝑖𝑛 𝑅𝑛

276 net radiation at the crop surface,  is soil heat flux density,  is saturation vapor pressure,  𝐺 𝑒𝑠 𝑒𝑎

277 is actual vapor pressure,  is the psychometric constant,  is daily average wind speed and  𝛾 𝜇2 ∆
278 is slope of the vapor pressure curve. 

279 4 Model practice
280 Building GR models requires data collection and parameter estimation. Calibrations were then 
281 often needed to adjust initial parameter estimates to improve model accuracy, by comparing 
282 predicted and measured outflow. This section discusses these model routines in practical 
283 applications. At the end of the section, we summarize model characteristics, capabilities, and 
284 potential applications (Table 3).

285 4.1 Model boundary conditions
286 Model boundary conditions include initial condition, upper boundary condition and lower 
287 boundary condition. The initial boundary condition is required for all the three models, which 
288 is often specified as the assumed or measured initial soil moisture content. Because Hydrus-1D 
289 numerically solves the partial differential equations, the upper and boundary conditions must 
290 be specified before running hydrus-1D simulations. The upper boundary is often assumed as a 
291 soil-atmosphere interface, with the surface flux equal to the rainfall input .47,75 For lower 𝑃
292 boundaries, the free drainage condition and seepage condition are most commonly used in 
293 literature. The free drainage condition assumes the pressure head gradient is zero, corresponds 

294 to gravity flow; that is  .18,50,73,85 The seepage boundary assumes that the flux 
∂ℎ
∂𝑧𝑧 = ―𝐿

= 0

295 remains zero as long as the boundary is unsaturated and the pressure head is set to zero once it 
296 is saturated14,47, which means the outflow equals either to 0 or .   𝐾𝑠

297 4.2 Model parameterization
298 Common data used in GR modeling include rainfall, outflow, GR structural data and 
299 meteorological data (Table 1. Precipitation is the most important input for hydrological models, 
300 which is generally measured by rain gauge and is usually accessible to the public. Outflow is 
301 the output of GR models and its measurements are usually used to calibrate the models. 
302 However, outflow data may not be available for many modelers. Given limited funding, full-
303 scale (building-scale) GRs may not exist in many cities. In addition, enabling outflow 
304 measurements in full-scale GRs often requires a systematic design prior to GR construction. 
305 For example, outflow from a GR in New York, USA was measured using Parshall flumes 
306 equipped with pressure transducers.86 Another used a custom-designed weir device to measure 
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307 outflow.87 In-pipe flow meters were installed to measure a GR’s outflow in the city of Bologna, 
308 Italy.79 Moreover, different outflow measurement methods have their own associated 
309 uncertainties, which also need to be accounted for when using them to evaluate or calibrate 
310 models. To solve this issue, substantial research effort has used pilot-scale experiments to 
311 mimic GR full-scale implementations, using the measured experimental outflow to build 
312 models.16,18,52,85

313 To parameterize soil hydraulic properties, Hydrus-1D requires derivation of both a soil water 
314 retention curve and a hydraulic conductivity function (eq. 6 – eq. 8). These parameters can be 
315 derived from laboratory experiments such as with a pressure plate extractor16,18,75, estimated 
316 using empirical functions50, or via inverse solutions based on flow observations88,89. Hydrus-
317 1D also can be parameterized with estimates based on soil texture. However, the estimates in 
318 Hydrus-1D are limited to the abiotic soil texture classes based on percentiles of sand, silt and 
319 clay. Thus, these estimates may not be very useful in simulations, because GR substrate often 
320 includes organic matter to reduce substrate weight, increase porosity, and decrease bulk density 
321 characteristics47,84. In addition, GR substrate, particularly for extensive GRs, often comprises 
322 of coarse and granular lightweight materials to reduce loading on the building roofs, which can 
323 differ substantially from the textures of natural soil. 90,91 Further other additives, such as biochar, 
324 can be used to increase GR retention capacity85. SWMM uses the Green-Ampt infiltration 
325 equation to simulate infiltration. Therefore, no experiments are needed to derive soil water 
326 retention curve and hydraulic conductivity function. Instead, a few soil physical parameters are 
327 specified, such as the saturated hydraulic conductivity and porosity. 

328 Table 1 Common data used for GR models

Data type Objective Common source Model required Data acquisition

Precipitation Input Rain gauge Conceptual model/ 
mechanistic model Easy

Temperature
Solar radiation 
Vapor pressure
Atmospheric 

pressure

ET estimates Weather station Continuous simulations  Easy

Outflow Calibration/validation Flow meter Conceptual model/ 
mechanistic model

Difficult in full-scale 
measurements

Soil data
Parameterization of 

soil hydraulic 
properties

Lab experiments Mechanistic model
Easy (water balance)
Moderate (SWMM)

Difficult (Hydrus-1D)

Roof dimensions Model configuration Field measurements Conceptual model/ 
mechanistic model Easy

329

330 Model parameterization depends on model structure complexity; a more complex model 
331 requires a larger number of parameters (Table 2. Some literature values and model 
332 recommended values are listed in the Table 2. The values of the soil hydraulic parameters for 
333 soil water retention curve and hydraulic conductivity function depend on specific soil textures. 
334 Accurate estimates are mainly derived through experimental measurements18,52, so we did not 
335 summarize literature values for these in Table 2. Similarly, fitting values for water balance-
336 based reservoir models were not included. Literature values are mainly related to SWMM 
337 model parameterization. Obviously, parameter values recommended by SWMM may differ 
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338 from values used in literature for specific simulations. For example, the saturated hydraulic 
339 conductivity values found in the literature (ranging between 2 – 1183 mm/hr) are substantially 
340 smaller than the values recommended by SWMM (1016 – 4064 mm/hr)  (Table 2), which may 
341 suggest the permeability of engineered soils used in GR is deviated from natural soils.

342 Because model parameters may not be precisely estimated or directly measured, calibration is 
343 an important procedure to adjust parameter values. Calibration methods may include Bayesian 
344 algorithms37, optimization techniques69,92,93, or two-step calibration procedures41,94. Prior to 
345 calibrating a model, parameter sensitivity analysis is a useful tool to understand the influence 
346 of parameters on model outputs and prioritize model parameters in model calibration. Common 
347 methods used to identify parameter sensitivity include one-factor-at-a-time93,94, Bayesian 
348 uncertainty37,95 and global sensitivity analyses96. 

349 In reviewing parameter sensitivity analyses, we focused on the SWMM model, because it has 
350 a large number of parameters and the simplification of flow routing makes some parameters 
351 difficult/impossible to measure (such as parameters for the drainage mat). As various methods 
352 were used to evaluate parameter sensitivity, it is impossible to compare sensitivity indices 
353 across studies. Instead, we summarized the influential parameters identified by ten studies that 
354 conducted SWMM parameter sensitivity analysis34,37,50,69,78,86,92–94,96. More specifically, we 
355 listed and counted the number of occurrences of the influential parameters identified in 
356 parameter sensitivity analysis (Table 2). For example, the substrate properties, such as porosity 
357 and field capacity, were identified 8 and 6 times, respectively, out of the 10 studies, and 
358 drainage mat properties, such as roughness (5 times), also have substantial effects on the 
359 outflow predictions.

360 Table 2 Model parameters and associated parameter sensitivities (Blanks in the table means 
361 no available information or specific values; Y: required to specify; Sensitivity frequency* 
362 calculated as the counts of parameters identified as influential parameters by studies 
363 conducted parameter sensitivity analysis)

Parameters SWM
M 

BRC 
module

SWMM 
GR 

module 

Richard’s 
equation/ 

Hydrus-1D

Lumped 
Reservoir 

model
Default values 

(referring GR module)
Literature 

values

Sensitivit
y 

frequency 
* 

Surface roughness Y 0.01 – 0.2 
Berm height (mm) Y Y 0 – 76.2 3 – 30 2

Surface void fraction Y Y 0.8 – 1.0 0.8 – 0.9 1
Slope (%) Y 0.5 – 8 

Soil thickness (mm) Y Y Y Y 50.8 – 152.4 32 – 135 4
Porosity Y Y Y Y 0.45 – 0.6 0.39 – 0.7 8

Field capacity Y Y Y 0.3 – 0.5 0.17 – 0.44 6
Wilting point Y Y 0.05 – 0.2 0.01 – 0.22 2

Initial moisture content Y Y Y Y
Saturated hydraulic 

conductivity (mm/hr) Y Y Y 1016 – 4064 2 – 1183 4

Wetting front suction 
head (mm) Y Y 50.8 – 101.6 6 – 100 1

Decay constant Y Y 30 – 55 5 – 50 6
Storage layer (drainage 

mat) thickness (mm) Y Y 12.7 – 50.8 3.8 – 76.2 2

Storage void (drainage Y Y 0.2 – 0.4 0.01 – 0.98 2
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mat) fraction
Drainage mat roughness Y 0.01 – 0.03 0.01 – 0.4 5
Drain coefficient (mm/h) Y 2.1 – 8.4

Drain exponent Y 0.5 – 2.1 
Soil residual water 

contents Y

Saturated water content Y
 (fitting parameter)𝛼 Y
 (fitting parameter)𝑛 Y
 (fitting parameter)𝜆 Y
 (fitting parameter)𝑘 Y
 (fitting parameter)𝜑 Y
Total number of 

parameters 14 15 9 7

364

365 Even though the initial soil moisture is considered as the initial condition rather than as a 
366 parameter, it has significant effects on event-based simulations76,77,79,94 It reflects the degree to 
367 substrate initially filled with water.76 In general, the lower initial soil moisture, the smaller the 
368 runoff volume and peak rate and the longer the peak delay will be15,69. In addition, soil water 
369 percolation is often assumed to be triggered when the soil moisture content exceeds filed 
370 capacity33,54,97. An initial water content at field capacity can lead to instant drainage flow even 
371 at the beginning of an event78,94. Therefore, the initial soil moisture should be carefully specified 
372 in simulations. The initial moisture content can be specified by using moisture sensor33,69,97 or 
373 assumed by modelers87.

374 Considering data acquisition and parameter estimation, several things emerge from the 
375 reviewed literature:

376 (1) Outflow measurements are often unavailable, because 1) an existing built GR is the 
377 prerequisite to measure in-site outflow; and 2) the setup of outflow measurement is 
378 complex. Many GR models, thus, were built using experimental data.
379 (2) little data are needed to parameterize soil hydraulic properties for water-balance 
380 models, but the routing parameters requires calibration. 
381 (3) SWMM has the largest number of parameters to specify (>10), but it can explicitly 
382 simulate flow through the entire vertical profile. Parameter values can be easily found 
383 from literature or assumed. 
384 (4) Soil parameters in Hydrus-1D often require large efforts of laboratory measurements 
385 or model calibrations. 

386 4.3 Model potential application
387 (1) Model evaluation 

388 To evaluate model performance, several metrics have been used in the literature. Among these 
389 evaluations, Nash-Sutcliffe efficiency is widely used (NSE, eq. 14), which measures the 
390 goodness of fit between model predictions and observations (closer to 1, better simulations)98. 
391 To define acceptable model performance, several studies suggest a threshold of NSE > 
392 0.541,70,78. Although comparing NSE values across models constructed at different sites (Fig. 2) 
393 may not be a good way to compare model performance because of their varying climate 
394 conditions and input data, a naïve comparison can still show some aspects of the ability of a 
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395 model to replicate measured outflow. Based on Fig. 2, all three models can generate good 
396 predictions of GR outflow. For the majority of all events (90%), the NSE is > 0.5. SWMM 
397 seems to show greater variability in predictions with a larger portion (28%) of events with NSE 
398 < 0.5 than the other two models. Furthermore, NSE evaluations for SWMM present a degree 
399 of correlation to event depths, with NSE values more likely to be > 0.5 when larger events are 
400 simulated (depths > 20 mm).

401   eq.  14𝑁𝑆𝐸 = 1 ―  
∑𝑛

𝑖 = 1(𝑄𝑜,𝑖 ―  𝑄𝑠,𝑖 )2

∑𝑛
𝑖 = 1(𝑄𝑜,𝑖 ―  𝑄𝑂)2

402 Where  and are the observed and simulated flow discharge values, respectively;  is 𝑄𝑜,𝑖 𝑄𝑠,𝑖 𝑄𝑂 

403 the observed mean flow.  

404

405 Fig. 2 Comparison of NSE and rainfall depth (mm) in GR outflow event-based simulations 
406 based on the reviewed studies evaluating model performance.14,34,47,70,93

407 Two model evaluation strategies are often considered. The first strategy is selecting rainfall 
408 events observed at the same site, which is a commonly used method18,35,36,47. In general, so-
409 called validated models perform more poorly than calibrated models, because calibration 
410 involves optimizing model performance by finding the parameter values that lead to best-fit 
411 outputs18,34–36,78,92,94. The second strategy is cross-validation, in which models are tested among 
412 different sites and climate forcings41,56,58. This strategy is becoming increasingly popular, 
413 because it is important for GR planning that the model can predict the performance of new 
414 implementations when data are unavailable. Nevertheless, the transferred model often fails to 
415 predict GR outflow at different sites56,58. The reasons for this failure are associated with the 
416 uncertainties in model physical characterization and parameterization, which will be discussed 
417 in more detail in Section 5.

418 (2) Model applications 
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419 One goal of GR modeling is characterization of GR performance under various designs and 
420 climate forcings. Although the three models can replicate GR outflow, Hydrus-1D can simulate 
421 unsaturated flow processes based on water retention curve and hydraulic conductivity function, 
422 which are essential to clarify soil hydraulic properties. Therefore, Hydrus-1D  can be used to 
423 experimentally simulate the effects on substrate compositions on GR detention.52,91 For 
424 example, Huang et al. (2020) explored the effects of biochar addition on soil hydraulic 
425 properties.88 They found biochar-amendments increased the retention capacity and detention 
426 capacity but decreased saturated hydraulic conductivity because of the rough surface of biochar. 
427 That said, large data demands on model parameterization and high computational costs may 
428 limit Hydrus-1D applications to situations where soil hydraulic properties are vital to render. 

429 Another goal of GR modeling is to explore the watershed/citywide effects of GR 
430 implementation scenarios on stormwater reduction. GR models are commonly integrated into 
431 watershed hydrological models.37,40,70,99 Thus, a simple model that can be easily built and 
432 incorporated into watershed models will provide more modeling flexibility. In these cases, 
433 many current large-scale simulations rely on the use of SWMM.37,40,69,70 Using SWMM 1) 
434 model parameters can be easily found or calibrated; 2) SWMM GR module and bioretention 
435 modules have full capacity to physically simulate the entire water circle with GR; 3) GR 
436 simulations can be easily incorporated into SWMM stormwater model network. 

437 The three GR models have specific strengths and shortcomings, so model selections and 
438 applications depend on available data and research question. If monitored outflow data are 
439 available to calibrate GR model, the water balance model is a good option, because it can 
440 generate accurate simulation results (Fig. 2) with low computational demands29,33,63,100. 
441 However, conceptual models such as the lumped reservoir model may have more uncertainties 
442 in flow predictions relative to mechanistic models because their simple model structures cannot 
443 reflect soil water transport dynamics.37 Further, without explicit parametrization of soil 
444 properties, the water-balance model is often case-specific.63 In contrast, SWMM and Hydrus-
445 1D both explicitly parameterize soil water transport processes, which can better interpret soil 
446 water transport processes. Benefits from numerically solving Richard’s equation, Hydrus-1D 
447 is capable to be used to explore soil hydraulic properties. However, considering the ease of data 
448 collection and parameter estimation, SWMM could be more applicable than Hydrus-1D, since 
449 parameter values can be gathered from the literature. A summary of the potential model 
450 practical uses is shown in Table 3.

451 Table 3 The main characteristics and capabilities of GR models

Model types Characteristics Capabilities Potential applications

Water balance

Type: conceptual model
Development: water fluxes based on water balance 
and often combined with lumped reservoir models.
Computational cost: low

Water storage;
Infiltration;
Drainage flow;
ET

Outflow simulations

SWMM

Type: mechanistic model
Development: Green-Amp infiltration equation, 
Manning’ equation and empirical power law
Computational cost: moderate

Water storage;
Infiltration;
Drainage flow;
ET

Outflow simulations;
Full vertical profile flow 
simulations;
Large-scale simulations;

Hydrus-1D 
Type: mechanistic model
Development: Richard’s equation
Computational cost: high

Water storage;
Infiltration;
ET

Outflow simulations;
Understanding substrate 
hydraulics
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452 5 Limitations and challenges for GR model applications
453 Although the reviewed studies contributed to GR model development, some critical issues may 
454 continue to limit model applications. For example, model parameter transferability is very low 
455 among different models at same sites or the same models at different sites37,40,41,86. 
456 Discrepancies in the calibrated model parameters raise concerns about the accuracy and 
457 reliability of GR models as a design tool. Therefore, identifying the limitations of existing 
458 models is important for improving future models. In this section, four key challenges in GR 
459 model development are identified, including modeling drainage mat flow, characterization of 
460 soil hydraulic properties, ET estimates and scale effects on GR simulations.  

461 5.1 Uncertainties in drainage mat flow
462 The drainage mat (bottom layer)  temporarily stores and gradually drains excess water from the 
463 system to enhance detention (Fig. 3).78 Fig. 3Current GR studies mainly focus on extensive 
464 GRs, with a depth of substrate less than 15 cm, in which the substrate void volume can be 
465 quickly filled, resulting in a fast drainage response.34 Parameterization of the drainage mat, 
466 therefore, plays a significant role in successful replication of observed outflow in extensive 
467 GR.34,41,67,76,78,92 However, the detention of a drainage mat is rarely understood and physically 
468 simulated.  Most GR models, such as hydrus-1D and water-balance models, lack the ability to 
469 simulate drainage mat flow. Those models that did not include drainage mat simulations often 
470 used conceptual reservoir models to simulate the effects of drainage mat on water detention.97 
471 Palla, Gnecco, and Lanza (2012) connected two linear reservoirs to simulate water moving 
472 through the substrate and drainage mat respectively, in which the second layer (assumed as a 
473 drainage mat) took the output from the first layer (assumed as the soil medium) as input to 
474 simulate the drainage.47 Vesuviano, Sonnenwald, and Stovin (2014) modelled GR by 
475 connecting two nonlinear reservoirs in series, which inflow to the drainage layer being equal to 
476 the outflow from the substrate.65 However, the lumped model aims to replicate the drainage 
477 flow but lacks physical interpretations on the associated routing parameters for the drainage 
478 mat, which cannot link back to the model to physically interpret the effects of shape or material 
479 of drainage mat on GR outflow.   

480

481 Fig. 3 Schematic examples of drainage mat with temporary storage (A) and without 
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482 temporary storage (B)

483 Of the reviewed models, only the SWMM model explicitly incorporates drainage mat flow 
484 simulations in the GR and bioretention cell modules. Regardless of the routing assumptions in 
485 the two SWMM modules, the main physical difference between them is the roof slope 
486 characterization. The SWMM GR module utilizes Manning’s equation, in which the roof slope 
487 can be explicitly parameterized. However, when a flat roof is simulated with the slope set to 
488 zero, the assumption of uniform open channel flow based on Manning’s equation is violated, 
489 corresponding to instantaneous runoff.54,78 In contrast, a drainage layer in the bioretention 
490 module is modeled with an empirical power law (assuming a slope of 0), which can be 
491 interpreted as an orifice equation.76 Jeffers et al. (2022) evaluated the effectiveness of the two 
492 modules to simulate GR outflow with different slopes and they found the bioretention cell 
493 module is more accurate to replicate flow in flat roof simulations.78 However, they did not 
494 deduce an optimal module to parameterize and simulate the drainage mat flow. 

495 5.2 Representation of soil characteristics  
496 Parameterization of soil characteristics is crucial to precisely model water movement in the GR 
497 substrate.87,92–94,96,101 In many cases, the simple conceptual model only obtains a robust 
498 representation of the hydraulic behavior of GR and does not derive an accurate representation 
499 of soil physics. Therefore, compared to the mechanistic model, fitted parameters of the 
500 conceptual model cannot be transferred to models built at different sites.63

501 In mechanistic model applications, calibrated values of soil parameters are often used to 
502 estimate soil hydraulic characteristics when soil experiments are unavailable.14,15,35,47,75 
503 However, sometimes model calibration is only based on the goodness of fit of outflow 
504 simulations and the calibrated parameters do not necessarily correspond to the actual soil 
505 properties.37,41,93,94 Broekhuizen et al. (2021) compared four models – SWMM, Hydrus-1D, 
506 Mike-SHE and Urbis – and found low consistency of soil parameter values across models after 
507 calibration, which raises questions about the generalizability of soil parameterization on model 
508 applications.37 Jeffers et al. (2022) found the calibrated hydraulic conductivity slopes 
509 (equivalent to the decay constant in eq. 9) were different between SWMM modules, with values 
510 of 20 and 51, respectively, for the bioretention cell module and GR module.78 As a result, a 
511 non-representative set of soil parameters with low transferability inevitably led to unreliable 
512 modelling results when the model was applied to different sites and scales.40,86,102

513 Further, the substrate properties are influenced by vegetation14,75,97, resulting in field substrate 
514 characteristics that may not match the results from laboratory soil tests102. Johannessen et al. 
515 (2019) found laboratory measured porosity was higher than calibrated porosity41, possibly due 
516 to cracks generated by vegetation roots development85. They also found the wilting points were 
517 lower in lab measurements. This may be due to the wilting point being plant-specific — for 
518 example, drought-tolerant vegetation planted in GR can resist wilting, which leads to higher 
519 retention capacity than bare soil87. In a SWMM simulation, Hamouz and Muthanna (2019) used 
520 laboratory measured porosity and hydraulic conductivity to simulate GR outflow, but could not 
521 successfully replicate the outflow.93  

522 Last, soil hydraulic properties may change over time due to substrate aging and changes in soil 
523 water condition. An experiment conducted by Bouzouidja et al. (2018) that monitored the aging 
524 of substrate suggested the saturated water content decreased by 4% and the saturated hydraulic 
525 conductivity increased by 22%, after three years exposure of substrate.39 Starry et al. (2016) 
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526 found the substrate field capacity was related to antecedent soil water conditions in the 
527 substrate.33 Sims et al. (2019) assigned different values to field capacity (with 0.215 for the wet 
528 periods and 0.193 for drier period) and achieved good predictions even without model 
529 calibration.103

530 5.3 Evapotranspiration estimates 
531 Unlike other GI techniques with deeper soil that rely on infiltration as the primary water 
532 retention mechanism, GR retains water within the shallow substrate and then recovers its 
533 retention capacity via ET over dry weather days. Therefore, the water retention performance of 
534 GR is positively related to soil water storage capacity and ET104.

535 In the literature, potential ET (Hargreaves method) and reference ET (FAO-56 Penman 
536 Monteith method) are mostly used to estimate ET, but many studies found these two approaches 
537 may not appropriately estimate actual ET because actual ET is not only influenced by climate 
538 conditions but also by vegetation type and soil moisture content.16,40,70,79,80,87,92,94,96 Poë, Stovin, 
539 and Berretta (2015) found a declining ET occurred when the soil moisture availability was 
540 reduced and an increased ET (by 17% in spring and 23% in summer) in substrate with addition 
541 of vegetation compared to bare soil.105 Similar findings were observed by Harper et al. (2015) 
542 that when the plants were dormant over winter, variation of ET between the planted and 
543 unplanted substrate trays was small.8 However, potential ET and reference ET models do not 
544 include parameters to capture the effects of vegetation and soil water availability. 

545 To capture the influence of soil moisture on ET estimates, in a simple manner, monthly soil 
546 recovery patterns were used to modify the estimated ET41,79. However, one drawback of this 
547 modification is it requires calibration and thus does not necessarily indicate the actual soil water 
548 availability.41 As a result, more complex modifications were explored to explicitly account for 
549 the influence of soil water availability, for example modifications based on the dry period 
550 duration36,94 or soil moisture time series16,71,86. 

551 To capture the influences of vegetation type on ET, the reference ET is multiplied by a crop 
552 coefficient to account for the physiological influence of different types of vegetation on ET 
553 16,33,92. However, this approach was initially developed for agricultural applications and the crop 
554 coefficients are not well-defined for green roof species and often unavailable to be used for GR 
555 modeling or design33. In GR literature, common plants can be classified as C3 plants and 
556 Crassulacean Acid Metabolism (CAM) vegetation. C3 plants are characterized by C3 
557 metabolisms, in which the CO2 is fixed into a compound with three carbon atoms.106 C3 plants, 
558 including lawn grasses and herbs, usually have a high water demand and show high ET rates 
559 but these plants can require irrigation in drought areas.106 CAM vegetation, such as Sedum 
560 species, can absorb CO2 in the night and usually do not require irrigation, and have relatively 
561 low ET rates.92,107 Cristiano et al. (2020) found that high water demand species such as C3 plants 
562 could have higher ET rates with a crop coefficient > 1, which results in a higher retention 
563 capacity due to its higher probability to have low antecedent soil moisture at the beginning of 
564 rainfall events.106 Based on the literature, crop coefficients were summarized in Table 4. The 
565 crop coefficients are seasonal and species-specific, and high water-demand species can have 
566 crop coefficients lager than 1. However, there are still limited data reported on crop coefficients 
567 for GR plant species. Therefore, more studies are needed to investigate crop coefficients for 
568 different species and provide reference values for GR modeling and design.

569
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570 Table 4 Summary of different crop coefficients used in GR modeling

Study Locations Plant species Crop coefficients
Sherrard and Jacobs 

(2012)19
New Hampshire, 

US Sedum species 0.53

Berretta, Poë, and 
Stovin (2014)16 Sheffield, UK Sedum species 0.65 – 1.36, substrate 

specific
Cristiano et al. 

(2020)106 Cagliari, Italy Several American 
Agave plants 0.5

Starry et al. (2016)33 Maryland, US Sedum species 0.21 – 0.71, species 
and seasonal specific

Locatelli et al. 
(2014)63

Copenhagen and 
Odense, Denmark Sedum species 0.89–0.95

Szota et al. (2017)107 Melbourne, 
Australia,

High water use 
plants

1.16 – 1.67, species 
specific

Szota et al. (2017)107 Melbourne, 
Australia, Low water use plants 0.59 – 0.97, species 

specific
571

572 5.4 Scale effects on GR simulations 
573 Many GR simulations depend on data measured from pilot-scale experiments, because pilot-
574 scale GR can be easily accessed and monitored108. For example, drainage in pilot-scale GR can 
575 be easily observed by installing rain barrels under the test beds to measure water level63,68,92. 
576 However, because pilot-scale GR is often built on elevated test beds above the roof 
577 base76,92,95,103, it suffers from the exposure to additional heat at the bottom which can lead to 
578 higher soil water loss79,109. In contrast, the full-scale GR is installed directly on the rooftop and 
579 can contain non-vegetated areas77,86, so the combined total flow of bottom drainage and 
580 overland flow eventually discharges into the local sewer 40,79,86, even though the surface flow 
581 may contribute a small portion to the total flow35. Drainage monitoring in full-scale GR is 
582 complex and depends on the presence and design of roof drains.86 Possible monitoring 
583 strategies include use of flow meters or water level sensors installed in either GR drainage 
584 channels48,86 or downspouts79. 

585 Researchers and stormwater managers who pursue GR implementations to address stormwater 
586 issues need simulations of GR city-level performance to support their decision-making. 
587 Considering the differences in runoff routing and monitoring between pilot-scale GR and full-
588 scale GR, it is unclear whether GR models based on pilot-scale experiments are representative 
589 of full-scale GR implementations for stormwater management79. Further, city-level 
590 performance is often simulated by creating roof retrofitting scenarios. These scenarios are 
591 defined based on spatial analyses to identify potential roof areas and assume different 
592 percentages of grey roof to be replaced with GR 70. However, the city-level performance of GR 
593 could also be influenced by the GR spatial distributions. Versini et al. (2016) identified that the 
594 distribution of roofs, locating them upstream or downstream of the catchment, impacted 
595 stormwater runoff delay.62 They also found GR implementations in the upstream of the 
596 catchment could better delay runoff. Therefore, modeling city-level performance of GR 
597 requires further considerations to define scenarios that render GR designs, intrinsic catchment 
598 characteristics, and GR spatial distributions. Finally, in addition to understanding the large-
599 scale effects of GR implementation, investment costs can be a significant concern for the 
600 practical application of GR. In the reviewed literature, only three studies86,106,110 included a cost-
601 effectiveness analysis in their simulations. Their results suggest cost-effective stormwater 
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602 management using GR should consider attentively the designs (such as soil and plants) and 
603 potential implementation locations. Given limited funding, the ability to realize potential 
604 benefits through practical uses still needs to be comprehensively evaluated.

605 6 Future needs
606 6.1 GR monitoring to improve model validation
607 GR models need to be validated to improve model predictions in an urban landscape, 
608 particularly for models built based on pilot-scale experiments. Considering the possible 
609 inconsistent values of soil parameters between measurements and model calibrations, 
610 uncertainty and variability among different model types could be reduced with more field 
611 monitoring to support understanding of GR performance. Therefore, building more monitoring 
612 programs can help improve understanding of the changing/aging effects of soil properties on 
613 water transport. Installing sensors, such as moisture sensors, could facilitate monitoring, 
614 because they can continuously track soil water conditions and provide insights to detect 
615 potential changes in soil hydraulic properties. 

616 6.2 Deriving actual ET for GR systems
617 Currently, most common ET predictive methods do not properly predict GR ET. GR managers 
618 could consider different types of plants under different climate regimes. Pilot-scale studies need 
619 to be expanded to derive crop coefficients for various GR plant types to estimate actual ET and 
620 inform future GR design. Soil moisture conditions can impact GR ET. Further research is 
621 needed to improve ET estimates under water stress conditions and provide reasonable estimates 
622 of the soil moisture levels that significantly impact actual ET in GR systems. 

623 6.3 Characterization of GR components
624 Further studies are needed to characterize the effects of plants, soil, and drainage mat on GR 
625 hydrological modeling. The interception GR plants can serve to store and return rainfall to the 
626 atmosphere through evaporation. For example, a mean initial abstraction varying from 5 mm 
627 to 5.9 mm was reported in a previous GR study.55 To expand current soil column experiments52, 
628 adding a commercial vegetation mat atop the soil may help to explore the effects of plant 
629 interception. Considering the granular difference between GR substrate and natural soil, 
630 conventional models describing soil water characteristic curves and hydraulic conductivity 
631 functions need to be evaluated with various substrate types by fitting experimental data to 
632 improve substrate physical representation and model transferability. Further observations of 
633 outflow from full-scale GRs are recommended to determine the impact of GR geometry and 
634 drain placement on GR detention.
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635 6.4 City-scale performance evaluation 
636 More holistic GR simulations at the city scale could be very helpful to support decision-making. 
637 Current city-scale GR simulations mainly focus on evaluating stormwater runoff reductions. 
638 Broader hydrological benefits associated with GR implementations, such as combined sewer 
639 overflow reductions, need to be evaluated to provide a better understanding of city-scale GR 
640 performance. Moreover, identifying potential GR siting locations in scenario simulations can 
641 be influenced by many factors, e.g., roof slopes and building functions. Use of rooftop maps 
642 alone can overestimate GR siting potentials. To better identify all potential GR spatial 
643 distributions, rigorous land use analysis is needed with consideration of the comprehensive 
644 general city plan. Last, to better understand city-level performance of GR, studies on 
645 optimization of GR designs and placements incorporating cost and benefit analysis are 
646 suggested to provide insights to stormwater managers regarding the incorporation of GR into 
647 stormwater management. 

648 7 Conclusion
649 Existing efforts to model GR can be classified as conceptual models and mechanistic models. 
650 Both models can predict GR outflow14,47. Compared to mechanistic models, conceptual models 
651 are simple and require low computational costs. However, due to lack of physical meaning of 
652 the routing parameters, conceptual models are often case-specific63 and the results usually 
653 cannot be generalized. SWMM and Hydrus-1D both explicitly parameterize soil water transport 
654 processes. By solving Richard’s equation, Hydrus-1D is able to simulate flow through 
655 unsaturated soil and, therefore, provide understanding of soil hydraulic properties, but it 
656 requires substantial effort to derive soil parameters. SWMM has a large number of parameters 
657 to specify (>10), but it has full capacities to simulate flow through the entire GR vertical profile. 
658 In addition, SWMM GR models can be easily incorporated into SWMM stormwater model 
659 framework, so it is widely used to simulate the large-scale effects of GR implementations. 
660 Considering the limitations in model applications, efforts are still needed to improve model 
661 accuracy, by better parameterizing drainage mat flow, estimating evapotranspiration, 
662 characterizing soil properties and conducting monitoring programs. To promote GR 
663 implementation, comprehensive studies are required to illuminate trade-offs between the cost 
664 of GR placement/retrofit and the resulting flow reductions.
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