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A Review on the Application of Molecular Descriptors and 
Machine Learning in Polymer Design  
Yuankai Zhaoa, Roger J Mulderb, Shadi Houshyara and Tu C. Lea,*

Polymers are an important class of materials with vast arrays of physical and chemical properties and have been widely used 
in many applications and industrial products. Although there have been many successful polymer design studies, the pace 
of material discovery research can be accelerated to meet the high demand for new, functional materials. With the advanced 
development of artificial intelligence, the use of machine learning has shown great potential in data-driven design and the 
discovery of polymers up to date. Several polymer datasets have been compiled, allowing robust Machine Learning models 
to be trained and provide accurate predictions of various polymer properties. Such models are useful for screening promising 
candidate polymers with high-performing properties prior to lab synthesis. In this review, we focus on the most critical 
components of polymer design using molecular descriptors and machine learning algorithms. A summary of existing polymer 
databases is provided, and the different categories of polymer descriptors are discussed in detail.  The application of these 
descriptors in machine learning studies of polymer design is critically reviewed, leading to a discussion of the challenges, 
opportunities, and future perspectives for polymer research using these advanced computational tools.

1 Introduction
Polymers are one of the most important classes of materials in 
everyday use and industry1–7. Within the past decades, 
polymers have been explored for a wide range of applications 
from daily life to frontier technology, such as aerospace, 
building, medication, energy, and the food industry8–10. Because 
of the broad spectrum of current and potential industrial uses, 
the need for new polymer materials with purpose-designed 
properties are significant. However, owing to the near 
infiniteness of chemical space, polymers possess a variety of 
distinctive physical, chemical and electrical properties. The 
immense combination of extensive chemical composition, 
various monomer structure, complex polymer chain structure 
and various synthesis methods brings tremendous 
opportunities as well as challenges in polymer production and 
selection11. For researchers, with a large number of published 
articles and high-dimensional polymer data, it is resource 
intensive to screen the reported data and extract useful 
information on structure-property relationships, without the 
aid of machine learning (ML) and other advanced 
computational tools12. Significant effort has been made in the 
past in the design and discovery of new polymers. 
Conventionally, trial-and-error experiments were done to 
synthesize and characterize new polymers. Although great 
success was made, the limitation of this approach is also 
Inevitable as experiments were all performed under the 
intuition and experience of researchers13. Furthermore, the 
efficiency of such trial-and-error process is low and unstable. As 
a result, the innovation of new polymers is time-consuming and 
requires extensive resources14. With the development of 
computational technology and material theory, computational 
methods including Density Functional Theory (DFT) and 

Molecular Dynamics (MD), have been utilized for material 
design and development, while the cost of these computational 
studies is high15,16. 

In recent years, with the rapid development of computing 
power and Artificial Intelligence algorithms, ML has shown 
great utility in classification and regression tasks17. ML 
approaches have the ability to process high-dimensional data, 
and extract both linear and non-linear relationships. As a result, 
ML can be deployed with high accuracy and the cost for 
computation is relatively low. As a consequence, ML has been 
aligned with other data-centric domains and achieved great 
success18–20. For example, in the field of polymer design, the 
implementation of ML to identify the relationship between 
polymer microchemical structure and various macro properties 
has been proven to be efficient. In these studies, polymer's 
structural information was coded as input of ML model and 
target polymer properties were set as output. The trained 
models absorb and store the underlying relationship, providing 
stable and precise predictions of polymer properties21–24. The 

Figure 1 The critical components of polymer design with the aid of machine learning.
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process of developing polymers with fit-for-function properties 
with the aid of ML can be summarised in critical steps as shown 
in Figure 1.
Like in any other field, the collection of data is the first and 
crucial step in polymer design using ML. The robustness of the 
studies is closely related to the sufficiency and fidelity of data. 
However, the need for more relevant data has been a challenge 
for polymer design using ML due to the limitation and cost of 
lab-derived data as well as the need for standardisation in 
reporting such data. The two most common and reliable 
sources of polymer data are scientific publications and open-
source databases. Polymer data reported in published articles 
are from lab experiments, so the reliability and fidelity are 
higher than other sources. However, a significant drawback is 
that manual data collection from the literature is very time 
consuming, resulting in inefficient data collection. One possible 
solution for efficient data extraction is using natural language 
process (NLP) tool, but this approach still needs further 
development to become a practical solution25. Open-source 
polymer databases are another important resource, which 
provide easy access to a large amount of data and supporting 
functions such as searching, sorting and visualising that 
contribute to more efficient data management. However, the 
data is usually obtained from multiple sources that use 
predicted or simulated data to enlarge the volume of the 
database, and lead to a decrease of data fidelity. To solve this 
problem, some studies reported exploring of data fusion 
approaches to enhance the uniformity of data26–28.

The second step in the workflow is to transform polymer data 
into a computer-readable format. The numerical representation 
of a polymer is termed polymer descriptor, which aims to 
capture essential polymer structural information for ML 
models29. Up to now there are thousands of polymer 
descriptors that have been developed to quantify diverse 
structural features30. As polymer descriptors carry the 
information fed to ML models, the valid and relevant 
information carried by descriptors directly determines the 
accuracy achieved with ML models, therefore the information 
captured by polymer descriptors is regarded as determining the 
success of the polymer design. Despite a great many polymer 
descriptors have been developed, they are used differently in 
various polymer design applications. There is no rule on how to 
select the optimal descriptors and it is difficult to evaluate the 
use of descriptors across studies. A more commonly accepted 
approach is to generate a long list of descriptors and select the 
ones that are most closely associated with the target properties. 
It can be foreseen that the construction of new polymer 
descriptors and the exploration of descriptor selection strategy 
will significantly promote the development of the whole field.

In the third step of the polymer design, polymer descriptors and 
target property values are fed to ML model as inputs and 
outputs. ML models are central to the overall process as they 
provide accurate property predictions and filter out candidates 
with a high probability of owing the desired properties, thus 
significantly reducing the research time. Another reason for 

adopting ML is that it is easy to deploy. In many studies, Python 
(a programming language) has been used and ML models can 
be built and evaluated in a short time period. To date, many ML 
models have been successfully developed for polymer design, 
ranging from simple regression to complex Neural Networks, by 
which diverse polymer properties are explored31. 

In the final step of the process, the well-trained ML model will 
be used to identify polymer candidates with desired properties 
for lab synthesis. One common approach is to manually 
construct a set of candidate polymers, predict their property 
values and select the top performing ones for synthesis. 
Another approach is the combination of Genetic Algorithm (GA) 
and generative methods. GA is a selection algorithm simulating 
natural evolution and polymers are seen as sequences of the 
building blocks. In each iteration of the generation, the more 
promising offspring will be selected to be reconstructed. Thus, 
after many generations, there is a high probability that newly 
generated polymers will meet the property requirements. 
Generative methods will learn the map from the hidden space 
of the property to polymer structure space by using newly 
generated polymers. With this map, polymers with desired 
properties can be identified.

In this review, important components of polymer design and 
development using ML will be summarised with a focus on 
polymer descriptors. In Section 2, the collection and 
management of polymer data will be discussed and in Section 
3, the different categories of polymer descriptors will be 
explained. Available platforms and software generating these 
descriptors will be summarised. Algorithms for descriptor 
selection will also be introduced in detail. Section 4 provides an 
overview of different ML approaches while Section 5 critically 
reviews the application of polymer descriptors and ML 
algorithms in polymer design and development. In the last 
section, the achievements as well as limitations and challenges 
of the current polymer design technique using ML will be 
outlined, and future perspectives will be discussed. 

2 Data collection
Data collection is the first stage of polymer design. The quality 
of the data is critical to the overall study. While low fidelity can 
lead to the failure of the model training, sufficient, high-quality 
data can facilitate the design of polymers with desired 
properties32. Unfortunately, despite the large volume of data 
currently available in polymer databases, it is hard to obtain 
relevant data when studying specific polymer aspects33–35. The 
need for polymer data has put an obstacle for current ML 
studies. Here, two main sources of polymer data will be 
discussed.

One robust data resource is scientific publications, such as 
journal articles, conference papers and handbooks36. Data 
obtained through these publications generally have a higher 
degree of credibility and accuracy because they are obtained 
directly from laboratory experiments37. However, rich data are 

Page 2 of 26Polymer Chemistry

P
ol

ym
er

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

contained in articles collecting them requires much effort and is 
still mainly done manually. To overcome the difficulty of 
inefficient manual data collection, one ML approach of NLP has 
been explored and applied to extract polymer information38–40. 
NLP can scan the input text and automatically extract polymer 
information including polymer name, synthesis methods, 
processing conditions and polymer property value. This method 
is still in its early stage but shows great potential with the rapid 
development of NLP. 

Another important data resource is open-source polymer 
databases. These databases provide a large amount of data, 
saving a great deal of time, but many of them need to provide 
raw data directly and researchers can only access data for 
applications that may not be of interest. Collected data also 
come from multiple sources. First-principles theory 

computations such as DFT and MD are one of the important 
resources. Data generated by this non-trivial method are 
included in many databases, which may lead to mixing data with 
different fidelity. A data fusion approach can be applied to 
balance the trade-off between data amount and quality41,42. 
Polymers that have not been synthesised are also available in 
existing databases43. Hypothetical polymer data generated by 
computational tools such as DFT and MD calculation are 
provided in such databases. Taking PI1M as an example, 12,000 
polymer data from PolyInfo database are fed into a generative 
Recurrent Neural Network (RNN), which then samples 
approximately 1 million theoretical polymer data44,45. Although 
hypothetical polymer databases show great potential for 
polymer design, the effectiveness of such is yet to be proven, 
and the application scope needs to be clarified. Table 1 lists 
some commonly used polymer databases.

Table 1 Open-source polymer databases and their descriptions.

Name Description URL
PoLyInfo The largest polymer database containing over 

20,000 polymers and more than 100 types of 
properties.

https://polymer.nims.go.jp/en

CROW Thermo-physical data for over 250 polymers 
provides technical information on the most 

common plastics and resins. 

https://www.polymerdatabase.com

CAMPUS Over 9600 entries provided by plastic material 
suppliers. 

https://www.campusplastics.com

PI1M A hypothetical database containing about 1 
million polymers. These polymers were created 
using a generated model trained using 12,000 

polymers from PolyInfo.

https://github.com/RUIMINMA1996/PI1M

Khazana A platform containing over 3270 polymer 
entries storing structure and property data 

created by atomistic simulations. 

https://khazana.gatech.edu

PubChem  Over 60000 polymers with structure and 
property information provided.

https://pubchem.ncbi.nlm.nih.gov

Polymer Property Predictor and Database Provide 263 Flory-Huggins chi parameters and 
212 glass transition temperature data. Also 

proved a binary polymer solution cloud point 
database of 6524 entries. with the value of 
polymer weight-average molecular weight 

(g/mol), polydispersity index (Mw/Mn), 
polymer volume fraction, polymer mass 

fraction and tata cloud point temperature in 
degrees Celsius.

https://pppdb.uchicago.edu

Effective gathering and storing polymer data is a fundamental 
requirement in ML for polymer research.  The first step is to 
determines suitable data type.  Data from peer reviewed 
scientific publications is usually the best choice. However, 
manual searching for publications can be time-consuming, 
resulting in limited data availability for modelling and may 
impact the quality of ML models. On the other hand, some 
studies may require less on data fidelity and more on data 
amount. For these, collecting data from open-source databases 

can be useful. In many cases, data are generated 
computationally and are available in a much larger amount. 
Utilizing management tools provided by the sites enables 
efficient searches and grouping of a broader range of polymers, 
which can facilitate data collection. 
Polymer data can be numeric or structural. Numeric data, 
including polymer names and property values, are often stored 
in tabular format such as Excel files for ease of transfer and 
utilization. Structural data, on the other hand, can be 
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represented using various file formats, each possessing specific 
purposes and characteristics. Below are some commonly used 
file extensions for polymer structural data:
'.mol' or '.sdf': These extensions refer to the MDL Molfile and 
Structure-Data File formats, respectively. They are widely used 
for storing molecular structures, including atom coordinates, 
bond information, and additional properties.
 .pdb': The Protein Data Bank (PDB) format is primarily used for 
representing three-dimensional structures of biological 
macromolecules, such as proteins and nucleic acids. It contains 
information about the atom coordinates, connectivity, and 
experimental data.
'.smiles' or '.smi': The Simplified Molecular Input Line Entry 
System (SMILES) format represents molecular structures using 
a line notation. It provides a compact and human-readable 
representation of molecules, enabling easy exchange and 
processing of chemical data.
'.xyz': This extension represents molecular structures in the XYZ 
file format. It includes atom coordinates and can be easily read 
and processed by various molecular visualization software.
processing of chemical data.

3 Polymer descriptors
Polymer data cannot be used directly for ML model training. 
Therefore, hence polymer structures need to be represented in 
a computer-readable format. Polymer descriptors are 
numerical representations of polymers that extract important 
structural information and transfer it to ML models. The 
generation of polymer descriptors is the most critical step in 
polymer design using ML, as it determines how much valid 
polymer information can be transmitted to the models. 
Adequate, valid information is a prerequisite and important 
condition for ML models to obtain high prediction accuracy. 
To date, there are thousands of descriptors that can be used to 
describe polymer features. Despite such a large number, most 
descriptors can be classified into two categories: monomer level 
descriptors and bulk material descriptors. A polymer is a chain-
structured material with high molecular weight, and the 
structure and properties of the repeating units (monomers) are 
highly correlated with the properties of the polymer. Monomer 
level descriptors focus on various features of monomers, such 
as chemical composition, number of carbon backbone, 
molecular weight, ring or linear structure and functional groups. 
Bulk material descriptors capture large-scale features, such as 

the chain length and structure, surface features, chemical and 
physical properties. 

Polymer descriptor selection is another important process. For 
some of the studies, although a large number of polymer 
descriptors can be calculated, in most case only a small set of 
them are needed. Descriptors intrinsically linked to the polymer 
properties are supposed to be selected. Irrelevant descriptors 
will not only increase the computational cost, but also affect the 
accuracy of the ML model. The overly large number of 
descriptors can lead to over-fitting ML models. For studies that 
generate many descriptors, a common approach is to rank the 
association between each descriptor and the property of 
interest, and then select the top ones for ML training46. To date, 
with the limited number of reported studies on ML for 
polymers, no commonly high rank descriptors have been 
identified. The use of scattering datasets, diverse target 
properties and trained models have resulted in different 
suitable descriptor sets for the studies.

In the following sections, the different types of descriptors will 
be discussed. A variety of well-developed software or 
programming packages that can calculate descriptors will be 
summarized47–49. Descriptor selection algorithms will also be 
reviewed.

3.1 Monomer level descriptors

Line notation is one descriptor that can effectively represent 
monomers where the structural information of monomers is 
encoded into a computer-readable line notation. The simplified 
molecular-input line-entry system (SMILES) is a one-line 
notation where each monomer is represented by an ASCII string 
that uniquely encodes atoms, bonds, rings and branches of the 
monomer. Because SMILES strings are intuitively suitable for 
both human and machine to read, SMILES is widely used in 
materials research50. SMILES string can be directly used as a 
type of descriptor for ML model or transformed to another 
format such as binary vectors or graphs51,52. SMILES notation 
has also been extended for better representation53–55. 

Constitutional descriptors are another type of descriptor. They 
represent atom-based information, including different chemical 
attributes including type, weight, number of atoms in the 
molecular, and the bond between them56. Some constitutional 
descriptors are summarised and shown in Table 2.
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Table 2 Summary of common constitutional descriptors and their corresponding symbols.

Descriptor Symbol
Molecular weight/Average molecular weight MW/AMW

Sum/mean of atomic Van der Waals volumes (scaled on Carbon atom) Sv/Mv
Sum/mean of atomic Sanderson electro-negativities (scaled on Carbon atom) Se/Me

Sum/mean of atomic polarizabilities (scaled on Carbon atom) Sp/Mp
Mean electro-topological state Ms

Number of atoms (H, C, O) nH, nC, nO
Number of non-Hydrogen atoms nSK

Number of bonds/non-Hydrogen bonds nBT/nBO
Number of multiple bonds nBM

Number of single/double/triple bonds nSB/nDB/nTB
Number of aromatic bonds nAB

Aromatic ratio ARR
Number of rotaTable bonds RBN

RotaTable bond fraction RBF
Number of rings nCIC

Number of rings with 3-12 members nR03-nR12

Topological descriptors are 2D connectivity-based indices 
representing the connections between atoms and sections in 
the structure and these play a critical role in the modelling of 
polymer properties. Monomers are regarded as a connected 
graph in the topological representation, denoted as . 𝐺 = (𝑉,𝐸)
Here V represents a set of vertices in the graph, which are the 
atoms in the monomers, while E represents a set of edges which 

are the bonds connecting atoms. Topological indices consider 
the monomers' atom arrangement, and encode their shape, 
size, connection type and bonds, representing the 2D structural 
nature of the monomer57,58. Table 3 provides some commonly 
used topological and other 2D indices.

Table 3 Summary of commonly used topological and other 2D descriptors.

Topological index Description Reference
Walk and path count Descriptors calculated based on molecular graph, counting various walks, paths of 

different lengths.

59

Autocorrelation indices Auto correlation descriptor encode the relative position of atoms or atom properties by 
calculating the separation between atom pairs in terms of number of bonds or Euclidean 

distance.

60

Balaban J Average sum of distance connectivity. 61

Kappa indices Indices describing monomer shape 62

Wiener index (W) Sum of all the edges in the shortest path in the monomer graph between all non-
hydrogen atom pairs.

63

Hyper-Wiener index An index calculated using the sum of distance and squared distance of atoms. 64

Hosoya (Z) Number of sets of non-adjacent bonds in monomer graph, useful for physical properties 
modelling.

65

Geometrical descriptors are generated from the atomic 3D 
coordinates, representing the 3D structural information. These 
geometrical descriptors can obtain structural information such 
as monomer shape, volume, and surface area. Monomers with 
the same chemical composition but different 3D structures can 
be differentiated by geometrical descriptors, thus they are 

useful for cases where the shape or structural changes play a 
critical role in defining polymer properties. Although 
geometrical descriptors provide more information than 2D 
descriptors, they can be computationally expensive. 
Some common geometrical descriptors are listed in Table 4.

Page 5 of 26 Polymer Chemistry

P
ol

ym
er

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t



This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 6

Please do not adjust margins

Please do not adjust margins

Table 4 Summary of commonly used geometrical descriptors.

Geometrical index Description Reference
3D Wiener index Wiener index calculated by geometrical 

distance matrix.

66

3D Balaban index Balaban index is calculated by a 
geometrical distance matrix representing 
the distance between each pair of atoms 

in 3D space.

67

Shadow area A set of six shape parameters calculated by 
the size of the shadow of the molecule 
projected on the X-Y, Y-Z and X-Z axes 

plane and relative normalized rectangle 
size.

68

Solvent accessible surface area (SASA) Solvent accessible surface of the 
monomer.

69

Molar volume Volume occupied by monomer. 70

Fingerprint is another type of descriptor that is commonly 
used23. These are simple one-dimensional vectors with each 
element denoting the presence or count of some pre-defined 
structures or those corresponding to some polymer properties. 
Figure 2 is an example proving the features (fingerprint 
descriptors) of poly(prop-1-ene) monomer are represented as a 
1D vector.

Although fingerprints can be used to describe polymer chain 
features, most of the fingerprints used to date are derived from 
monomer scale information. In most studies, the similarity in 
fingerprints means similarity in polymer sub-structure or 
backbone and higher possibility of similar properties.

3.2 Bulk polymer level descriptors

The Physicochemical properties of the bulk polymers can be 
used as input descriptors in ML models predicting polymer 
properties. These physical and chemical properties could be 
influential factors of the target polymer properties where a high 
correlation between these properties exists. In cases where the 

polymer properties are determined by structural information 
that may not be numerically represented, considering polymer 
physicochemical descriptors can help increase the predictive 
accuracy. Table 5 summarises some physical and chemical 
properties reported in the PolyInfo database.

Figure 2 Fingerprint of poly(prop-1-end) monomer. The black and 
white boxes denote the presence or count of some pre-defined 
structures or those that correspond to some polymer properties.
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Table 5 Physical and chemical properties of polymers from PolyInfo that may be used as descriptors for polymer machine learning models.

Property type Property 
Physical property Density

Specific volume
Thermal property Crystallization kinetics

Crystallization temperature
Glass transition temperature

Heat of crystallization
Heat of fusion

Thermal decomposition 
LC phase transition temperature

Linear expansion coefficient
Melting temperature

Specific heat capacity Thermal conductivity
Thermal diffusivity

Volume expansion coefficient
Electrical property Dielectric breakdown voltage

Dielectric constant (DC)
Dielectric dispersion, Electric conductivity 

Surface resistivity
Volume resistivity

Physicochemical property Contact angle
Gas diffusion coefficient (D)

Gas permeability coefficient (P)
Gas solubility coefficient (S)

Hansen parameter delta-d (dispersive component)
Hansen parameter delta-h (hydrogen, bonding component)

Hansen parameter delta-p (polar component)
Interfacial tension

Solubility parameter
Surface tension

Water absorption
Water vapor transmission

Heat characteristic Brittleness temperature
Deflection temperature under load (HDT)

Softening temperature
Hardness Rockwell hardness

Polymer chain level information can also be used as descriptors. 
They capture structural information such as shape, length, 
degree of branching and other features of the polymer chains. 
Examples of polymer chain level descriptors are the longest or 
shortest of the side chain length and distance between two 
specific blocks. In many cases, the polymer chain level 
descriptors have limited contribution to the predictivity of the 
models. However, for certain studies where polymer properties 
are highly dependent on the chain structure, these descriptors 
are necessary.

3.3 Polymer descriptor generation platform

The computation of polymer descriptors can be done using 
available software and open-source platforms. In most cases, 
using SMILES strings or structural files such as '.mol' or '.xyz' 
extension files, various polymer descriptors can be calculated 
quickly. Table 6 summarises some descriptor generation 
software and platforms.
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Table 6 Summary of polymer descriptor generation software and platforms.

Software Accessible descriptors URL 
Dragon 5270 descriptors covering most variety of 

descriptors including constitutional, 
topological, connectivity and other 2D, 3D 

descriptors.

https://chm.kode-solutions.net/pf/dragon-7-0/

CODESSA Over 1500 descriptors including 
constitutional, topological, geometrical, 

electrostatic, quantum-chemical, and 
thermodynamics descriptors.

http://www.codessa-pro.com/index.htm

PaDEL Over 1800 descriptors including 1D, 2D, 3D 
descriptors. Over 10 types of fingerprints 

are also available.

http://www.yapcwsoft.com/dd/padeldescriptor/

Mordred More than 1800 2D, 3D descriptors. https://github.com/mordred-descriptor/mordred
ChemDesc Over 3600 descriptors from Chemopy, 

BlueDesc, RDKit, CDK, Pybel, PaDE,including 
constitutional, topological, geometrical, 
autocorrelation, connectivity and other 

descriptors.

http://www.scbdd.com/chemdes/list-descriptors/

RDKit A Python package for molecular 
representation and calculation. RDkit can 

be coded directly to calculate descriptors or 
used with other packages such as Mordred, 

ChemPy. RDKit itself can calculate 208 
descriptors including physicochemical 

properties and Fraction of a substructure.

https://www.rdkit.org/

alvaDesc More than 5500 descriptors such as 
constitutional, topological, geometrical and 

molecular fingerprint descriptors.

https://www.alvascience.com/alvadesc/

3.4. Descriptor Selection Algorithm

As the number of theoretical available polymer descriptors is 
rising, descriptor selection is increasingly necessary in polymer 
studies. Although it is possible to build a quantitative structure-
property relationship (QSPR) model with all descriptors, 
descriptors needed to build a predictive model only take a small 
subset29. By removing descriptors that are irrelevant, redundant 
or noisy, simpler and faster QSPR model can be built to achieve 
higher predictive accuracy. This process can also decrease the 
dimensionality of QSPR model's input. Compared with 
molecules of interest, the number of descriptors is required to 
be controlled to a reasonable range to ensure the model 
reliability. The aim of descriptor selection is to remove 
irrelevant input features, reduce the input dimensionality and 
give greater weight to descriptor with effective information. 
The descriptor selection algorithm is the process of getting rid 
of unwanted polymer descriptors while preserving necessary 
information. There are mainly two types of strategies of 
descriptor selection, filter method and wrapper method71. 

Filter methods are intuitive, classic methods that filter 
descriptors by their relevance. To quantify the importance of 
descriptors, the correlation between descriptors and the output 
property such as Pearson correlation coefficient, Information 
gain and Chi squared test is calculated as the relevance score. 
The Pearson correlation coefficient quantifies the linear 
relationship between two variables, indicating negative, 

positive or no correlation. Information gain measures the 
reduction in entropy or impurity to determine the most 
informative features that contribute the most to accurate 
predictions. The Chi-squared test is a statistical test used to 
determine the significance of the association between 
categorical variables by comparing the observed frequencies 
with the expected frequencies. Figure 3 shows the process:

Descriptors with top ranking relevance score are considered 
carrying necessary information and have the highest correlation 
with the target property. Low-scoring descriptors are regarded 
as redundant or irrelevant and will be removed. Once the 
relevance scores are computed and the descriptor ranking is 
determined, ML models are built using the highest-ranking 
descriptors. The total number of descriptors used in a model 
varies in different studies, however, this number should be less 
than half of the total number of data points72.  

Figure 3 Descriptor Selection Workflow. The relevance score for each descriptor is 
computed. Based on the score, descriptors are ranked, and an optimal descriptor 
subset is identified. This subset is then fed into machine learning algorithms.
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As filter method is independent of induction algorithm, it is 
quick, simple and easy to apply. However, the lack of interaction 
with the classifier can lead to a relative low efficiency. Another 
disadvantage is that as relevance score of descriptors are 
calculated independently, the descriptors dependency cannot 
be considered. There are multiple approaches to calculate the 
relevance score, such as information gain, correlation 
coefficient, Euclidean distance and mutual information73–77. 

Wrapper methods aim to find the subset of descriptor that can 
get the highest classifier accuracy. This subset is bind with 

classifier and not apply to other classifiers. Given that each 
classifier has its own biases, each will select different feature 
subsets. In general, the final prediction accuracy achieved by 
wrapper methods outperform filter method29. One critical 
reason is that the correlation between descriptor and classifier 
is built, descriptors' dependence and their interact with the 
predictive model were considered. The main disadvantages of 
wrapper methods include the high risk of overfitting, poor 
generalization ability and high computational cost. Several 
wrapper methods have been summarized in Table 7.

Table 7 A review of wrapper methods, their description, main advantage and disadvantages.

Method Description Advantage Disadvantage
Forward 

Selection78,79
A descriptor with the highest fitness is first selected. 

Then progressively add one descriptor that performs the 
best with regard to fitness function (combined with 

previously selected descriptors). This process stops when 
the stopping criteria is reached.

Intuitive and simple to 
apply.

This method considers only 
the individual importance of 
descriptors. Descriptors that 
are relative and express as a 

group cannot be selected.
Backward 

Elimination80
Cyclically delete one descriptor until all descriptors left 

are significant.
Intuitive and simple to 

apply.
The error criterion is hard to 

set. 
Stepwise 

Selection81
Add one descriptor that applies to the highest fitness 

function and analyze the significance of previous 
included descriptors. The descriptor that lost its 

significance will be removed. This process is repeated 
until no descriptor satisfies the selection criterion.

Simple to apply but 
the performance of 

this algorithm is good.

Non-linear relationships are 
not considered. Usually 

performs better on small 
descriptor poor82.

Genetic Algorithm83 Simulating the natural selection phenomenon, GA 
algorithm first creates a group of N element that contains 

same number of descriptors and calculates each 
individual's fitness. Then generate new offspring by 

crossover and mutation.  Those with better fitness are 
kept and continue to reproduction. Different initial group 
can be created to avoid local minimum and reach global 

optimum.

Simple to apply, 
falsifiable and 

consider global 
fitness84.

It is hard to find the exact 
global optimum. 

Other methods, such as Artificial Neural Network method, 
Simulated Annealing method were also applied85,86. While the 
selection methods become more elaborate, the risk of 
overfitting is increasing at the same time, more computation 
and time are also required. To overcome the disadvantages 
above, a better strategy is to use a hybrid approach that 
combines different descriptor selection algorithms. Some 
studies show that hybrid approach can reduce the risk of 
overfitting with a promising performance 87,88. 

4 Machine learning approaches
Different ML algorithms can be applied to QSPR for polymers. 
Trained ML models can accurately predict various properties of 
interest and identify top candidates for further investigation. In 
this section, ML algorithms that have been used for polymer 
property prediction are introduced. ML optimization and 
evaluation methods are also concluded.
Multiple Linear Regression (MLR) can be viewed as the most 
straightforward ML modelling algorithm90. Regression-based 

algorithms are used in most reported polymer design studies 
using ML91. MLR assumes that the relationship between input 
features and designated outputs is linear, which can be 
represented as92:

(1)𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝜔3𝑥3 +⋯ + 𝑤𝑛𝑥𝑛

where 'y' is the polymer property values, 'xi' is its descriptors 
and 'wi' represents the partial regression coefficients91. To 
measure the difference between measured and predicted 
polymer property values, a function termed loss function will be 
set. The most used loss function is Least Square Error (LSE):

(2)ℒ(𝑥) = ∑𝑛
𝑖 = 1

(𝑦 ― 𝑦)2

where 'y' is the measured polymer property values and 'ŷ' 
represents the predicted values. When the loss function is 
minimized, the corresponding partial regression coefficient will 
be the final model parameter. Although MLR is simple, it 
performs well on many datasets and is often the first choice for 
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material design due to its simplicity in implementation and its 
ability to provide insights on the contributions of different input 
descriptors through its partial regression coefficients. 

Gaussian Process Regression (GPR) is a generalized form of 
MLR. GPR is a non-parametric, Bayesian approach toward 
regression problems93. Instead of assuming a closed function 
form representing the relation between the input and output, 
GPR attempts to fit a flexible function curve for the prediction. 
GPR is a Bayesian approach-based approach, hence the 
prediction is in the form of probabilities94. GPR performs well 
on small datasets, therefore it is suitable for polymer property 
prediction using ML.  There are many other kinds of regression 
algorithms used in polymer studies, such as Partial Least 
Squares Regression, Stepwise Regression, Ridge Regression, Co-
Kriging, Lasso Regression95,96.

Support Vector Machine (SVM) is a powerful ML algorithm for 
modelling non-linear relationships, which can be used for both 
regression and classification tasks97. SVM aims to map original 
data onto an N-dimensional hyperplane (N is the total number 
of descriptors) where data are linear-separable. The kernel 
method is used to map data to a higher dimension. On the 
hyperplane, a margin can be found that separates two classes 
of data, support vectors are the data points that are the closest 
to the margin. Using different data points as support vectors, 
the distance of this margin may change, and the target of SVM 
is to maximize this margin. Figure 4 shows the hyperplane and 
how data are linearly separated in SVM algorithm. The cost 
function of SVM is hinge loss. For each data point, the cost is 0 
if it is correctly classified and 1 otherwise. Normally, a 
regularization penalty element (L2) is also added to SVM's loss 
function. With the loss calculated, weights of SVM can be 
updated by gradients calculated by taking partial derivatives. 
SVM is a robust ML algorithm and performs well in many 
studies98,99.  

Decision Tree (DT) is a tree-structure ML algorithm that can be 
used for both classification and regression100. DT consists of 
internal nodes, leaves and branches, representing attributions, 
classes and classifications. In the training process, the selection 
of attributes that separate the tree into subtrees is achieved by 
calculating the relative loss. The most used loss function for DT 

is cross-entropy loss. The cross-entropy loss is small when most 
of the data are of the same class. Similar to any other ML 
method, one challenge for training decisions is overfitting. In 
DT, one approach for reducing overfitting is using the pruning 
algorithm that minimizes the decision tree branches.

Random forest (RF) is an ML algorithm based on a decision tree. 
It can also be used for regression and classification tasks101. RF 
is an ensemble learning method that uses multiple decision 
trees to obtain a more accurate prediction. For each single 
decision tree, bias caused by outliers or improper model 
parameters and overfitting in small datasets may be challenging 
problems. In the RF training process, sub-datasets are selected 
randomly from the original dataset to train different decision 
trees. Attributes are also randomly selected to split the tree. 
The bootstrap aggregating algorithms used in RF can reduce the 
variance of models. Thus, in most cases, overfitting can be 
avoided. The great advantage of RF is that it can decrease the 
influence of a single decision tree, which makes it easy and fast 
to train. The outcome of RF is determined by decision trees with 
different weights and the influence of poorly trained decision 
trees is minimized.

Artificial Neural Network (ANN) is another important member 
of the ML algorithm family102. It is a network structure 
composed of multiple connected layers with neurons. The most 
intuitive and simple ANN is the feed-forward neural network, 
which is composed of three components: input , hidden and 
output layer103. Each layer has multiple neurons connected to 
neurons in the next layer. The structure of the feed-forward 
neural network and how layers are combined are illustrated in 
Figure 5. The feed-forward neural network algorithm has 
multiple critical components including weight and bias, 
activation function, loss function and back propagation 
algorithm. In training a feed-forward neural network, weights 
that connecting neurons and one bias value will be initialized 
firstly. Then numerical input descriptor values are put into the 
input layer, each neuron can have one value. After that a 
weighted sum of neurons will be sent to neurons in the next 
layer. These sums will be put into an activation function, so the 
computation is non-linear. Similar computation will transfer 
through from the hidden layer to the output layer as the 
network output. In most cases, there is only one neuron in the 

Figure 5 The structure of a simple feed-forward neural network.

Figure 4 Support vectors and hyperplane in Supporting Vector Machine algorithms.
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output layer, and the output value is referred to as the 
prediction by the model. The difference between the prediction 
and measured values will be noted as the loss function and fed 
back to the model by the Back Propagation (BP) algorithm. 
Based on the loss, the gradient will be calculated to adjust the 
weights and bias. Each time a new input data is fed into the 
network, the weights and bias will change until the model's 
prediction is close to the measured value.

Deep Learning is a class of neural networks with massive 
number of neurons and a more complex structure compared to 
ANN, such as Convolutional Neural Network (CNN), Regression 
Neural Network (RNN) and Graph Neural Network (GNN). 
The key advantage of deep learning is its ability to learn 
hierarchical representations of data, where each layer of the 
network extracts increasingly complex and abstract features 
from the input. This allows deep learning models to achieve 
state-of-the-art performance on a wide range of tasks. GNNs 
are a specialized class of neural networks designed to process 
and analyse data represented as graphs, leveraging the inherent 
structural information to achieve superior performance in 
capturing complex relationships and achieving state-of-the-art 
results in various tasks such as node classification, link 
prediction, and graph generation. It is important to note that 
although deep networks can achieve good accuracy, they 
demand large-size-data. Thus, their application in polymer 
research is still very limited.

Genetic Algorithm is an ML algorithm that simulates natural 
evolution. When applied to polymer studies, the first step of GA 
is to split polymers into blocks as polymers can be regarded as 
a sequence of these blocks such as CH2 and CO. Next, there will 
be some rearrangement of these blocks to generate new 
candidate polymers by mutation, crossover and selection 
operations104. Subsequently, new polymers will be assessed, 
and their potential to have desired properties will be evaluated. 
Finally, the top polymers are elected and used for the next 
generation cycle. This process repeats many times until high 
performing candidates are generated. The key advantage of 
deep learning is its ability to learn hierarchical representations 
of data, where each layer of the network extracts increasingly 
complex and abstract features from the input. This allows deep 
learning models to achieve state-of-the-art performance on a 
wide range of tasks. Although deep networks' demand for large-
size-data can be a limit, they have been proven the ability to 
achieved good accuracy and have been used for polymer 
studies105,106.

The optimization of hyperparameters of ML model is an 
important process. Here hyperparameter denotes the values 
that are used to adjust the learning process. A suitable 
hyperparameter set determines the performance of ML model. 
For example, for a GNN, the number of neurons in each layer 
can directly impact the final accuracy. A proper training epoch 
number can avoid the risk of overfitting. There are multiple 
approaches to optimize hyperparameter, such as manual 
search, grid search, random search and Bayesian optimization. 

Traditional grid search and random search have been widely 
used in material science. Grid search algorithms manually 
search through a grid of hyperparameters, different 
hyperparameter combinations will be tested. This method is 
easy to implement and can explore each combination but 
requires much of time and computation and has a low efficiency 
when the dimensionality of hyperparameter is high. Random 
search avoids exhaustive searching by randomly selecting 
hyperparameter combinations. This can greatly reduce the cost 
of computation, and generally have a better performance than 
grid search. However, this algorithm always led to a high 
variance due to its random nature.

If the ML model is trained and tested on one set of data, its 
stability needs to be validated. Cross-validation method can 
evaluate the stability of ML model and indicate its ability to 
predict unseen data. The basic process of cross-validation is to 
split dataset into training/testing set multiple times following 
certain pattern and evaluate the accuracy of ML model on these 
testing sets. This approach can ensure the bias and variance of 
trained ML model to be low as most of the data has been 
covered. Algorithms such as Leave-One-Out, Leave-More-Out 
and k-Fold Cross-Validation have been widely used in material 
science.

ML can also be used for uncertainty quantification, via Active 
learning method such as Adaptive sampling and Bayesian 
optimization89. Active learning is a powerful approach within 
machine learning that enables efficient utilization of labelled 
data by strategically selecting informative samples to annotate 
from a large pool of unlabelled data. Instead of passively relying 
on random or pre-selected samples for labelling, active learning 
actively seeks out the most valuable instances for annotation, 
reducing the annotation burden and improving model 
performance. Adaptive sampling is a common active learning 
strategy that dynamically adjusts the sampling strategy based 
on the model's current knowledge, while Bayesian optimization 
incorporates probabilistic models to guide the selection process 
and iteratively refine the model's understanding of the data 
distribution, allowing for effective uncertainty quantification 
and targeted data acquisition. By actively engaging in the 
learning process, active learning methods enhance the 
efficiency, accuracy, and generalization capabilities of machine 
learning models.

In general, the choice of the ML algorithm is important. The 
performance of different ML models can vary based on the 
dataset and the descriptors generated. In many studies, a 
comparison between different ML models is commonly adapted 
to select the model with the best performance107,108. The 
performance of ML models is commonly assessed using the 
correlation coefficient (r2), relative standard deviation, and 
root-mean-square deviation. In general, the choice of the ML 
algorithm is important. The performance of different ML 
models can vary based on the dataset and the descriptors 
generated. In many studies, a comparison between different ML 
models is commonly adapted to select the model with the best 
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performance107,108. The performance of ML models is 
commonly assessed using the correlation coefficient (r2), 
relative standard deviation, and root-mean-square deviation. In 
general, the choice of the ML algorithm is important. The 
performance of different ML models can vary based on the 
dataset and the descriptors generated. In many studies, a 
comparison between different ML models is commonly adapted 
to select the model with the best performance107,108. 
The accuracy of ML models can be assessed using different 
validation metrics. Correlation coefficient (r2) and Root Mean 
Squared Error (RMSE) are the most common performance 
indicators. r2 is a statistical metric and can be calculated as:

𝒓𝟐 = 𝟏 ―
∑𝒏

𝒊 = 𝟎(𝒚𝒊 ― 𝒚𝒊)𝟐

∑𝒏
𝒊 = 𝟎(𝒚𝒊 ― 𝒚)𝟐

#(𝟑)

where  is the actual value and  is the predicted value.𝒚𝒊 𝒚𝒊

r2 ranges from 0 to 1, with higher values indicating a better fit. 
Models with r2 of 0.90 or over for both training and set data are 
considered extremely accurate while those with r2 of between 
0.80 and 0.89 are viewed as highly accurate. r2 values of 0.70-
0.79 indicate models with reasonable performance and the 
range of 0.60-0.69 corresponds to low predictability. It should 
be noted that these are only rough guidelines as some 
properties such as biological responses are more challenging to 
predict accurately and models with r2 of less than 0.70 could be 
regarded as good.
RMSE quantifies the average difference between the predicted 
values and the actual values in a regression model. 

𝑹𝑴𝑺𝑬 =

𝒏

∑
𝒊 = 𝟏

(𝒚𝒊 ― 𝒚𝒊)𝟐

𝒏 #(𝟒)

where  is the actual value and  is the predicted value. RMSE 𝒚𝒊 𝒚𝒊

provides a measure of the model's accuracy, with lower values 
indicating better predictive performance.
Mean Squared Error (MSE) quantifies the average squared 
difference between predicted and actual values, commonly 
used to evaluate the performance of regression models.

𝑀𝐴𝐸 =
∑𝑛

𝑖 = 1|𝒚𝒊 ― 𝑦𝑖|

𝑛 #(5)

where  is the actual value and  is the predicted value.𝒚𝒊 𝒚𝒊

5 Application of Molecular Descriptors and ML 
algorithm in polymer development

To date, there have been a few studies using different 
descriptors and ML models to predict polymer properties such 
as glass transition temperature, band gap, and dielectric 
constant, as shown in Table 8. The combination of polymer 
descriptors and ML algorithms plays an important role in the 
determination of predictive accuracy. As a result, in most of the 
studies, the computation and selection of polymer descriptors 
as well as the application of different ML algorithms have 
become necessary components. 
In this section, based on different categories of polymer 
descriptors, polymer design and development with the aid of 
ML algorithms will be summarised.
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Table 8 Summary of molecular descriptors applied in polymer development studies using machine learning. Constitutional descriptor applications are not included in this Table. They 
are the most fundamental descriptors that represent the basic atomic information. LR, PLSR, SVR, and GCNN denote Linear Regression, Partial Least Square Regression, Support 
Vector Regression, and Graph Convolutional Neural Network. 

Descriptor type Dataset size & type ML algorithm Target property Ref

SMILES string-based 7372
Computational

RNN glass transition temperature 51

6772
Computational & Experimental

RF dielectric constant 109

1200+ 
Computational

RNN dielectric property value 36

300
Experimental

CNN glass transition temperature 110

234
Experimental

LR refractive index 111

topological & 
physicochemical

100
Experimental

MLR glass transition temperature 112

221
Experimental

PLSR refractive index 113

206
Experimental

PLSR glass transition temperature 114

65
Experimental

SVM intrinsic viscosity 115

77
Experimental

PLSR polymer DNA binding
mediated transgene expression

116

geometrical & polymer 
level descriptor

169
Experimental

MLRAG & ANN critical solution temperature 117

133
Experimental

MLR refractive index 118

262
Experimental

MLR refractive index 119

24
Experimental

MLR glass transition temperature 120

284
Experimental

SVR band gap 121

vectorized fingerprint 13000
Computational & Experimental

GPR crystal bandgap, chain bandgap, frequency-
dependent dielectric constant, glass transition 

temperature and melting temperature

107

1073
Computational & Experimental

GCNN energy storage & electronics applications 52

284
Experimental

KRR bandgap; electronic dielectric constant; ionic 
dielectric constant; total dielectric constant

108

778
Computational & Experimental

RF & DNN gas permeabilities 122

5.1 Application of SMILES string descriptors

SMILES strings have been widely used in material informatics 
and polymer development, where a monomer is represented by 
a string. SMILES strings can be used directly as polymer 
descriptors or as simple representations of the monomer 
structures, whereas 2D descriptors such as constitutional and 
topological descriptors can be generated using SMILES strings. 

However, three-dimensional properties cannot be captured by 
SMILES representation.

Chen et al. developed a chemical language processing model for 
predicting polymer glass transition temperature using 7372 
data points51. The model represented polymer structures using 
SMILES strings, ensuring uniqueness through canonical SMILES 

Figure 6 Polymer representation processing and ML model structure. Reproduced from 
ref. 51 with permission from MDPI, copyright 2021.

Figure 7 The process of converting polymer structures to SMILES strings and further 
preparation to generate input descriptors for machine learning models. Reproduced 
from ref.  109 with permission from the Royal Society of Chemistry, copyright 2021.
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strings. The calculation of such descriptors was done using the 
RDKit package. To transfer SMILES strings to a digital 
representation that can be fed into the ML model, the unique 
characters used in these strings were collected into a list. 
Subsequently, each of these characters was allocated a 
corresponding number based on their location in the list. The 
SMILES strings were finally replaced by a series of numbers and 
fed into the ML model. As a result, in this study, there was a 
total of 45 characters in the list and SMILES strings were 
replaced by sequences of numbers ranging from 0 to 44. To 
ensure the lengths of number-sequences are uniform, shorter 
sequences were padded with zeros. 
Regarding the ML algorithm, A series of RNN models have been 
deployed using the Keras API on the TensorFlow platform122. In 
this study, Long Short-Term Memory (LSTM) unit have been 
employed to build robust models. LSTM is a type of recurrent 
neural network unit that can solve sequential prediction tasks. 
Figure 6 shows that polymers are represented by SMILES strings 
and fed to neural network as character sequences.
As a result, the trained model could predict the glass transition 
temperature to a reasonably high accuracy. The best 
performing RNN model was measured with a r2 of 0.84 and a 
MAE of 30.69 ℃, which are good performance. 

A study focusing on polymers with dielectric constant (DC) for 
an environmentally friendly, high-speed communication 
network was reported by Jiechun et al. 109. In this study, 6772 
polymers from the CROW Polymer Property Database were 
used for training. As SMILES representation can tell whether a 
building block is on the main chain or side chain, in the first 
stage, all the polymer structures were encoded into SMILES 
strings. Several attributes were considered as descriptors to 
capture important structural information such as the number 
and type of atoms on the main chain, number of side chains, 
and bonds type on the side chains, as shown in Figure 7. A total 
of 29 features were used as the input for the ML model. 
Random Forest (RF) was used to classify polymers into three 
groups where the dielectric constant was low, medium and high, 

respectively. The classification model reached an accuracy of 
92.7%, which is enough for the new polymer generation. New 
polymer structures were then generated using Genetic 
Algorithms and their properties were predicted using the 
obtained RF model. To validate the constructed model, the 
authors selected 40 polymers with promising prediction results 
and sent the synthesis request to the intelligent cloud lab for 
automatic synthesis in the synthesis process. Subsequently, 

three polymers were successfully synthesised and two of them 
showed great potential for correlated applications.

In another SMILES string-based application, an original dataset 
of 1200 polymers were gathered and 5% of them were selected 
as a test set by taking every 20th sample36. There were two 
stages in the descriptor generation process. The first involved 
transferring polymer monomer to SMILES strings while the 
second included applying binary and decimal transformation to 
the obtained SMILES strings. In the binary transformation part, 
SMILES strings were encoded as sequences of 1 and -1. The 
longest sequence was 1136 bits long, and zeros were added to 
shorter sequences to ensure all sequences have the same 
length (zero-padded). For the decimal numerical 
transformation, string variables were conversed according to 
the ASCII code. Similarly, all the numerical representations were 
zero-padded to 142 numbers long. The processing procedure is 
shown in Figure 8.
The ML models were built using RNN and applied with 
normalized backpropagation and resilient backpropagation 
learning algorithm. To evaluate the predictive accuracy, the 
trained models have been analysed using RMSE and the relative 
standard deviation (RSD). The average RSD achieved was below 
5% and RMSE values were all below 0.154. These results 
demonstrated excellent prediction capabilities of the RNN 
model.

A study by Luis and Gustavo explored the modelling of polymer 
glass transition temperature using deep learning110. In this 
study, a dataset of about 300 polymers mainly composed of 
polystyrenes and polyacrylates was used. This dataset was split 
into training and test set. First, monomer structures were 
represented by SMILES strings which were then converted to a 
corresponding matrix by applying a one-hot encoding algorithm, 
ss illustrated in Figure 9. There were only zeros and ones in this 
matrix, indicating whether the corresponding characters of row 
(ACSII character) and column (SMILES string character) were the 
same. Thus, each polymer was transferred into a unique matrix 
and interpreted as a binary image which was then fed to a CNN.

In this study, the trained CNN reached an average relative error 
as low as 6% on the test set. To further evaluate the prediction 
ability of the model, an extended dataset with more than 200 
polymers have been employed. As a result, the obtained 
relative errors were still low as in the order of 8%. This has 
proven the excellent performance of the model.

Figure 9 Illustration of how each monomer was transferred into a matrix, then 
converted into a binary image. Reproduced from ref. 110 with permission from 
Elsevier, copyright 2020.

Figure 8 The binary and decimal transformation of SMILES strings. Reproduced from ref. 
36 with permission from the American Chemical Society, copyright 2021.
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In another study on refractive index (n) prediction, ML models 
were developed using SMILES strings as well as computational 
descriptors derived from these strings111. The dataset consisted 
of 234 experimental refractive indices measured at 298K, 
divided into training, validation, and test sets of 78 entries each. 
Unlike previous studies, this research incorporated quantum-
chemical descriptors, which are computationally demanding, in 
addition to SMILES-based constitutional and topological 
descriptors. The CORAL software was used and three different 
approaches to represent polymer structure were adopted: 
chemical graphs, SMILES strings and a hybrid representation123. 
1- ,2- and 3-element SMILES attributes were considered. For 
example, if a SMILES string is denoted as 'ABCDE', then its 
structural attributes can be represented as shown in the 
following equations:

'ABCDE' -> 'A', 'B', 'C', 'D', 'E'( )1𝑠𝑘

'ABCDE' -> 'AB', 'BC', 'CD', 'DE'( )2𝑠𝑘

'ABCDE' -> 'ABC', 'BCD', 'CDE'( )3𝑠𝑘

The way of searching descriptors was to obtain the best feature 
step by step. The first descriptor was the most relevant 
structural attribute, and the rest is determined based on the 
model accuracy combined with previous descriptors. The QSPR 
models obtained were the sum of a constant and a linear 
combination of weighted descriptors, of which the weights 
were calculated based on Monte Carlo simulation method124. 
The validation of QSPR models was achieved based on cross 
validation approach using Leave-One-Out (loo) and Leave-
More-Out (lmo). To ensure that ML model has the general 
predictive ability, the accuracy of QSPR models were tested on 
external test set. The best model had a r2 of 0.96 on training set, 
0.95 on validation set and 0.85 on external test set, which are 
significantly better accuracy compared to previously published 
results. In this study, author also found that calculated flexible 
descriptors can effectively represent molecular structure 
characteristics with comparable or superior levels of detail to a 
3D-geometry dependent method.

5.2 Application of Topological Indices and Physicochemical 
Descriptors

Topological indices are arguably the most common descriptors 
in material informatics research29. This is because they can 
capture structural information, which plays a critical role 
determining material properties. As a result, the developed 
topological descriptors have outnumbered other categories of 
descriptors. On the other hand, polymers' physical & chemical 
properties are also closely related to their structures and are 
often used together with topological indices. In many studies, 
the final predictive accuracy of the ML models can be increased 
by using a good selection of topological indices, so using a 
descriptor selection algorithm to extract relevant descriptors 
from a large pool of descriptors can be one essential part of the 
study125. Some reported studies have employed such selection 
algorithms successfully81.

A study by Anas Karuth, et al. explored the glass transition 
temperature (Tg) of 100 amorphous polymers112. The data set 
was separated into training and testing sets, by ranking the Tg 
value and taking every 5th data for the test set. As a result, there 
were 80 data points in the training set and 20 in the test set. The 
chemical structures of monomers were used to generate multi-
dimensional descriptors. An initial set containing more than 
4500 descriptors was generated by the Dragon 6 software. 
These including descriptors from 0D to 3D and can be 

categorised as constitutional, topological, physicochemical and 
geometrical descriptors. After the elimination of some near-
constant descriptors, 2863 descriptors remained.
A variable selection GA was then used to select a subset of 
descriptors, and an MLR analysis was applied to model the 
relationship between the microstructure and the Tg value of 
polymers. Figure 10 illustrates the framework of the study. The 
best model was obtained using seven input variables, including 
2D-matrix, 3DMorRSE, gateway, functional, atom pair and 
electro-topological index descriptors. 
Several QSPR models predicting glass transition temperature 
have been developed and  evaluated. The seven-variable model 
reached an r2 value of 0.75 and root-mean-square error (RMSE) 
of 0.06 for the training set, and an r2 value of 0.74 and RMSE of 
0.06 for the test set, which indicates a good predictive capability. 
This model was further validated by a y-scrambling plot and the 
results showed that it was a robust model with no coincidence. 
The study also reported that AVS_B(e) (Average vertex sum 
from Burden matrix weighted by Sanderson electronegativity), 
RARS (R matrix average row sum), and nOxiranes (number of 
ethylene oxide groups) were the most influential descriptors for 
glass transition temperature in the model. 

Figure 10 The framework of the Tg prediction by QSPR modelling. Reproduced from ref.  
112 with permission from Elsevier, copyright 2021.
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Khan, et al. reported a ML study on  the refractive index of 
polymers113. An original dataset of 221 diverse organic 
polymers, including mixtures was split into training and testing 
sets of 154 and 67 polymers, respectively, using the Kennard-
Stone method126. This data division method repeatedly 
removes data points pairs that were the farthest in the original 
dataset until the number of data entries reaches the required 
value. Removed data points are put into the test set. In this 
study, the polymer structures were encoded in '.sdf' extension 
files and used as inputs for the PaDEL and Dragon software to 
calculate of descriptors127. Please note that in refractive index 
study, there were already several studies that used quantum-
chemical descriptors, hence requiring a high computational 
cost. In this study, the authors only used constitutional and 
topological descriptors. For copolymers or mixtures, both 
monomers were considered, and the values of corresponding 
descriptors were weighted by their percentages. A large 
number of descriptors were computed and subjected to GA 
analysis to reduce the descriptor dimension (number).

By applying double cross-validation (DCV) and PLSR, four 6-
variables models with different descriptor combinations were 
selected. Descriptors include constitutional, 2D atom pair, 2D 
matrix-based, molecular linear free energy relation, ring and 
edge adjacency indices descriptors. The highest accuracy 
achieved was r2 of 0.911 and 0.893 on the training and testing 
sets, respectively. An external test set was also used to evaluate 
the predictive capability of models. Models achieved r2 values 
from 0.876 to 0.895. This demonstrated that models have 
achieved excellent accuracy for both internal and external 
validation datasets. The workflow of the study is summarised in 
Figure 11. A virtual screening of the design library was also 
performed. 91 compounds were designed and optimized using 
MarvinSketch software and their refractive index values were 
predicted by the generated models. To rank the descriptors 
based on their importance in four models, the authors derived 
the variable importance plot (VIP) and demonstrated that the 
top three important descriptors were MLFER_E (excessive 
molar refraction), Mi (mean first ionization potential) and 
B01[O−Si] (presence/absence of O−Si at topological distance 1).

In a QSPR modelling study on glass transition temperature 
prediction of diverse polymers, topological descriptors were 
applied114. The dataset consisted of 206 polymers from 
different polymeric classes, with a 70% training set and a 30% 
testing set. Additionally, an external dataset of 38 diverse 
polymers was collected. Monomer structures were prepared 
using MarvinSketch software, and an initial pool of 2D 
descriptors was generated using PaDEL and Dragon 
software128. Constant or near-constant value descriptors, as 
well as descriptors with zero or missing values, were removed. 
Variables with an absolute pairwise correlation of 0.95 or higher 
were also eliminated using the stepwise regression selection 
algorithm. As a result, 47 descriptors were selected by stepwise 
selection method. These descriptors were used as the input for 
ML models, generated using double cross-validation (DCV) tool 
and partial least squares (PLS) regression algorithms. Within 
several generated ML models, five most robust and reliable 
models with different combinations of three latent variables 
were selected for the prediction of glass transition 
temperature. Figure 12 outlines the workflow of the study.
The obtained models had a r2 (determination coefficient) 

ranging from 0.702 to 0.805 for the training set and a Q2 
(correlation coefficient) varying from 0.713 to 0.759 for the test 
set. These models also performed well on the external test set, 
with a predicted variance of 0.822 and a r2

pred(95%) of 0.869. The 
results suggest that the models have reached reasonably high 
accuracy.

Topological and other chemical descriptors are also important 
for other polymer properties such as intrinsic viscosity115. In a 
study by S. Wang et al., a dataset composed of 65 polymer-
solvent combinations was compiled. It was separated with a 
ratio of 80% and 20% for training and testing. Due to the high 
polymer weight, 1-5 monomers end-capped with hydrogen 
atoms were considered to represent the polymer structures. In 
the descriptor generation phase, firstly, the SMILES notation of 
all polymers and solvents was generated by RDKit. Then several 
quantum chemical descriptors, such as dipole moment, 
hardness, chemical potential, electrophilicity index, and total 
energy, were calculated through Python through PaDEL, 
Mordred and Psi4 modules were generated. Thousands of 
topological and geometrical descriptors were also generated, 
filtered by variable value and pairwise correlation coefficient. 

Figure 11 The workflow of the QSPR study about the refractive index of the polymer. 
Reproduced from ref 113 with permission from the American Chemical Society, 
copyright 2018.

Figure 12 The workflow of the QSPR study about the glass transition temperature 
prediction with Machine Learning.
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The remaining descriptors were selected in next stage by a 
genetic algorithm-multiple linear regression (GA-MLR) method. 
Although the MLR model had already been built, an SVM model 
was also trained for a higher predictive accuracy. It is 
noteworthy that SVM is a more powerful prediction tool that 
suits small datasets and is better than MLR in most cases129,130. 
The SVM model achieved a much high accuracy than the MLR 
model, which was evaluated by an r2 value of 0. 92 and RMSE of 
29.02 for the test set, compared to those of 0.83 and 42.62 in 
the MLR model. The significantly higher r2 values and lower 
RMSE indicate the superior performance of the SVM model and 
a non-linear relationship between the descriptors and the 
target property. 
By calculating the mean effect of each descriptor, the quantum 
chemical descriptor highest occupied molecular orbital, 
autocorrelation of topological structure descriptor related to 
the polarizability of polymer and topological structure 
descriptor Moran coefficient related to the sigma bond were 
demonstrated to be highly corelated with the intrinsic viscosity.

A limited number of studies have focused on aminoglycoside-
derived polymers, but their investigation has highlighted the 
significance of topological descriptors in understanding these 
polymers. P.M. Khan and K. Roy conducted a QSPR modelling 
study on these polymers, specifically for predicting polymer-
DNA binding and polymer-mediated transgene expression116. 
The dataset comprised 33 polymers for DNA binding and 44 
polymers for luciferase expression. Using Euclidean distance-
based division, the datasets were split into training and testing 
sets (sizes of 25,31 and 8,10)126. Unlike previous studies that 
represent polymers based on their monomers, this study 
utilized representative blocks constructed from polymerization 
reactions. The building blocks were drawn using MarvinSketch 
software and stored in '.mol' format. In the descriptor 
generation step, the authors calculated a set of 2D descriptors 
including ring descriptors, 2D atom pairs, connectivity indices 
and other topological indices using the PaDEL and AlvaDesc 
software. Initially, 154 and 170 descriptors were generated for 
two sets of polymers. These descriptors were then subjected to 
a GA feature selection algorithm and the number was reduced 
to 16 and 38. The final ML model was generated using the PLSR 
approach. 
For DNA binding prediction, the r2 was 0.913 and Q2 was 0.878. 
For polymer mediated transgene expression, models with 
different performances were generated. However, they had 
similar predictive accuracy with an r2 of around 0.78 and a SEE 
of approximately 0.62. These values proves that generated 
models have a reasonably good performance. 

5.4 Application of Geometrical Descriptor & Bulk Polymer Level 
Descriptor

Due to the complexity, geometrical descriptors are less 
common than topological indices. However, they can carry 
some necessary structural information for certain studies. 
Commonly, geometrical descriptors are generated together 
with many other types of descriptors, rather than on their own.  

On the other hand, in most of the studies, only descriptors 
describing monomers are used. In addition, there has been a 
very limited number of studies where chain level, or bulk 
polymer level descriptors are considered.

A study predicting critical solution temperature (θ) using 
geometrical descriptors was reported by Jie Xu et al. 117. In this 
study, 169 data points were collected, including 12 polymers 
and 67 solvents. These data points were divided into a training 
set of 112 points and a test set of 57 points. First, the structures 
of monomers end-capped with hydrogen atoms were used to 
calculate descriptors. Then, employing the HyperChem 
program, 3D-geometries of monomers were optimised to 
ensure the minimum energy conformations were obtained131. 
Finally, the results were sent to Dragon software to generate a 
total of 430 polymer descriptors, including geometrical, 3D-
MoRSE, WHIM and GETAWAY descriptors. To build the ML 
models, a stepwise Multi-Linear Regression Analysis (MLRA) 
was applied with Leave-One-Out (LOO) cross-validation (CV). As 
a result, a model containing 9 descriptors (GETAWAY, WHIM, 
3D-MoRSE, and geometrical descriptors was trained. The mean 
relative error (MRE) in the prediction of critical solution 
temperature for the training and testing sets were 4.02% and 
5.05%, respectively. The comparison between experimental 
and predicted critical solution temperature is shown in Figure 
13.An ANN model was also trained with the quasi-Newton BFGS 

algorithm. The structure of ANN was 9-8-1, representing the 
neuron number in the input, hidden, and output layers. The 
ANN model performs significantly better than the MLR model. 
The MRE value for the ANN model was 1.99% for the training 
set and 2.26% for the test set. The proposed models with 
evaluated high accuracy can be applied for further prediction. 
This study also suggested that the above nine descriptors are 
important and highly related to lower critical solution 
temperature.

Figure 13 The prediction performance of the MLR model on both training and testing 
sets. Reproduced from ref. 117 with permission from John Wiley and Sons, copyright 
2008.
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In a similar study, ML was used to predict the refractive of 133 
polymers from diverse classes118. First, the chemical structures 
of monomers were generated by the ChemDraw14 software132. 
The Dragon software was then used to compute descriptors. 
Initially, a total of 4885 descriptors, including constitutional, 
topological, geometrical descriptors, were generated. Next, the 
descriptors were filtered by removing those with constant or 
near constant variables. Finally, the remaining descriptors were 
transformed using the logarithm function and fed into the 
QSARINS software for the ML model construction. 
A MLRA algorithm was applied with a GA to find the best 
combination of variables. As a result, a four-variable model was 
built with high accuracy. The r2 values are 0.932 and 0.882 for 
the training and test set, respectively, which confirms the 
excellent performance of the model.

Another QSPR study of refractive index was also reported119. In 
this study, a set of 262 diverse polymers were collected from 
multiple publications. To represent polymers' structure, the 2D 
structures of monomers were drawn using the ChemDraw 16 
software, end-capped with hydrogen atoms for consistent 
monomer functionality132. The monomer structures were then 
optimized using HyperChem 8. The dataset was divided into a 
training and a test set, weighing 75% and 25, resulting in 203 
structures in the training set and 66 in the test set. The 
refractive index values were converted to a logarithmic scale. A 
set of quantum descriptors were calculated. About 4500 
descriptors including constitutional, topological, geometrical 
and some 3D matrix-based descriptors were also generated 
using Dragon 6. A combination of GA and MLRA was used to 
develop the ML models. The best-performing model had four 
input variables: constitutional, 2D autocorrelation, 2D matrix-
based and 3D matrix-based descriptors. This model had high 
predictivity with r2 values of 0.904 and 0.880 for the training and 
test sets, respectively.

The importance of geometrical descriptors was emphasized in 
one study predicting the glass transition temperatures (Tg) for 
polymeric coating materials120. In this study, a series of 
oligomers and block copolymers were synthesized. The Tg 
values of 24 polymer samples were measured. 18 samples were 
used as the training set and 6 were used as the test set. The 
chemical structures were prepared using Chemaxon and 
descriptors were computed using the Dragon 6 software128. A 
total of more than 4000 descriptors were generated, including 
constitutional, walk and path counts, connectivity indices, 
information indices, 2D autocorrelations, geometrical and 3D-
MoRSE descriptors. To reduce the dimension, constant 
descriptors were filtered, and as shown in Figure 14, two 
weighing schemes were applied, including an additive 
calculations-based approach and a combinatorial calculations-
based approach. In the end, about 475 descriptors were 
extracted for ML model training. Using these descriptors, 
multiple QSPR models were built and four with the highest 
accuracy were selected. These four models were all linear 
combinations of 1-3 descriptors, including mixture-weighted 

Ghose-Crippen octanol-water partition coefficient, and 3D-
MoRSE descriptors. It is noteworthy that 3D-MoRSE descriptors 
were found to be one of the most important descriptors. These 
models were constructed using the QSARINS software, and they 
had r2 values ranging from 0.851 to 0.911 for the training set 
and 0.872 to 0.935 for the test set, indicating very good 
predictive performance. Octanol-water partition coefficient 
and 3D-MoRSE unweighted descriptors were found to be the 
most important descriptors for glass transition temperatures.

One ML aided study designing polymers with desired band gap 
based on DFT calculation was achieved using support vector 
regression (SVR) algorithm121. This study collected 284 DFT-
calculated polymer samples consisting of certain blocks, 
including CH2, NH, CO, C6H4, C4H2S, CS and O from reported 
publications. A sphere exclusion was adopted to divide the 
dataset at a 4:1 ratio, resulting in a training set of 228 samples 
and a test set of 56 samples. Using the Dragon 7 software, a 

Figure 14 Two schemas that calculate the weighted mixture descriptors. Reproduced 
from ref. 120 with permission from John Wiley and Sons, copyright 2019.

Figure 15 Model with 16 features had the highest R and lowest RMSE. Reproduced from 
ref  121 with permission from the American Society, copyright 2021.

Figure 16 The 3000-length fingerprint generated from the monomer structure. The boxes 
denote the presence or count of some pre-defined structures or those that correspond 
to some polymer properties.
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total of 5270 descriptors were generated, covering most of the 
descriptor types. First, descriptors with a Pearson correlation of 
greater than 0.95 and a standard deviation less than 0.0001 
were filtered. The remaining 1093 features were then subjected 
to a maximum relevance minimum redundancy (mRMR) 
algorithm for further reduction. As shown in Figure 15, 16 
features were selected as the most relevant descriptors, 
including compositional information, topological indices and 
geometrical descriptors. The final SVR model achieved an 
excellent performance with r2 of 0.824 for the leave-one-out 
cross-validation and 0.925 for the test set. 
This study also provided insights on the relationship pattern 
among the 16 selected features and the band gap.

5.5 Application of Vectorized Fingerprints

Vectorized fingerprints are vector-shaped descriptors, where 
each element represents the existence or the count of certain 
structural features in the polymer. It is fast to generate and 
covers a large number of different structural blocks. These 
features can be a specific atom, special ring structure or the 
length of the polymer chain. Currently, a few developed 
software and web applications support fast-and-accurate 

fingerprint generation. Thus, utilizing fingerprints in polymer 
design using ML can become more feasible for researchers.

One good example is the Polymer Genome project where a 
3000-features fingerprint can be computed quickly107. The 
vectorized fingerprint is shown in Figure 16.
There are over 13,000 polymer entries and more than 20 
polymer properties reported such as crystal bandgap, chain 
bandgap, frequency-dependent dielectric constant, glass 
transition temperature and melting temperature. Data was 
collected from reported publications as well as from DFT 
modelling. The size of each data set ranges from 80 to 6721. 
Descriptors in this study include those at the monomer level as 
well as the chain level. Constitution descriptors, topological 
indices, and geometrical descriptors were all covered. It should 
be noted that although many different features can be 
captured, many are irrelevant to the properties of interest.  This 
study simplified the vectorized fingerprints using the Recursive 
Feature Elimination (RFE) or the Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithms. Multiple GPR and ANN 
models were trained and tested to predict various polymer 
properties. Table 9 summarises the performance of some 
models reported by the Polymer Genome project.  

Table 9 Performance of some models reported by the Polymer Genome project. Reproduced from ref. 107 with permission from [AIP Publishing], copyright [2020].

Polymer property Data size ML model Performance 
(RMSE)

crystal bandgap 562 GPR 0.26 eV
chain bandgap 3881 GPR 0.24 eV

frequency-dependent
dielectric constant

1193 GPR 0.16

refractive index (crystal) 383 GPR 0.07
glass transition temperature 5076 GPR 18.8 K

electron affinity 371 GPR 0.18 eV
polymer density 890 GPR 0.03 g/cc

atomization energy 391 GPR 0.01 eV/atom
specific heat 80 GPR 0.07 J/gK

Another study that employed vectorized fingerprints was 
reported by Minggang Zeng et al.52.  This study aimed to 
develop an ML model that can accurately predict polymer 
dielectric constant and bandgap. A dataset of 1073 polymers 
composed of three subsets was built. The first subset of 34 
polymers was derived from experimental data. The second 
subset of 253 polymers was adopted from the Crystallography 
Open Database. The third subset including 314 organic 
polymers and 472 organometallic polymers, resulted from DFT 
calculations. Polymers were represented by monomer's SMILES 
notations. As shown in Figure 17, the Crystallographic 
Information Files (CIF) was converted to 2D graphs. These 
graphs were stored in feature vectors, including atomic and 
bonding vectors. These, together with target properties for 
each polymer and a JSON file storing the initialization vector for 
each atom, were fed to a GCNN.

Besides GCNN, a few commonly used ML algorithms including 
Kernel Regression (KR), RF, Gradient Boosting and ANN were 
also used to train the models, for comparison. Results showed 
that GCNN achieved the most competitive accuracy with the 
MAE of the dielectric constant of 0.24, lower than reported 
values from other published papers107. On the other hand, a 
higher but still acceptable MAE of 0.41 was found for band gap 
prediction.

A study by Arun Mannodi-Kanakkithodi was a classic example of 
fingerprint usage108. First, 7 features were selected as the 
building blocks of the polymer structure. These include CH2, NH, 
CO, C6H4, C4H2S, CS and O. These blocks were selected as their 
existences are highly related to the target properties in this 
study, including bandgap, electronic dielectric constant, ionic 

Figure 17 Polymer research using CIF file and Convolutional Neural Network. Figure 18 ML prediction and DFT calculation comparison on three properties: electronic 
dielectric constant, ionic dielectric constant, and band gap. Reproduced from ref. 108 
with permission from Nature Publishing Group, copyright 2016.
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dielectric constant and total dielectric constant. Then, 284 
polymers with exactly 4 building blocks in this pool were 
considered and used as the training dataset. Polymers with 6 
and 8 building blocks were used as the test set. The fingerprint 
was generated based on the building block count. Three 
matrixes with the size of 1×7, 7×7 and 7×7×7 was generated, 
representing single building block, block-block combination and 
block-block-block component. The elements of fingerprint were 
the counts of the corresponding block. For example, a value of 
2 in a 7×7 matrix means there were 2 block-block pairs in the 
monomer. In this work, a KRR was used for property prediction. 
The average error for the three properties was all in the order 
of 10% or less, and the comparison between DFT calculated and 
ML prediction is shown in Figure 18.
Polymers with 6 and 8 blocks were also predicted using the 
obtained corresponding KRR model. The result confirmed the 
predictive ability and generalization of the models.

Vectorized fingerprints were also used to predict of gas 
permeabilities122. In this study, 778 homopolymers linked to 
He, H2, O3, N3, CO2 and CH4 were collected from PolyInfo and 
other sources. 80% of the data were used as training and 20% 
as test set. A few processing steps were made to generate a 
descriptor capturing key structural information of 
homopolymers, as shown in Figure 19. Each polymer entry was 
represented by its unique SMILES string to allow the calculation 
of 146 relevant descriptors including constitutional, topological, 
and physical descriptors. A Morgan fingerprint with frequency 
was also generated for each entry. Because there were 3209 
unique substructures involved in this study, a 3209-length 
fingerprint vector with binary elements was generated, each 
binary element denoting the existence of a certain substructure 
in the monomer. The fingerprint was then shortened to 114, 
leaving out the most frequently occurring substructures. 
Finally, the obtained two kinds of descriptors were fed to RF and 
DNN for modelling. Predictions were made for 6 gases, and 
most models achieved an r2 value of around 0.9 for the training 
set and above 0.70 for the test set. Performance evaluations 
showed that the trained DNN model have a good predictive 
ability and ensemble generalizes well. This study provided 
chemical insight that VSA_EState8, a hybrid electronic state and 
van der Waals surface area (VSA) descriptor are the most 
important descriptors for predicting gas permeability.

6 Conclusions and future perspectives
Molecular descriptors and machine learning have shown great 
potential in polymer studies with robust, high accuracy models 
developed for a range of polymer properties from glass 
transition temperature and refractive index to band gap and 
dielectric constant and refractive index. The polymer 
informatics field is still in its early stage but has witnessed the 
application of molecular descriptors and the development of 
novel descriptors for polymers. These achievements will pave 
the way for further breakthroughs where new, functional 
polymers are discovered using data-driven approaches, saving 
significant time and recourses.

There are a few challenges that exist, need for more available 
data of sufficient amount for ML and the demand for more 
novel ways to capture polymer structural information for ML 
models. Currently, ML models are built for small polymer 
datasets due to the difficulties in collecting data from scattering 
publications from different laboratories with different 
experimental setups. Furthermore, there are no standards for 
reporting such data. The larger volume of data can improve the 
predictive accuracy, expand the domain of applicability and 
allow more advanced ML algorithms such as convolutional 
neural network and recurrent neural networks to be employed. 
The use of algorithms that can work with limited data such as 
transfer learning and generative adversarial network (GAN) 
should be encouraged133. On the other hand, to date, most of 
the reported studies used structural information of monomers 
as the only input descriptors for the ML models predicting the 
properties of the polymers. Chain level and bulk properties are 
often neglected. As capturing of structural information is 
central to generating accurate models, much effort is needed in 
this area. Although the current workflow can create thousands 
of descriptors using SMILES notations or other formats, feature 
selection algorithms usually classify them as irrelevant and only 
a small number of descriptors remain in the ML models. There 
is an urgent need to develop new descriptors that can 
informatively capture the structural similarities and differences 
of various polymers.  

Polymer informatics studies will provide more practical values if 
the reverse design is more widely considered. Most studies are 
terminated when an ML model with reasonable accuracy is 
achieved. 

Guidelines for designing new, fit-for-function polymers should 
be developed by using more interpretable descriptors and 
extracting through the use of more interpretable descriptors 
and the extraction of feature (descriptor) importance from the 
models. Algorithms such as GA can generate virtual libraries of 
promising candidates for further laboratory analysis.  
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