

Catalytic Dinitrogen Reduction to Hydrazine and Ammonia using Cr(N₂)₂(diphosphine)₂ Complexes

alton Transactions			
T-COM-03-2024-000702			
Communication			
3-Mar-2024			
easley, Charles; Montana State University Bozeman, Chemistry and ochemistry uletski, Olivia; Montana State University Bozeman, Chemistry and ochemistry ankevich, Ksenia; Montana State University Bozeman, Chemistry and ochemistry ulsamy, Navamoney; University of Wyoming, Chemistry ock, Michael; Montana State University Bozeman, Chemistry and ochemistry			

SCHOLARONE™ Manuscripts

COMMUNICATION

Catalytic Dinitrogen Reduction to Hydrazine and Ammonia using Cr(N₂)₂(diphosphine)₂ Complexes

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Charles H. Beasley,^a Olivia L. Duletski,^a Ksenia S. Stankevich,^a Navamoney Arulsamy,^b and Michael T. Mock^{a,*}

www.rsc.org/

The synthesis, characterization of trans- $[Cr(N_2)_2(depe)_2]$ (1) is described. 1 and trans- $[Cr(N_2)_2(dmpe)_2]$ (2) catalyze the reduction of N_2 to N_2H_4 and NH_3 in THF using SmI_2 and H_2O or ethylene glycol as H^+ sources. 2 produces the highest total fixed N for a molecular Cr catalyst to date.

Motivated by the desire to understand and control the challenging multi-proton, multi-electron reaction of N₂ reduction to NH₃, researchers have intensely studied the reactivity of molecular transition metal dinitrogen complexes.1 Well-defined molecular systems offer a high degree of electronic and structural control to regulate chemical reactivity of N2.2 When combined with effective strategies to form N-H bonds, such as proton-coupled electron transfer (PCET) reagents³, i.e. Sml₂ and a proton source, tens-of-thousands of equivalents of NH3 can be generated.4 The valuable information obtained from these studies includes the identification of viable M-N_xH_v reaction intermediates from spectroscopic data that can be used to delineate the mechanistic steps of a putative catalytic cycle. Such studies can aid in the understanding of the mechanistically complex biological N₂ fixation processes carried out by nitrogenase enzymes⁵, as well as heterogeneous Haber-Bosch catalysts.6

Group 6 N_2 complexes bearing monodentate phosphine ligands, especially with Mo and W, were among the first molecular systems to generate stoichiometric quantities of N_2 -derived NH_3 from protonolysis reactions with strong acids nearly 50 years ago. Recently, a renaissance of examining structurally similar $[M(N_2)_2(P-P)_2]$, (M=Mo,W;P-P=diphosphine) systems has begun, elevating these simple complexes as catalysts for N_2 reduction to NH_3 , or other remarkable reactions such as cleavage of the N_2 triple

While these examples highlight new discoveries using $[M(N_2)_2(P-P)_2]$ (M = Mo, W) complexes, catalytic N_2 reduction with analogous Cr compounds are limited. Recent reports highlighted the utility of molecular Cr complexes using a variety of ligand architectures for N₂ activation, 8a, 13 functionalization, 14 or catalytic N₂ silylation. 15 However, molecular Cr complexes that catalyze the direct reduction of N₂ to NH₃ are rare. In 2022, Nishibayashi and co-workers reported a Cr complex bearing a PCP pincer ligand that catalyzed direct N₂ reduction to NH₃ and N₂H₄ at -78 °C to rt. KC₈ and phosphonium salts as H⁺ sources were required for turnover, and this system was not catalytic using Sml₂.¹⁶ Herein we prepared and characterized trans-[Cr(N₂)₂(depe)₂] (1), and report catalytic N₂ reduction to NH₃ using 1 and $trans-[Cr(N_2)_2(dmpe)_2]^{17}$ (2) $(dmpe = Me_2PCH_2CH_2PMe_2)$ at 25 °C using Sml₂ with ethylene glycol or H₂O as proton sources.

Vigorous stirring of yellow trans-[CrCl₂(depe)₂]¹⁸ (1-Cl) in THF with excess Mg powder under a N₂ atmosphere for 24 h furnished trans-[Cr(N₂)₂(depe)₂] as a dark red solid in 70% yield. Isolation of 1 allowed for a comparison of the structural and spectroscopic data with 2 that was reported in 1983.^{17a} The structure of 1, determined by single crystal X-ray diffraction, shows Cr with four phosphorus atoms of the chelates on the equatorial plane and two axial end-on bound N₂ ligands, Fig. 1, panel a. The average Cr–N, Cr–P, and N \equiv N bond distances are 1.904 \pm 0.005 Å, 2.334 \pm 0.007 Å, and 1.104 \pm 0.004 Å, respectively. The corresponding Cr–N, and Cr–P, bond distances in 2 (See ESI†), are slightly shorter at 1.8862(17) Å, and 2.294 \pm 0.005 Å, and the N \equiv N distance is 1.110(2) Å.¹⁹

bond.⁸ Masuda and co-workers reported spontaneous N=N bond cleavage upon one-electron oxidation of *trans*- $[Mo(N_2)_2(depe)_2]$ (depe = $Et_2PCH_2CH_2PEt_2$) to form $[Mo(N)(depe)_2]^{+,9}$ Chirik and co-workers developed a photocatalytic strategy to form NH_3 from $[Mo(N)(depe)_2]^{+}$ and H_2 .¹⁰ Electrocatalytic N_2 fixation with Mo and W-phosphine complexes was described by Peters and co-workers using a tandem catalysis approach.¹¹ Nishibayashi and co-workers showed simple Mo-phosphine complexes catalyzed N_2 reduction to NH_3 using SmI_2 and various H^+ sources.¹²

^{a.} Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA. E-mail: michael.mock@montana.edu

^{b.} Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA.

[†] Electronic Supplementary Information (ESI) available: Experimental procedures, crystallographic details, and additional spectroscopic and electrochemical data. CCDC 2330754 (1), 2330755 (2). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x

COMMUNICATION Journal Name

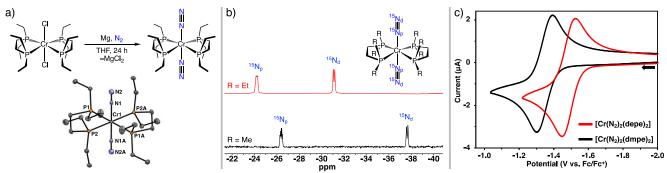


Fig. 1 (a) Synthesis and molecular structure of 1. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted for clarity. Crystals of 1 contain two molecules per asymmetric unit with comparable metric parameters; only one molecule is shown. Selected bond distances (Å) and angles (°): Cr1-N1 = 1.9081(10); N1-N2 = 1.1003(14); Cr-P1 = 2.3343(3); Cr-P2 = 2.3249(3). Cr2-N3 = 1.9008(10); N3-N4 = 1.1069(14); Cr-P3 = 2.3425(3); Cr-P4 = 2.3346(3). Cr2-N3 = 1.9008(10); Cr2

In each case, the ligand bite angles for 1 and 2, i.e. P1-Cr-P2, are 81.6° and 83.5°, respectively, and the P-Cr-N angles are near 90°. The 31P{1H} NMR spectrum of 1 in THF-d₈, displays a singlet at 79.9 ppm (68.8 ppm for 2) consistent with four magnetically equivalent P atoms. Complexes 1 and 2 were characterized by ¹⁵N NMR spectroscopy to augment the cumulative library of tabulated ¹⁵N NMR data of phosphine-supported group 6 N₂ complexes. 13h The 15N₂labelled complexes $\mathbf{1}^{15N}$ and $\mathbf{2}^{15N}$, were prepared by mixing the respective $Cr-N_2$ complexes in THF- d_8 under 1 atm $^{15}N_2$. The ¹⁵N NMR data was collected after mixing for 24 h. The ¹⁵N{¹H} NMR spectra contain two resonances; a doublet (J_{NN} = 7.0 Hz) and a multiplet ($^{\sim}2.5$ Hz 31 P coupling) ($\mathbf{1}^{15N}$: -24.2ppm, -31.1 ppm, and 2^{15N}: -26.4 ppm, -37.6 ppm), assigned as the proximal (Np) and distal (Nd) nitrogen atoms, respectively, (Fig. 1, panel b). 13i

Cyclic voltammetry (CV) experiments established the behaviour of the $Cr(0)-N_2$ complexes. Voltammograms were recorded using a glassy carbon working electrode at 0.1 V s⁻¹ in THF. Each complex displays a reversible, one-electron CrI/0 wave with the half-wave potential $(E_{1/2})$ of -1.49 V and -1.34 V (vs. $Cp_2Fe^{+/0}$) for **1** and 2, respectively (Fig. 1, panel c). The electrochemically reversible Cr^{I/O} couples indicate N₂ dissociation does not occur upon oxidation to Cr(I) during the CV experiments. The reversibility of the waves for 1 and 2 contrasts other cis- or trans-[Cr(N₂)₂(P₄)] complexes measured by CV that exhibit quasi-reversible or irreversible $Cr^{1/0}$ waves due to rapid N_2 loss upon oxidation. 13b, 13c, 13i In the current study, an irreversible anodic wave was assigned to the Cr^{II/I} redox feature at $E_{pa} = -0.48$ V and $E_{pa} = -0.63$ V, for **1** and **2**, respectively, due to N2 dissociation at more positive potentials, (Fig. S16, S17 ESI†). The CV data suggests oneelectron chemical oxidation to form trans-[Cr(N₂)₂(P-P)₂]⁺ should be possible; however, our attempts to isolate such a species have been unsuccessful. Owing to the more electron-rich metal centre of 1, the v_{NN} band in the infrared spectrum at 1906 cm⁻¹ (THF) appears at lower energy than the v_{NN} band for **2** at 1917 cm⁻¹ (THF).

Complexes ${\bf 1}$ and ${\bf 2}$ were examined as catalysts for the direct reduction of N₂ to NH₃ and N₂H₄. The catalysis studies were performed in THF at room temperature using the PCET reagent Sml₂ and ethylene glycol and/or water as proton donors. A typical catalytic run used 583 equiv Sml₂, 1166 equiv ROH per Cr centre and was stirred for 48 h. Quantification of NH₃, N₂H₄ and H₂ (see ESI for details†) products assessed the total fixed N generated in each reaction. Selected catalytic data are listed in Table 1 (see ESI for all tabulated results†).

Table 1. Selected Cr-catalyzed N2 reduction experiments.

$$N_2 + SmI_2 + ROH \xrightarrow{[Cr] \text{ cat.}} NH_3 + N_2H_4 + H_2$$

Entry	Cr cat.	ROH	NH ₃ equiv/Cr ^a	N₂H₄ equiv/Cr ^b	Total Fixed N	Time (h)
1	none	(CH ₂ OH) ₂	0	0	0	48
2	1	(CH ₂ OH) ₂	3.7 ± 0.9	1.4 ± 0.8	4.9 ^h ± 1.5	48
3	1	(CH ₂ OH) ₂	4.6 ± 0.6	4.0 ± 1.7	$8.6^{h} \pm 2.1$	100
4 ^c	1	H_2O	1.4	0.7	2.1	48
5 ^d	1	H ₂ O	3.2	0.6	3.8	28
6	1-Cl	(CH ₂ OH) ₂	1.2	0.9	2.1	48
7	2	(CH ₂ OH) ₂	14.6 ± 1.6	5.9 ± 2.9	20.5 ^h ± 3.8	48
8 ^e	2	(CH ₂ OH) ₂	6.2 ± 0.5	6.4 ± 0.8	$12.6^{h} \pm 0.3$	48
9 ^f	2	(CH ₂ OH) ₂	4.4 ± 0.9	6.6 ± 0.6	$11^{h} \pm 0.4$	48
10^g	2	(CH ₂ OH) ₂	1.1	5.7	6.8	48
11^d	2	H ₂ O	5.1	5.9	11	3
12	2-Cl	(CH ₂ OH) ₂	13.5 ± 2.8	5.9 ± 0.6	19.4 ^h ± 3.4	48

Experiments performed using 0.6 μ mol catalyst in 15.0 mL THF at 25 °C under 1 atm N₂, with 583 equiv of Sml₂, and with 1166 equiv ROH unless otherwise specified. "determined by acidification and NH₄+ quantification using ¹H NMR spectroscopy (see ESI). "determined by colormetric p-dimethylaminobenzaldehyde method (see ESI). "1000 equiv H₂O/Cr; "d10,000 equiv H₂O/Cr; "25 ppm of H₂O. "5250 ppm of H₂O. "583 equiv (CH₂OH)₂, 583 equiv H₂O. Average of two or more trials. H₂ quantification by gas chromatography, values are tabulated in ESI.

Analysis of the catalytic data provides insights about the performance of $\bf 1$ and $\bf 2$ under identical reaction conditions. $\bf 2$ afforded more total fixed N than $\bf 1$ in all catalytic trials. For example, $\bf 1$ generated up to 5 equiv of NH₃ and 5 equiv N₂H₄ per Cr center using ethylene glycol as the proton

COMMUNICATION Journal Name

donor after >100 h. Under identical conditions, 2 produced up to 16 equiv NH₃ and 10 equiv N₂H₄ in 48 h. Furthermore, ethylene glycol worked more effectively as the proton donor affording higher total fixed N than using H2O. The deliterious effect of H₂O on catalysis was noted in reactions with **2** using ethylene glycol as the primary proton source. As the amount of H₂O added to the reaction increased, NH₃ production declined, while the N_2H_4 formed stayed relatively constant. We postulate the Cr complexes may simply be more prone to degradation in the presence of H₂O. Separately, 2 was treated with 500 equiv H₂O or ethylene glycol in THF-d₈. Free dmpe from complex degradation appeared more rapidly using H2O, as assessed by ³¹P NMR spectroscopy. Catalysis performed with **2-¹⁴N** under an atmosphere of ¹⁵N₂ afforded ¹⁵NH₄⁺ as a doublet at 7.1 ppm (J_{15N-1H} = 71 Hz) in the ¹H NMR spectrum, identifying ¹⁵N₂ as the source of ¹⁵NH₃.

Catalytic trials using trans-[CrCl₂(dmpe)₂] (**2-Cl**) and ethylene glycol generated comparable amounts of NH₃ and N₂H₄ as using **2** as the precatalyst. **1-Cl** did not catalyze N₂ reduction, affording only 1 equiv of NH₃ and N₂H₄ per Cr center. Sml₂ and ethylene glycol may be ineffective at reducing the Cr(II) center of **1-Cl** to Cr(0) where N₂ is strongly activated. Treatment of **2-Cl** with 2 equiv Sml₂ and 2 equiv ethylene glycol rapidly generated **2** (See ESI). However, the same reaction of **1-Cl** and Sml₂ with ethylene glycol additive did not form **1** ($E_{1/2}$ = -1.49 V, vide supra). **1** or **2** could not be generated from **1-Cl** or **2-Cl** using excess Sml₂(THF) alone (E° of Sml₂(THF) = -1.41 ± 0.08 V²⁰ vs. Fc/Fc⁺). A Cr(I) species could be accessible, but N₂ activation and subsequent functionalization steps may be moderated at Cr(I), limiting catalysis.

The mixed N_2 reduction selectivity to form NH_3 and N_2H_4 provides preliminary evidence for a catalytic cycle that follows, at least in part, an alternating N_2 reduction mechanism, Fig. 2, bottom. A purely distal N_2 reduction pathway, Fig. 2, top, would be selective for NH_3 formation. In a 1986 report, the reaction of **2** with CF_3SO_3H was potulated to form a Cr-hydrazido product, $[Cr=N-NH_2]^+$. 21

Fig. 2 Plausible N_2 reduction mechanisms for Cr mediated formation of hydrazine and ammonia.

A recent study by Wei, Yi, Xi, and co-workers examining early stage N_2 functionalization of $[Cp*Cr^0(depe)(N_2)]^-$ ($Cp*=C_5(CH_3)_5$) using a variety of electrophiles (H⁺, Me₃Si⁺, Me⁺) also revealed the selective formation of Cr-hydrazido

products, consistent with a distal pathway. Contrary to these reaction patterns, protonation studies of related \it{cis} -or \it{trans} -[Cr(N2)2(P4)] complexes we examined using strong acids or H⁺/e⁻ reagents, as well as the catalytic Cr[PCP] system¹⁶ generated NH3 \it{and} N2H4. 13c , 13i , 15a Considering all these examples, and that N2 reduction mechanisms are sensitive to reaction conditions, (i.e. identity of the H⁺ and e⁻ reagents, solvent, temperature), a hybrid N2 reduction pathway²² where the third and fourth N–H bonds form at the proximal N atom of a Cr-hydrazido intermediate, Fig. 2, middle, cannot be excluded for the current systems. Further studies are warranted to understand the N2 reduction pathways with Cr.

The proclivity for N₂ ligand substitution in 1 and 2 was evaluated as a metric that could reflect catalyst stability and influence catalytic performance. We examined reactions of 1 and 2 with CO to assess the rate of ligand exchange, Fig. 3. Ligand substitution in these six-coordinate complexes is expected to be a dissociative process; a result of Cr-N or Cr-P bond dissociation. Wilkinson, Hursthouse, and co-workers noted 2 did not react with 7 atm CO for several hours except under u.v. irradiation (in light petroleum) to form cis-[Cr(CO)₂(dmpe)₂] (cis-2-CO). 17b This account was surprising, and the unreactive nature toward N₂/CO exchange seemed uncharacteristic of a complex with terminally bound N2 ligands. We reacted 2 with 1 atm CO at 25 °C in pentane or THF without u.v. irradiation and monitored the reaction by in situ IR spectroscopy, or ³¹P NMR spectroscopy (see ESI†). In both solvents the reaction was slow, but 2 was not unreactive. In THF, after 26 h ~85% of 2 converted to a ~1:1 mixture of cis-2-CO and trans- $[Cr(CO)_2(dmpe)_2]$ (trans-2-CO). trans-2-CO converts to ~95% cis-2-CO (and ~3% free dmpe) after additional 46 h by ³¹P NMR spectroscopy. In THF, 1 converts directly to cis- $[Cr(CO)_2(depe)_2]$ cis-1-CO ($v_{CO} = 1829$, 1768 cm⁻¹) in ~3 h by in situ IR spectroscopy (see ESI†). The vastly different rates of N₂/CO ligand exchange underscore the greater kinetic stability of 2 toward Cr-L dissociative processes that could ultimately curtail catalyst deactivation pathways (i.e. ligand loss) improving catalyst performance for N2 reduction compared to 1.

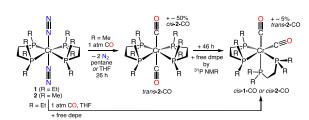


Fig. 3 Ligand exchange reactions of $\bf 1$ and $\bf 2$ with CO display different reaction profiles.

In conclusion, we present a contemporary advancement in the use of trans-[Cr(N₂)₂(P-P)₂] complexes (**1** and **2**) for direct catalytic reduction of N₂ to form NH₃ and N₂H₄ using the PCET reagent SmI₂ and H₂O and/or ethylene glycol as proton donors. A new complex, trans-[Cr(N₂)₂(depe)₂], was

COMMUNICATION Journal Name

presented herein. Despite having similar electronic structures, we posit ${\bf 2}$ is a better catalyst than ${\bf 1}$ (using the presented conditions), due to a less negative ${\rm Cr^{I/0}}$ redox couple and greater kinetic stability from Cr–L dissociative processes.

The authors thank Dr. Bernhard Linden and Mathias Linden for LIFDI-MS analysis. This material is based upon work supported by the National Science Foundation (NSF) under Grant No. 1956161. Support for MSU's NMR Center has been provided by the NSF (Grant No. NSF-MRI: CHE-2018388) and MSU's office of the Vice President for Research and Economic Development. The authors gratefully acknowledge financial support for the X-ray diffractometer from the NSF (CHE 0619920) and a Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (Grant # 2P20GM103432).

Author Contributions

C. Beasley, investigation, methodology, writing, editing; O.L. Duletski, investigation; K.S. Stankevich, investigation; N. Arulsamy, investigation, writing; M.T. Mock, conceptualization, methodology, supervision, writing, editing, funding acquisition.

Conflicts of interest

There are no conflicts of interest to declare.

Notes and references

- (a) Y. Tanabe and Y. Nishibayashi, Chem. Soc. Rev., 2021, 50, 5201-5242; (b) Y. Tanabe and Y. Nishibayashi, Coord. Chem. Rev., 2022, 472, 214783; (c) Y. Nishibayashi, ed., Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, Wiley-VCH, Weinheim, 2019.
- M. J. Chalkley, M. W. Drover and J. C. Peters, *Chem. Rev.*, 2020, 120, 5582-5636.
- (a) Y. Ashida, K. Arashiba, K. Nakajima and Y. Nishibayashi, Nature, 2019, 568, 536-540; (b) N. G. Boekell and R. A. Flowers II, Chem. Rev., 2022, 122, 13447-13477; (c) E. A. Boyd and J. C. Peters, J. Am. Chem. Soc., 2022, 144, 21337-21346.
- 4. Y. Ashida, T. Mizushima, K. Arashiba, A. Egi, H. Tanaka, K. Yoshizawa and Y. Nishibayashi, *Nat. Synth.*, 2023, **2**, 635-644.
- C. Van Stappen, L. Decamps, G. E. Cutsail, III, R. Bjornsson, J. T. Henthorn, J. A. Birrell and S. DeBeer, *Chem. Rev.*, 2020, 120, 5005-5081.
- C. M. Goodwin, P. Lomker, D. Degerman, B. Davies, M. Shipilin, F. Garcia-Martinez, S. Koroidov, J. Katja Mathiesen, R. Rameshan, G. L. S. Rodrigues, C. Schlueter, P. Amann and A. Nilsson, *Nature*, 2024, 625, 282-286.
- 7. J. Chatt, A. J. Pearman and R. L. Richards, *Nature*, 1975, **253**, 39-
- (a) F. A. Darani, G. P. A. Yap and K. H. Theopold, Organometallics, 2023, 42, 1324-1330; (b) S. J. K. Forrest, B. Schluschass, E. Y. Yuzik-Klimova and S. Schneider, Chem. Rev., 2021, 121, 6522-6587; (c) C. E. Laplaza and C. C. Cummins, Science, 1995, 268, 861-863.
- 9. A. Katayama, T. Ohta, Y. Wasada-Tsutsui, T. Inomata, T. Ozawa, T. Ogura and H. Masuda, *Angew. Chem. Int. Ed.*, 2019, **58**, 11279-11284.

- (a) S. Kim, Y. Park, J. Kim, T. P. Pabst and P. J. Chirik, Nat. Synth., 2022, 1, 297-303; (b) M. T. Mock, Nat. Synth., 2022, 1, 262-263.
- P. Garrido-Barros, J. Derosa, M. J. Chalkley and J. C. Peters, Nature, 2022, 609, 71-76.
- Y. Ashida, K. Arashiba, H. Tanaka, A. Egi, K. Nakajima, K. Yoshizawa and Y. Nishibayashi, *Inorg. Chem.*, 2019, 58, 8927-8932.
- 13. (a) A. J. Kendall and M. T. Mock, Eur. J. Inorg. Chem., 2020, DOI: 10.1002/ejic.201901257, 1358-1375; (b) M. T. Mock, S. Chen, R. Rousseau, M. J. O'Hagan, W. G. Dougherty, W. S. Kassel, D. L. DuBois and R. M. Bullock, Chem. Commun., 2011, 47, 12212-12214; (c) M. T. Mock, S. Chen, M. O'Hagan, R. Rousseau, W. G. Dougherty, W. S. Kassel and R. M. Bullock, J. Am. Chem. Soc., 2013, 135, 11493-11496; (d) M. Fritz, S. Demeshko, C. Würtele, M. Finger and S. Schneider, Eur. J. Inorg. Chem., 2023, 26; (e) W. H. Monillas, G. P. A. Yap, L. A. MacAdams and K. H. Theopold, J. Am. Chem. Soc., 2007, 129, 8090-8091; (f) W. H. Monillas, G. P. A. Yap and K. H. Theopold, *Inorg. Chim. Acta* 2011, **369**, 103-119; (g) X. Wang, Y. Wang, Y. Wu, G. X. Wang, J. Wei and Z. Xi, Inorg. Chem., 2023, 62, 18641-18648; (h) M. T. Mock, A. W. Pierpont, J. D. Egbert, M. O'Hagan, S. Chen, R. M. Bullock, W. G. Dougherty, W. S. Kassel and R. Rousseau, Inorg. Chem., 2015, 54, 4827-4839; (i) J. D. Egbert, M. O'Hagan, E. S. Wiedner, R. M. Bullock, N. A. Piro, W. S. Kassel and M. T. Mock, Chem. Commun., 2016, **52**, 9343-9346; (j) I. Vidyaratne, J. Scott, S. Gambarotta and P. H. M. Budzelaar, Inorg. Chem., 2007, 46, 7040-7049.
- (a) J. Yin, J. Li, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, J. Am. Chem. Soc., 2019, 141, 4241-4247; (b) G. X. Wang, X. Wang, Y. Jiang, W. Chen, C. Shan, P. Zhang, J. Wei, S. Ye and Z. Xi, J. Am. Chem. Soc., 2023, 145, 9746-9754; (c) G. X. Wang, Z. B. Yin, J. Wei and Z. Xi, Acc. Chem. Res., 2023, 56, 3211-3222; (d) Z. B. Yin, B. Wu, G. X. Wang, J. Wei and Z. Xi, J. Am. Chem. Soc., 2023, 145, 7065-7070; (e) T. Shima, J. Yang, G. Luo, Y. Luo and Z. Hou, J. Am. Chem. Soc., 2020, 142, 9007-9016; (f) Y. Kokubo, K. Tsuzuki, H. Sugiura, S. Yomura, Y. Wasada-Tsutsui, T. Ozawa, S. Yanagisawa, M. Kubo, T. Takeyama, T. Yamaguchi, Y. Shimazaki, S. Kugimiya, H. Masuda and Y. Kajita, Inorg. Chem., 2023, 62, 5320-5333.
- (a) A. J. Kendall, S. I. Johnson, R. M. Bullock and M. T. Mock, J. Am. Chem. Soc., 2018, 140, 2528-2536; (b) M. C. Eaton, B. J. Knight, V. J. Catalano and L. J. Murray, Eur. J. Inorg. Chem., 2020, 1519-1524; (c) J. Li, J. Yin, G. X. Wang, Z. B. Yin, W. X. Zhang and Z. Xi, Chem. Commun., 2019, 55, 9641-9644.
- Y. Ashida, A. Egi, K. Arashiba, H. Tanaka, T. Mitsumoto, S. Kuriyama, K. Yoshizawa and Y. Nishibayashi, *Chem. Eur. J.*, 2022, 28, e202200557.
- (a) G. S. Girolami, J. E. Salt, G. Wilkinson, M. Thornton-Pett and M. B. Hursthouse, J. Am. Chem. Soc., 1983, 105, 5954-5956; (b) J. E. Salt, G. S. Girolami, G. Wilkinson, M. Motevalli, M. Thornton-Pett and M. B. Hursthouse, J. Chem. Soc. Dalton Trans., 1985, 685-692.
- D. M. Halepoto, D. G. L. Holt, L. F. Larkworthy, G. J. Leigh, D. C. Povey and G. W. Smith, J. Chem. Soc. Chem. Commun., 1989, 1322-1323.
- Structural metrics from XRD data of 2 collected here at 100 K.
 Data from ref 17 at 295 K.
- (a) M. L. Kuhlman and R. A. Flowers II, *Tetrahedron Lett.*, 2000,
 41, 8049-8052; (b) R. J. Enemærke, K. Daasbjerg and T. Skrydstrup, *Chem. Commun.*, 1999, 343-344.
- 21. J. E. Salt, G. Wilkinson, M. Motevalli and M. B. Hursthouse, *J. Chem. Soc. Dalton Trans.*, 1986, 1141-1154.
- (a) J. Rittle and J. C. Peters, J. Am. Chem. Soc., 2016, 138, 4243-4248; (b) N. B. Thompson, P. H. Oyala, H. T. Dong, M. J. Chalkley, J. Zhao, E. E. Alp, M. Hu, N. Lehnert and J. C. Peters, Inorg. Chem., 2019, 58, 3535-3549.