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Cancer has been classified as a diverse illness with a wide range of subgroups. Its early identification and

prognosis, which have become a requirement of cancer research, are essential for clinical treatment.

Patients have already benefited greatly from the use of artificial intelligence (AI), machine learning (ML),

and deep learning (DL) algorithms in the field of healthcare. AI simulates and combines data, pre-pro-

grammed rules, and knowledge to produce predictions. Data are used to improve efficiency across

several pursuits and tasks through the art of ML. DL is a larger family of ML methods based on represen-

tational learning and simulated neural networks. Support vector machines, convulsion neural networks,

and artificial neural networks, among others, have been widely used in cancer research to construct pre-

diction models that enable precise and effective decision-making. Although using these innovative

methods can enhance our comprehension of how cancer progresses, further validation is required before

these techniques can be used in routine clinical practice. We cover contemporary methods used in the

modelling of cancer development in this article. The presented prediction models are built using a variety

of guided ML approaches, as well as numerous input attributes and data collections. Early identification

and cost-effective detection of cancer’s progression are equally necessary for successful treatment of the

disease. Smart material-based detection techniques can give end consumers a portable, affordable instru-

ment to easily detect and monitor their health issues without the need for specialized knowledge. Owing

to their cost-effectiveness, excellent sensitivity, multimodal detection capacity, and miniaturization apti-

tude, two-dimensional (2D) materials have a lot of prospects for clinical examination of various com-

pounds as well as cancer biomarkers. The effectiveness of traditional devices is moving faster towards

more useful techniques thanks to developments in 2D material-based biosensors/sensors. The most

current developments in the design of 2D material-based biosensors/sensors—the next wave of cancer

screening instruments—are also outlined in this article.

1 Introduction

According to WHO (World Health Organization) data from
2018, cancer was the only factor in 9.6 million deaths, making
it the most prevalent cause of death.1 On a global scale, cancer
is said to be the sixth leading cause of mortality. This high-
lights the critical need to develop fresher, more targeted treat-
ment plans for cancer. Cancer is a broad concept; it describes

the sickness that develops after biological alterations that lead
to unchecked cell proliferation and division. The majority of
cells in the human body have set lifespans and specific func-
tions. Apoptosis, a natural event, is programmed cell death. A
cell perishes so that our bodies can replace it with a healthier,
more functional one. Cancerous cells are not equipped with
the processes necessary for inducing them to cease proliferat-
ing and die. Due to their growth within the body, they have the
potential to produce tumors, harm the immune system, and
lead to other abnormalities that impede the body from operat-
ing normally.2 Early cancer diagnosis is challenging, and
patients who have undergone treatment for it frequently
relapse. Additionally, it is quite difficult to make precise fore-
casts about disease prognosis with great certainty. Due to their
hazy symptoms and illegible warning indications on scans,
some malignancies can be challenging to identify in their
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early stages. Therefore, it is critical to improve predictive
models in clinical cancer research by employing multivariate
data and high-resolution diagnostic technologies. AI and ML
have been speculated to have major implications in medical
technology for the detection, progression, and management of
diseases. This creative synergy, as shown in Fig. 1, transforms
disease detection, monitoring, and therapy by fusing advanced
imaging technologies with artificial intelligence algorithms. AI
enhances precision medicine by evaluating large datasets,
spotting minute patterns, and making previously unheard-of
predictions about the course of diseases. AI-enabled imaging
technology offers a proactive approach for healthcare by accel-
erating medical advances from early diagnosis to personalized
therapies. This dynamic integration creates the groundwork
for a future in which personalized medicine and predictive
insights completely transform the current state of healthcare.
It also improves diagnostic skills. These technologies are
gradually expanding their influence on daily life. By utilizing
massive data sets, breakthroughs in AI and ML have paved the
way for autonomous illness diagnosis tools that will help to
address the hurdles of detecting human diseases at an early
stage, particularly in the case of cancer.

The development of neural network based algorithms for
ML, a subset of AI, enables computers to learn and solve pro-
blems similarly to the human brain.3,4 In turn, DL is a subset
of ML that replicates the human brain’s capacity for data pro-
cessing to recognize objects and images, comprehend
languages, find new drugs, advance precision medicine,
enhance diagnosis, and support human decision-making.
Without human oversight, it can also function and provide
suggestions.5 With the use of an artificial neural network,
which is made up of inputs, outputs, and numerous hidden

multi-layer networks to improve machine learning handling
capabilities, DL can process data, including medical images.
Clinical oncology research is now more heavily concentrated
on unravelling the molecular basis of cancer by comprehend-
ing the intricate biological framework of cell proliferation. To
address the current situation of an increasing number of
cancer fatalities worldwide, it also concentrates on processing
the millions of pertinent instances in big data and cognitive
biology. Additionally, the likelihood of early disease prognosis
and identification using next-generation sequencing and high-
resolution imaging techniques is thought to be improved
using AI in clinical decision-making. Creating sizable datasets
and utilizing specialized bioinformatic tools could additionally
lead to the introduction of novel biomarkers for determining
the presence of cancer, the design of novel personalized medi-
cations, and the administration of prospective treatment
regimens.6

Early cancer detection remains a pipe dream, necessitating
the creation of cutting-edge, smart materials. Traditional
methods, such as physical examinations, biopsies, and blood
tests, are laborious to perform and time-consuming. Modern
sensors/biosensors have thus been implemented in the field of
oncology, and current research has demonstrated that their
use has led to the development of more effective detection
alternatives and further molecular data. Large-scale data col-
lection has gotten simpler and more affordable as sensors
have become more widely available.

Research on the creation of innovative diagnostic and thera-
peutic approaches for cancer treatments is centered on the
swiftly growing field of nanotechnology. It encourages the cre-
ation of tools for the treatment of cancer, including ablation,
medication delivery, and detection and diagnostics. Early
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illness detection is essential for providing successful cancer
treatment. The early identification of biomarkers is therefore
necessary for the effectiveness of cancer treatment.
Biomarkers are natural moieties present in tissues, blood, and
other bodily fluids that change during pathological processes,

such as cancer, and can be tracked to distinguish an infected
patient from a healthy individual. Meanwhile, 2D materials,
like graphene and MXenes, show potential in biosensing appli-
cations, enabling ultra-sensitive detection of cancer bio-
markers. Modern-day 2D-nanomaterial advancements have

Fig. 1 AI-enabled imaging technology advances disease diagnosis and monitoring, transforming healthcare by enhancing precision, early detection,
and personalized treatment through sophisticated analysis and interpretation of medical images.
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given researchers new tools for combating cancer-related pro-
blems.7 Compared to other inorganic materials, 2D materials
have the capability to improve selectivity, by coupling with an
aptamer, antibody, or cell-specific targeting peptide. 2D
materials have the ability to increase deep tissue penetrability,
chemical structure and moieties can be adjusted by varying
their excitation and emission owing to their exceptional pro-
perties. A hydrophilic polymer surface coating can improve
their solubility in aqueous solution, thereby increasing their
efficacy on the transducer surface. The fact that 2D materials
are environmentally benign and sustainable is crucial. Novel
functional nanomaterial-based systems for detection with pro-
spective medical applications have been successful because of
enhanced methods for completing the surface modification of
nanomaterials and control over the preparation of these
materials at the nanoscale.

Modern nanomaterial-based platforms for detection, moni-
toring, and prompt diagnosis enable the quantitative identifi-
cation of cancer biomarkers with increased precision and
specificity.8 Although several aspects have seen tremendous
improvement, healthcare sensors still have major shortcom-
ings. Intuitive health monitoring is now possible because of
the growth of artificial intelligence, which has also made it
possible to make very accurate forecasts and judgments. A
closed-loop system with the capabilities of real-time monitor-
ing, data gathering, digital evaluation, diagnosis, and treat-
ment suggestions may be realized by fusing the internet of
things (IoT), AI, and healthcare sensors. AI and its subsets, ML
and DL, offer sophisticated data analysis, enhancing diagnos-
tic precision and tailoring treatments. These techniques excel
in image recognition, enabling swift and accurate analysis of

radiology scans, and facilitating early prediction and detection
of cancer. Together, these advancements are revolutionizing
early diagnosis and the personalization of therapeutic strat-
egies, promising improved outcomes for cancer patients. This
article discusses the recent state-of-art in the prediction of
cancer based on artificial intelligence, machine learning, deep
learning strategies, and quantum technologies. We have also
incorporated a thorough study of advanced 2D nanomaterials
employed in the detection of biomarkers for different types of
cancers.

2 Artificial intelligence to support
health wellness

AI describes computer algorithms or programs that use infor-
mation to arrive at judgments or predictions. For the computer
to assess data and reach a particular judgment, scientists may
develop a set of rules, or directions, for the system to follow.
John McCarthy first used the phrase “artificial intelligence” in
1956 to refer to “the science and engineering of creating intel-
ligent machines”.9,10 Beginning as a straightforward set of “if,
then” principles, AI has developed over the years to include
complex, hybrid algorithms that function comparably to the
brain of a person.9 Today, AI is an innovative and quickly
developing paradigm that takes into account various scientific
domains, including those concerned with handling the affairs
of patients with cancer.10,11 AI can be viewed as a generic term
to describe computer algorithms that demonstrate a machine’s
capacity to discover trends and correlations from an adequate
number of realistic representations and to apply this knowl-
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edge to enhance the prevailing strategy for the procedure of
making decisions in a particular field.11

AI-powered forecasting algorithms are now a vital part of
cancer treatment. By recognizing the risk variables, predictive
models can determine a person’s likelihood of developing a
specific cancer. AI can identify people who are at a greater risk
of catching the disease ahead of it spreading. This makes it
possible for medical experts to closely monitor these patients
and take prompt action as and when required.12 Intelligent
tools for early disease prediction, effective screening, and
ongoing monitoring are made possible by the application of
AI, ML, and DL approaches, as shown in Fig. 2. These tech-
niques make use of data patterns to predict possible health
hazards, expedite the diagnostic procedure, and offer patient
monitoring in real time. The combination of AI, ML, and DL
provides proactive insights for healthcare professionals,
leading to a paradigm shift in the field towards personalised
and preventive medicine and ultimately improving the overall
effectiveness of illness management.

In comparison with other ailments, cancer has the greatest
number of clinically significant variations and numerous
multi-modal therapeutic choices, in part due to developments
in translational studies and the execution of clinical trials.13

Given the broad spectrum of malignancies and the diversity of
observed manifestations, oncology may have the highest
demand for individualized therapy. To take advantage of
inherent data richness of the cancer sector, AI developers rely
on the trifecta of computational methods, databases, and com-

puting resources. To achieve the degree of precision that oncol-
ogy strives for, each of these AI principles must be expanded
beyond existing limitations. AI algorithms have been used to
detect circulating tumor cells (CTCs) in patients with esopha-
geal cancer, and the results showed that the use of a convolu-
tional neural network (CNN)-based AI for CTC detection was
effective.14 In addition, further molecular characterization of
the CTCs might enhance the possibility of using these cells to
distinguish clinically significant and non-significant, indolent
cancers. Identifying different subsets of CTCs, for example,
distinguishing between dormant and proliferative CTCs and
CTCs associated with different immune cells, might be clini-
cally useful.15

The simulation algorithms used in medicine are as diverse
as the issues they were individually created to address. Since
most algorithms are not tied to any one application, signifi-
cant efforts are being made in both industry and academia to
advance the discipline. In several cancer applications, artificial
intelligence has already surpassed the crucial barrier of
exceeding professional opinion-based assessment platforms,
increasing the likelihood that it will be used in therapeutic set-
tings. With this momentum, it is anticipated that approaches
based on AI will be further researched and eventually incorpor-
ated into practice.16 It is vital to anticipate how gradual
advancement might lead to the shared objective of genuine
precision oncology, even although doing so runs the danger of
escalating the years of criticism that have offset the field’s
usually bold promises. Diverse technologies are included in AI,

Fig. 2 Utilizing AI, ML, and DL techniques for early disease prediction, efficient screening, and continuous monitoring, advancing healthcare
through innovative, data-driven approaches.
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which has the unifying goal of computationally simulating
human intellect. The internet of things (IoT) has developed
over the past ten years, embracing new technologies like ML,
DL, supply chains, cloud computing, security, and datasets.
This evolution has expanded its industrial acceptance, primar-
ily in the healthcare sector. The goal of ML, a branch of AI, is
to find patterns in data and make predictions.

Using ML techniques, the IoT assists in providing an ana-
lysis of real-time data and historical data. A branch of ML
known as DL involves generating predictions by employing
multi-layered neural network algorithms that are motivated by
the brain’s neurological structure. The neural network design
of DL enables the simulations to be scaled linearly with the
increasing amount and complexity of data, in contrast to other
ML approaches like logistic regression. Difficult computational
problems including large-scale picture categorization, natural
speech manufacturing, speech recognition, and translation
may be solved using DL in this way, which makes it extremely
helpful.

2.1 Support vector machine (SVM): a machine learning
approach

Support vector machine (SVM) learning, a type of machine
learning that maximizes the separation margin (vector), is a
potent classification method that has been applied to the cat-
egorization or subtyping of cancer genomics.17 The decision
boundary of an SVM, a binary linear classification, is specifi-
cally designed to reduce generalization error. It is a very strong
and adaptable machine learning model capable of conducting
regression, outlier identification, and linear or nonlinear
segmentation.

The categorizing feature of SVM has expanded its appli-
cation in cancer genomics as improvements in high-through-
put methods result in the generation of enormous quantities
of genomic and epigenomic data. This has led to the explora-
tion of fresh biomarkers, unfamiliar drug targets, and
improved comprehension of cancer driver genes.

SVM provides the following benefits:
• Efficient for spaces with multiple dimensions.
• Beneficial for instances in which the number of para-

meters exceeds the quantity of samples.
• It is also memory viable since it only uses a portion of the

learning points (known as support vectors) in the selection
function.

• Different kernel functions can be declared for the
decision activity, making it customizable. There are common
kernels available, but one can also define the kernels.

An increasingly used tool for machine learning problems
requiring classification, regression, or novelty detection is the
support vector machine. To train a support vector machine, an
extremely complicated quadratic programming issue must be
solved. Memory limitations prevent the straightforward appli-
cation of conventional optimization techniques.18

There are currently several effective methods for getting
around the aforementioned problems for use in the detection,
diagnosis, and prognosis of cancer. Particle swarm optimiz-

ation, also known as quantum-behaved particle swarm, is a
new learning algorithm that has been introduced. The active
set strategy and least-squares support vector machine (LSSVM)
are two further methods that are being explored.19 These
approaches’ outputs are evaluated on a dataset related to
breast cancer and contrasted with the precise solution model
issue.

Fig. 3 illustrates the numerous steps taken in the construc-
tion of a system for categorization. The feedback arrows make
it clear that these processes are interdependent. They are inter-
connected, and based on the outcomes, one may go back and
rebuild earlier stages to enhance the performance.

Support vector machines have several drawbacks, including
over-fitting when selecting kernel functions and regularisation
terms if the total amount of parameters is much more than
the quantity of samples. It also limits the probabilistic antici-
pation that is not directly provided by SVMs; instead, they are
computed via a costly five-fold cross-validation method.20

Three challenges must be overcome when utilizing the SVM
for cancer screening: selecting the best kernel function, select-
ing the ideal input feature subset, and determining the ideal
kernel parameters. These difficulties are important since
selecting a feature subset affects the appropriate kernel set-
tings and vice versa.

The choice of features is a crucial consideration when creat-
ing categorization systems. To have a decent prediction model
with a less computationally exorbitant model, it is preferable
to restrict the amount of input characteristics in a classifier for
a more profound manner of prediction. The development of a
model that can manage all three challenges at once is a crucial
challenge that will require more study in the field of cancer.21

2.2 Neural networks: a deep learning approach

Like the neural networks of humans, artificial neural networks
(ANNs) provide a solid method for addressing the problem of
categorization and predicting issues. An ANN is a mathemat-
ical framework inspired by the structure and functionality of
natural neural networks. In neural networks, there are input
and output layers in addition to hidden layers that (in the
majority of situations) convert the input into something the
output layer can utilize. A neural network that is used to detect
cancer goes through two stages: training and validation. The
network is first trained with the help of a pre-determined
dataset. The network is then evaluated to identify the cat-
egories of a new dataset after the relative weights of the links
between neurons are adjusted.22

To derive non-linear, entwined, and relevant characteristics
from enormous and high-dimensional data, DL uses ANNs.
Millions of tightly coupled computational neurons grouped
into successive layers make up a deep neural network. A
neuron is linked to neurons in the layer beneath it, which is
where it obtains its data, and neurons in the layer above it, to
which it transmits data, throughout every layer.23 A neural
network supplies every training specimen with an established
ground truth to its layer of input when given data then passes
the knowledge down to all subsequent layers (sometimes
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referred to as hidden layers). The forecast is then created by
multiplying, dividing, adding, and subtracting these data
millions of times until it gets to the output layer.24

Every training and label pair sample is passed through a
neural network in guided DL datasets while the network’s
weights and cutoffs are changed to bring the predicted value
closer to the given label. These learned cutoffs and weights are
thawed and applied to forecast the unknown (test) data
(Fig. 4). By identifying patterns throughout the whole tran-
scriptome, ML/DL algorithms can go beyond the limits of con-
ventional computational techniques.25 For example, an ML
approach employing whole-transcriptome RNA sequencing
data and multiple tumor histories has been found to correctly
recognize a cancerous condition and distinguish it from
normal cells; it additionally worked well for extremely uncom-
mon cancer types and showed utility for identifying the site of
tumor formation.26

Screening efforts have increased survival in several cancer
groupings but choosing patients and risk differentiation
remain major obstacles. Additionally, there are worries that
the COVID-19 pandemic may put pressure on pathologists and

radiologists owing to the shortage of diagnostic staff.27 The
use of neural networks powered by artificial intelligence algor-
ithms may help doctors better diagnose cancer recurrence,
investigate, and assess those with symptoms, and screen
asymptomatic people at potential risk of cancer.

For instance, Mostafa et al. developed multiple convolu-
tional neural network (CNN) models that categorized tumor
and non-tumor specimens into their respective cancer kinds
or identified them as normal using unorganized gene
expression inputs. They constructed three CNN models,
namely, 1D-CNN, 2D-Vanilla-CNN, and 2D-Hybrid-CNN, based
on various gene anchoring architectures and convolution
algorithms. The Cancer Genome Atlas (TCGA) aggregated
10 340 samples from 33 different cancer types and
713 matched normal tissues were used for training and vali-
dation of the models. Their models successfully predicted 34
classes (33 malignancies and normal) with great prediction
accuracies (93.9–95.0%). Additionally, the research group used
a guided saliency approach to interpret one of the models, the
1D-CNN model, and discovered a total of 2090 cancer indi-
cators (108 on average per class). The codes are accessible on

Fig. 3 The fundamental steps in creating a classification system, namely, a support vector machine.

Fig. 4 Flow chart for an artificial neural network for cancer prediction.
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the internet. It can be seen that innovative CNN designs can
be modulated for precise and concurrent forecasting of
cancer/normal and cancer kinds according to gene expression
patterns, as well as a novel model interpretation strategy to
clarify the biological significance of cancer biomarker genes
once tissue-of-origin effects have been considered. Future
detection of cancer will be facilitated by the suggested model’s
simple adaptation because it includes minimal parameters
that can be further tuned.

2.3 Transfer learning

It ought to be emphasized that techniques involving assess-
ment at the pixel or patch level frequently call for labelled
training sets, wherein the malignant lesions are either high-
lighted in the pictures or the images only contain the image
patches where the lesions are present. Since the annotation of
photographs is a time-consuming, laborious procedure that
must be carried out by subject-matter specialists and is still
rife with inter-reader fluctuation, this significantly adds to the
challenge of acquiring acceptable training datasets.28

Therefore, it is important to reduce the quantity of training
these algorithms take and, thus, the quantity of necessary sets.
Transfer learning is an efficient strategy for doing this.
Transfer learning entails employing a DL-based CNN that has
already been trained, maintaining a substantial amount of the
underlying CNN parameter tenets, and only tweaking para-
meters in each of the network’s final levels for the new
purpose. As a result, it is possible to train a CNN that is
focused on analyzing mammograms using input from unre-
lated, extremely big data sets, such as the natural picture set
ImageNet, which contains over a million images.29–31

3 Prediction of different types of
cancer using artificial intelligence

Cancer has been classified as a varied illness with several
different subgroups. Because it promotes potential medical
therapy of patients, prompt cancer screening and treatment
are essential prerequisites in early cancer research. Numerous
research teams investigated the use of ML and DL techniques
in the fields of biology and bioinformatics to categorize
patients suffering from different types of cancer into high- or
low-risk groups. Therefore, the growth and treatment of
different cancer types have been modeled after these methods.
It is crucial that ML tools can identify essential characteristics
in complicated datasets. ANN, SVMs, and DTs are a few of the
technologies that are often used to construct prediction
models to anticipate a cure for various cancer types.32 While
ML approaches may be used to understand how cancer pro-
gresses, a sufficient validity level is required to apply these
methods regularly in clinical practice. The ML and DL tech-
niques utilized in the modeling of cancer progression are dis-
cussed further. The majority of predictions discussed are
associated with certain ML, input, and data management.33 To
predict outcomes for long-term cognitive function and cancer

survival, many research teams have developed random-forest-
ML and DL models. Understanding the biological processes
involved in healthy growth and their impact on the condition
of learning tissues is essential in this case.34 It is consequently
extremely difficult for a person to assess the change, but a
computer may holistically examine millions of these photo-
graphs from numerous modalities to make inferences.35 The
ability to forecast overall survival, relapse risk, or additional
results for those with cancer would be beneficial for more indi-
vidualized treatment plans and patient counselling, as shown
in Fig. 5. Various kinds of cancer prevail in society today.
Fig. 6 describes certain instances reported by the National
Institutes of Health (NIH) where AI models have been used to
predict tumours.36 Discussed further are recent state-of-the-art
implementations of AI-ML in the prediction of some of the
most pervasive types of cancer.

3.1 Colorectal cancer

A lot of emphasis is currently being paid to the broad appli-
cation of AI technology in the diagnosis and treatment of, par-
ticularly colorectal cancer (CRC), which is the third most
prevalent malignancy in both males and females. CRC is
regarded as one of the main causes of cancer-related deaths
worldwide.37 Based on recent research, various studies seek to
offer in-depth comprehension and evaluation of AI appli-
cations in CRC screening, diagnosis, and therapy. With several
encouraging findings, current developments in AI systems
related to medical diagnosis and therapy are discussed further.
CRC is a highly avoidable illness, and frequent screening with
AI-assisted methods is a critical first step in reducing the occur-
rence of this cancer. To boost the identification rate of adeno-
mas, computer-aided detection, and characterization tech-
niques have so far been created. Additionally, robotic surgery
and cutting-edge computer-assisted medication administration
methods usher in a new era in CRC therapy. Personalized or pre-
cision medicine is rapidly advancing in the medical field at the
same time. Machine learning systems can change the face of
medicine and help with individualized cancer therapy.

A study by Zhi et al. sought to find possible biomarkers for
CRC metastases and elucidate the pathophysiological pro-
cesses driving the illness.38 The study used the five datasets
GSE62321, GSE68468, GSE14297, GSE22834, and GSE6988,
which all comprised samples of CRC with and without meta-
static disease. To determine the differentially expressed genes
(DEGs) across the types of samples, three datasets were com-
bined using meta-analysis. For these DEGs, a network based
on the interaction between proteins was built. The SVM classi-
fier was then used to choose the prospective genes relying on
the centrality of the betweenness technique. The Cancer
Genome Atlas database’s CRC dataset was utilized to test the
SVM classifier’s precision. Evaluation of pathway enrichment
was done for the SVM-classified gene profiles, through meta-
analysis, and 358 DEGs were discovered in total. Signal
sequence receptor 3 (SSR3), cullin 7 (CUL7), and cAMP
response element binding protein 1 (CREB1) were among the
best ten nodes in the network with the most elevated BC
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values. It was possible to choose between metastatic samples
and those that were not by creating the best SVM categoriz-
ation model. Based on this SVM algorithm, 40 signature genes

were found; these were particularly concentrated in different
pathways of the body, e.g., SSR3 (processing of proteins in the
endoplasmic reticulum), CUL7, FBXO2, UBE2D3 (ubiquitin-

Fig. 5 Applications of AI, ML, and DL in oncology and virtual healthcare to address health-related problems and forecast the best course of action.

Fig. 6 (a) DL algorithm predicted the existence of IDH1 in brain tumor; (b) AI-based approach detected cancer within 3 min; (c) AI model high-
lighted the tumour site of prostate cancer; (d) AI model predicted the spread of a tumor to the lymph nodes (right) based on digital images of a
bladder tumor.
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ligase proteolysis), and CREB1 (AMPK signalling system). After
successfully establishing the datasets and algorithms, the
research groups were successfully able to find the correlation
with the SVM-classified genes, such as CUL7, CREB1, and
SSR3, and accurately separated the metastatic CRC samples
from the normal ones. The identification of these genes,
which directly correspond to CRC biomarkers, is a potential
breakthrough in the prognosis of the disease.

Using cell-free DNA from tumors, Wan et al. suggested a
machine-learning technique that had good specificity as well as
sensitivity.39 Their approach could represent a fruitful future line
of inquiry for early-stage CRC detection studies. In a different
study, Kel et al. developed a procedure known as “walking path-
ways” to find possible methylation DNA biomarkers and then
used AI methods to examine cancer-specific regulators.40

Bychkov et al. used pictures of tumor tissue samples, and
mixed convolutional and recursive topologies to create a deep
network that could forecast the course of colorectal cancer.41

Their method is unique in that patient outcomes are predicted
without using any intermediary tissue categorization. They
examined 420 colorectal cancer patients’ digitalized tumor
tissue microarray (TMA) data with accessible pathological and
prognosis information. The findings demonstrate that in the
differentiation of patients into low- and high-risk groups, DL-
assisted forecasting of outcomes outperforms the visual histo-
logical evaluation conducted by human experts on both TMA
and whole-slide data. Their findings imply that cutting-edge
DL-based approaches are better able than skilled human
observers to glean predictive data regarding the tissue shape of
colorectal cancer. With just one TMA spot picture per patient
as the input, the research group has created and programmed
an ML model to accurately anticipate the five-year disease-
specific fate. In this situation, the model resolves to a binary
categorization job and generates a survival chance five years
after the initial CRC diagnosis. Using the same collection of
TMA spot pictures, an identical task was given to three expert
pathologists, urging them to predict the probability of survival
five years following the CRC diagnoses. The visual risk score
was created by the three pathologists with a majority vote. The
performances of the pathologists and the automated response
were compared thoroughly by the group, and it was found that
the automated ML-based approach outperformed the analysis
of the experts. The histological evaluation, which was deter-
mined by a traditional microscope inspection of the whole-
slide cancer sample, was likewise surpassed by the ML-based
approach. In a multifaceted survival model, it was found that
the digital risk score was unaffected by the histology grade or
stage of the illness. This finding suggests that even a little
tissue sample from a TMA site can provide important details
about the tumor’s morphology and the course of the illness.
The recommended model can potentially be trained on whole-
slide samples and assessed on a comprehensive case series
using data from several hospitals and diagnostic labs to create
a therapeutically relevant prognostic prediction.

Late diagnosis is a common occurrence with colorectal
cancer. The malignancy is typically well-advanced when color-

ectal cancer is discovered. Early colorectal cancer detection is
possible through ML, which is an integral component of AI as
discussed before. A twin SVM approach, together with kernel
functions, such as polynomial kernels, linear kernels, RBF
kernels, and Gaussian kernels, are all addressed in research by
Rustam et al. as ways to diagnose colorectal cancer.42 They vali-
dated the technique performed for categorizing the colorectal
cancer dataset obtained from Al-Islam Hospital in Bandung,
Indonesia, by assessing precision and processing times. Results
indicated that polynomial kernels had higher precision and
longer operating times. With the twin SVM’s highest precision,
86% kernels and 0.502 s of computation time are recorded.
Rapid diagnosis of colorectal cancer is crucial for treating it as
soon as possible before it spreads to different organs of the
body. This is challenging, though, as colorectal cancer does not
have any distinct symptoms. Utilizing blood tests and age, the
twin SVM approach can aid in the detection of colorectal
cancer. The polynomial kernel, which generates an accuracy of
86% and requires 0.502 s to execute, is the most suitable kernel
for the twin SVM approach in diagnosing colorectal cancer.

Hornbrook et al. used ML methods that were capable of recog-
nizing people whose blood counts pointed to a higher risk of col-
orectal cancer and who should be referred for a colonoscopy.43

The research aimed to test a colorectal cancer screening model
using ML on an insured adult group in the US. 439 female and
461 male eligible colorectal cancer patients with full blood counts
before diagnosis were found. The precision of the predictions was
assessed using the area under the curve, specificity, and likeli-
hood ratios. The colorectal cancer detection area under the recipi-
ent operator feature curve was 0.80 ± 0.01. The odds ratio for
linking a high-risk detection score with colorectal cancer was 34.7
(95% CI 28.9–40.4) with 99% specificity. The detection model was
more accurate at spotting colorectal tumors appearing on the
right side compared to tumors on the left side.

In a study using SVM analysis, Kaul et al.9 sought to classify
patients with a significant likelihood of colon cancer resur-
gence by locating DEGs.44 Interestingly, they discovered a
15-gene profile that could help predict the prognosis and risk
of recurring for those with colon cancer. A reliable and afford-
able technique for identifying the B-rapidly accelerated fibro-
sarcoma (BRAF) mutation in the gene, which comprises a
valine to glutamic acid substitution at codon 600 (V600E), was
proposed by Zhang et al. in 2019.45 The model achieved 100%
sensitivity, 87.5% diagnostic selectivity, and 93.8% diagnostic
accuracy when used to test for the v-raf murine sarcoma viral
oncogene homolog B1 (BRAF) V600E mutation in colorectal
carcinomas. This innovative method, which combines a
counter propagation artificial neural network (CP-ANN) with
near-infrared (NIR) spectroscopy, can assist in discriminating
between the BRAF V600E mutant and the unmodified type.

3.2 Breast cancer

The second most frequent cause of death for women world-
wide and the most prevalent malignancy among women is
breast cancer. Breast cancer develops when the breast’s tissues
experience aberrant and uncontrollable cell division. These
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aberrant cells aggregate into a sizable mass of tissues, which
later develops into a tumor. In 2012, 1.7 million new instances
of breast cancer were discovered worldwide. With a standard
rate of mortality of 12.9 per 100 000, breast cancer is the
second leading cause of cancer death, and its prevalence has
increased over time. Breast cancer might be effectively handled
if found early. Therefore, it is crucial to have effective tech-
niques for identifying the first indications of the disease. The
three most crucial imaging techniques for the detection and
identification of breast cancer are mammography, ultrasono-
graphy, and thermography. One of the most crucial early detec-
tion techniques for breast cancer is mammography. The mam-
mography technique is not particularly effective on thick
breasts; instead, diagnostic sonography or ultrasound pro-
cedures are advised. Thermography can be more effective than
ultrasonography for identifying tiny malignant tumors, taking
into consideration that small masses of muscle/fat may pass
radiographic radiation effectively.

The examination of clinical data and expert opinion is
without a doubt the most crucial aspect of image-based diag-
nosis, but several other aspects might affect such a type of
diagnosis. The appearance of noise in pictures, the radiol-
ogist’s sense of sight skills, insufficient clarity, low contrast,
and the radiologist’s lack of prior experience are some of the
variables impacting image-based diagnosis. Technologies have
been designed to build and develop image processing due to
inherent issues with images, such as low contrast, disturb-
ances, and lack of identification with the eye. One of the
sectors of the healthcare industry with the highest growth
right now is medical image processing. The goal of processing
images is to employ methods for creating accurate human
body pictures that are credible for utilization in diagnostic and
treatment procedures. The application of neural networks to
image and signal processing increased in the early 1980s.
Given how challenging it is to diagnose breast cancer, statisti-
cal tools and AI-based techniques could be crucial in this area.

In the past few years, the field of autonomous breast cancer
diagnosis in digital mammography and digital breasts has been
thoroughly transformed by the AI revolution in computing; this is
primarily driven by DL and CNN. Comparing the capabilities of
this new technology to those of traditional computer-aided design
methods was the first step in the investigation in this field and
rapidly illustrated its enormous potential. In recent years, studies
of the efficacy of sophisticated, and some commercial, digital-
mammography and digital-tomosynthesis breast systems in the
field of autonomous breast cancer diagnosis, in contrast to that of
skilled breast radiologists, demonstrate that these methods are on
par with naturally performing levels in retrospective data sets. It is
increasingly obvious that AI will play a significant role in the field
of breast cancer screening in the future, despite the need for more
research, particularly prospective assessments carried out in the
actual screening setting. Although it is unclear how exactly this
new contender would change the field, current studies have begun
to look at several approaches for its deployment.

In work by Shen et al., it is shown that end-to-end DL
models may be extremely precise and possibly easily transfer-

rable across various mammography platforms.46 As training
datasets and computer resources become more readily avail-
able, DL techniques offer tremendous potential to significantly
increase the reliability of breast cancer diagnosis through
screening mammography. Their method is capable of aiding
in the eventual creation of better computer-aided design
systems that might be utilized as an automatic second reader
after producing an initial independent diagnosis, or to help
prioritize the most worrisome cases to be reviewed by a radiol-
ogist. Other medical imaging issues with a dearth of ROI anno-
tations can be solved using the end-to-end methodology pro-
posed by the group.

Research on breast cancer risk also includes studies on the
disease’s origin and models for predicting risk based on past
data. An essential area of contemporary computational intelli-
gence technology is data-based statistical learning. An innova-
tive concept for the detection of breast cancer is the use of
machine learning techniques to forecast and evaluate
unknown data. The SVM, combined with the genetic approach,
particle swarm optimization, and artificial annealing, creates
the enhanced optimization method (GSP_SVM), which is
suggested in a study by Dou et al.47 The outcomes demonstrate
a very high degree of achievement in categorization, accuracy,
etc., and other measures. When compared to previous optimiz-
ation algorithms, it is clear that this technique may effectively
help decision-making in auxiliary breast cancer diagnosis,
greatly enhancing the diagnostic effectiveness of medical insti-
tutions. Subsequently, by contrasting it to alternative algor-
ithms, this research analyses the use of this algorithm in
several categories and preliminarily investigates the impact of
using it to identify and classify breast cancer in various stages.

Furthermore, a study on the integration of more sophisti-
cated kernel functions for various categories can be done from
the standpoint of medical risk to maximize the precision of
the identification of malignant tumors. To avoid a major dis-
parity between the two similar types of sample data, medical
organizations must simultaneously gather typical sample data
for the intended use. Of course, more study of additional high-
risk diseases is necessary if we hope to significantly raise the
standard of computer-aided disease diagnosis in healthcare
facilities. Both soft tissue lesions and calcifications need to be
looked for by algorithms for breast cancer diagnosis. For every
one of these types of spots, often distinct independent detec-
tion algorithms are utilized, and the findings are pooled at the
last phase of evaluation, given their extremely varied properties
and the generally still-limited datasets used for training. For
instance, Lotter et al. created a two-stage algorithm in which
the image was first scanned and analyzed in patches using two
distinct multi-scale CNNs. The production of these CNNs is
then gathered to pool jointly across both lesion types and
evaluation scales, producing a final categorization estimate.48

For instance, Samala et al. successfully optimized the network
for breast cancer detection in both analog and digital mammo-
graphy with only about 1500 lesion image adjustments, out of
which only 500 were analog images and 96 were digital images
containing malignancies, beginning from the pre-trained DL-
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based CNN AlexNet.29 The capacity of transfer learning is enor-
mous, especially because more than 1.2 million non-medical
natural photos were used in AlexNet’s first training.

Becker et al. employed a DL-based commercialized image
analysis algorithm meant for industry usage, which is not
licensed for use in medicine, in other early research, but with
comparisons of performance versus radiologists rather than
against traditional computer-aided design.49 While the inci-
dence of cancer is still about ten times larger than in a real
evaluation set, the algorithm was trained and tested using two
distinct datasets: one clinical set with a 50–50% ratio of malig-
nant/control cases, and a second set with a roughly 10%/90%
percentage of cases. It was demonstrated that DL algorithms
could be taught to identify breast cancer in DM even though
they were created for non-medical imaging reasons. Two of the
three readers greatly outperformed the algorithm for the
highly prevalent set, whereas the algorithm performed on par
with radiologists for the low-frequency set.

As previously mentioned, Kooi et al.50 created an AI system
for DM assessment that combined hand-crafted characteristics
with a DL-CNN. In that study, they evaluated how well the
novel system performed in comparison with both a traditional
computer-aided design algorithm and how well people per-
formed while analyzing identical DM pictures. The proposed
CNN produced a significant improvement in the region under
the recipient operating characteristics (ROC) curve (AUC)
about the conventional computer-aided design under circum-
stances where it was granted access to just the image patch
and no outside data. The addition of customized features,
however, improved the CNN’s efficiency.

3.3 Lung cancer

The leading cause of cancer-related mortality both domesti-
cally and internationally is lung cancer. Because of their
intense daily demands, radiologists and doctors are particu-
larly vulnerable to burnout. Lung cancer also has one of the
largest global financial burdens on society. The expenditures
of healthcare for Medicare participants were examined; the
largest costs, roughly $30 000 over a 15-year time frame, were
associated with surgeries. This section analyses the effective-
ness of distinct AI models in lung nodule cancer diagnosis, as
well as their effectiveness relative to doctors and radiologists,
to lessen this cost and reading proficiency. Patients under-
going chemotherapy treatment and radiation therapy paid
between $4000 and $8000 per month, with a median longevity
of 14 months after diagnosis.51 Lung cancer is thought to
affect 60 people in every 100 000 people in Europe. Its annual
healthcare and handling of patients’ expenses are anticipated
to be 17 000 Euros. In a high-risk group, low-dose computed
tomography (LDCT) examination was found to result in a 20%
lower death rate than routine chest X-rays, according to the
National Lung Screening Trial (NLST).5 Additionally, low-dose
CT has a rate of detection for lung cancer screening that is 2.6
to 10 times higher than chest radiography. The key to lowering
lung cancer-related fatalities is early identification, which
depends on quick and reliable lung nodule identification and

meticulous chest CT scan inspection to confirm the malig-
nancy as this procedure takes a lot of time and effort from
radiologists and doctors.

A model with a hybrid approach using LeNet, AlexNet, and
VGG-16 was proposed by Toğaçar et al.52 The features from
this model—the final fully-connected layer of CNNs—were
then fed into several ML-categorization models: SVM, k-nearest
neighbor (kNN), LR, linear discriminate analysis (LDA) and
softmax function. Following testing, each model performance
indicator associated with these machine learning classifi-
cations was compared to the others. Whilst the computational
models were being trained, picture augmentation methods
were used to increase the classification accuracy of the models.
From the dataset, twenty more photos were retrieved. The
effective features were then found using the minimal redun-
dancy maximum relevance (mRMR) choice of features
approach, which served as the input for the aforementioned
hybrid model.

In this study by Nasser et al., the research group created an
ANN to determine whether lung cancer existed in the human
body.53 Yellow fingers, stress, chronic illness, exhaustion, aller-
gies, snorting, coughing, difficulty in breathing, trouble swal-
lowing, and chest discomfort were a few of the signs that were
utilized to identify lung cancer. They served as input parameters
for their ANN, along with other pieces of information regarding
that individual. Their ANN was created, trained, and verified
using a dataset, namely, “survey lung cancer”. An algorithm
evaluation revealed that the model had a 96.67% accuracy rate
for detecting the existence or nonexistence of lung cancer.

Automated malignant lesion identification, division, and
computer-assisted diagnostics all heavily rely on AI techniques.
Radiomics and DL-based algorithms seem to hold the greatest
potential among the ones now in use. Several indicators have
been effectively produced, but the clinical validation and repeat-
ability of the results are still significant issues for contemporary
approaches. Other rapidly-developing technology involves DL
algorithms, which are acknowledged as an important tool in the
discipline of medical imaging research for the identification,
classification, and evaluation of lesions.54 Therefore, a substan-
tial level of classification accuracy is maintained while designing
the structure of an artificial neural network.

In their study, Chassagnon et al. emphasized the necessity
for radiologists to make use of modern technical developments
like AI in the field of chest CT for widespread cancer screening
and pave the way for the most recent advances in radiology.1

According to Nasrullah et al.’s hypothesis, clinical criteria for
the identification of nodules may be integrated with a DL
based on employing customized mixed-link network
(CMixNet) topologies to lower the rate of inaccurate findings
and incorrect diagnoses in the initial phases of lung cancer.55

It was discovered to have greater sensitivity as well as
specificity.

By combining handmade features (HF) with features from a
three-dimensional (3D) deep CNN, Shulong Li et al. developed
an algorithm to identify lung nodule malignancies with a
higher level of specificity and sensitivity. This fusion approach
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addressed the drawback of HF and proved to have the greatest
AUC, specificity, sensitivity, and correctness when compared
to the other competing classification models.56 The amalga-
mated-convolutional neural network (A-CNN), a framework for
fused neural networks created by Wenkai Huang et al., was
tested using the Lung Nodule Analysis 16 (LUNA) and Ali
Tianchi datasets.57 With A-CNN, high sensitivity of 81.7% and
85.1% per scan was attained with a mean of 0.125 and 0.25,
respectively, of false positives per scan. Wookjin Choi et al.
created a radionics predictive system for nodules in the lungs
with low-dose CT for the early diagnosis of lung cancer.58 This
predictive model’s precision was 84.6%, which was greater
than that of the lung CT screening reporting and data system
(Lung-RADS) and had two CT radiomic characteristics.

Artificial intelligence continues to show promise as a devel-
opment. Nearly all of the research came to the same con-
clusion: the use of AI in radiography would enhance patient
care by enabling earlier and more precise illness identification
and, consequently, a better prognosis. Cancers being over-
looked can be decreased thanks to improved classification and
examination of a wider range of lung nodules. Thoracic
imaging has benefited from the advancement of several artifi-
cial intelligence algorithms for a range of diseases. AI algor-
ithms may perform as well as or better than radiologists, but
working alongside them to create a more effective system is a
more practical option. For AI algorithms to be used in ordinary
clinical practice, the absence of retrospective clinical evalu-
ation of these algorithms has to be examined, and appropriate
validation methods need to be done in the future.

3.4 Pancreatic cancer

One of the most prevalent malignant tumors of the digestive
tract is pancreatic cancer. Pancreatic cancer has been called
the “king of cancer” because of its quick development, early
metastases, high mortality, and dismal prognosis.3,4 Surgery is
the primary treatment option for people with pancreatic
cancer, and its prevalence has recently started to rise.
However, some individuals have advanced to late-stage pan-
creatic cancer at the moment of identification and have
missed the best window for aggressive surgery because there
are not any distinct clinical signs and serological biomarkers.
The outlook and cure rate can thus be improved by early diag-
nosis and precise staging before surgery. The high death rate
and late identification of pancreatic cancer are well known.
The inability to accurately diagnose from imaging investi-
gations is the primary contributing factor. It might be difficult
to distinguish between benign conditions such as chronic pan-
creatitis and cancer. Radiological imaging can reveal many
radiological manifestations of malignant pancreatic disorders,
such as intraductal papillary mucinous neoplasms (IPMN),
pancreatic ductal carcinoma, and mucinous cystic neoplasm.
Endoscopic ultrasonography (EUS), which has a good respon-
siveness but low selectivity, has proved to be a reliable tool for
identifying pancreatic cancer. EUS performed better on small
pancreatic tumors than CT scans and MRIs did.

The purpose of this article does not enable a thorough dis-
cussion of neural network topologies; however, Muhammad
et al. described how ANNs could be utilized to demonstrate
the general ideas.59 An ANN was recently utilized, for instance,
by the research group to predict the risk of pancreatic cancer
using clinical factors such as age, tobacco usage, alcohol con-
sumption, and ethnicity. Based on individual health records, it
was revealed that an ANN with a sensitivity of 80.7%, speci-
ficity of 80.7%, and AUC of 0.85 might be utilized for predict-
ing pancreatic cancer. Additionally, for more specialized diag-
nosis and risk mitigation, the created ANN was able to categor-
ize people into mild, moderate, and severe cancer risk groups.
This ANN, which uses easily accessible personal health data, is
non-invasive, affordable, and simple to adopt in comparison
with current screening methods. It would be easier to apply
the ANN in the clinic if its efficacy could be enhanced by
further datasets and testing.

In other work by Liu et al., the goal was to create a fast and
accurate imaging processing system that could interpret com-
puted tomography (CT) pictures accurately and diagnose pan-
creatic cancer more quickly.60 4385 CT scans from 238 individ-
uals with pancreatic cancer in the dataset served as the train-
ing dataset for our study’s training method. Additionally, the
research group utilized VGG16 to initialize the attribute extrac-
tion network. VGG16 was trained in the ImageNet dataset and
had 13 convolutional strata and 3 fully connected layers. As
experimental data for the validation experiment, serial clinical
CT scans from 238 pancreatic cancer subjects were used.
These pictures were then fed into the trained faster region-
based convolution network (Faster R-CNN) model. 100 pan-
creatic cancer patients’ pictures, totalling 1699, were added for
clinical verification. One CT picture was automatically pro-
cessed by the Faster R-CNN AI in around 0.2 s, which was sub-
stantially quicker than the time needed for a diagnosis by a
human.

Hsieh et al. proposed that those with type 2 diabetes
(T2DM) had an increased chance of acquiring pancreatic
cancer.61 To estimate the possibility of pancreatic cancer in
T2DM patients, they employed two models acquired from the
Taiwan research databases. The pancreatic cancer risk vari-
ables that were at hand were incorporated into the prediction
models. 97.5% of the data were used as the training set, while
2.5% were utilized as the test set. Python 3.7.0 was used to
develop the LR and ANN models. The LR and ANN models’ F1,
accuracy, and recall were compared. Also evaluated were the
prediction models’ areas under the receiver operating charac-
teristic (ROC) curves. The measures employed in this study
showed that the LR model predicted pancreatic cancer more
precisely than the ANN model. The area under the ROC curve
for the LR model’s prediction of pancreatic cancer was 0.727,
which denoted a decent match.

In a study by Qiao et al., 68 hospitalized patients with pan-
creatic cancer served as the experimental group, whereas
68 hospitalized patients with chronic pancreatitis served as the
control group.62 Both groups had CT imaging. Additionally, a
2D–3D CNN segmentation method for CT image enhancement
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processing was suggested by the research group, and an ana-
lysis of the diagnostic effectiveness of serum tumor bio-
markers paired with CT based on smart algorithms for pan-
creatic cancer was performed. The analysis showed that the
image segmentation algorithm developed in this work outper-
formed FCN and UNet in terms of algorithm stability and
image segmentation efficacy. When CT was used in conjunc-
tion with tumor marker detection, the diagnosis of pancreatic
cancer achieved the greatest degree of sensitivity and selecti-
vity. Other tumor biomarkers for pancreatic cancer than
CA-50, CA-199, and CA-242 however, did not have diagnostic
performance assessments in the research. It is necessary to
further verify the 2D–3D CNN algorithm’s performance at
thorough segmentation. Overall, the findings of this investi-
gation provide trustworthy information to support medical
diagnoses and patient prognoses for the ailment.

4 Constraints of using AI-based ML/
DL methods

Multiple techniques are included in AI, which has the unifying
goal of computationally simulating human intellect. The goal
of ML is to find patterns in data and make predictions. DL is
concerned with generating predictions using complicated
neural network algorithms that are motivated by the brain’s
neurological anatomy. The neural network design of DL
enables the models to scale rapidly with the increasing quan-
tity and complexity of data, in contrast to other ML approaches
like logistic regression. Due to this, DL is especially helpful for
tackling challenging computational issues like the categoriz-
ation of massive amounts of images, the processing of natural
language, and the interpreting and recognition of voices. With
growing accessibility and integration of many data types, such
as transcriptomic, genomic, and histopathologic data, cancer
therapy is moving towards precision medicine. It takes a lot of
time and experience to use and analyze a variety of multidimen-
sional data formats for clinical or translational research jobs.
Additionally, understanding the meaning of many data types
requires more computational resources than understanding a
single data type, and training algorithms that are capable of
learning from a vast array of detailed properties are required.
ML algorithms are increasingly being used to automate these
processes and help in cancer detection (identification of the
existence of cancer) and diagnosis (characterization of the
disease). Excitingly, DL models may be able to make use of this
complexity to offer insightful information and find pertinent
granular characteristics from a variety of sources.

The potential of artificial intelligence in healthcare is
accompanied by several difficulties, such as ethical issues, gov-
ernance, algorithmic impartiality, data bias, and safety.
Significant continuing efforts regarding medical AI are
focused on creating ethical guidelines and norms. Healthcare
AI developers have been urged by the WHO to make sure that
the latest innovations put morality and human rights at the
forefront of their development and application. Issues include

the black-box nature of AI predictions, their effect on patient
encounters and collaborative decision-making, and who is
responsible if AI malfunctions and makes inaccurate predic-
tions; an in-depth examination of ethical issues is outside the
purview of this review. AI models have special legal and ethical
constraints that restrict their widespread use and reliability,
including their innate bias when developed on datasets that
preferentially leave out underrepresented people. Process and
ideological issues, as well as a lack of prospective validating
studies, are deterrents to the general deployment of AI; never-
theless, as healthcare reform proceeds, these obstacles are
eroding more and more. Living libraries of multi-modal data-
sets utilized iteratively to enhance clinical simulations in pre-
cision oncology by making use of AI may also produce pre-
viously unheard-of results.

Creating a sensitive, user-friendly, and cost-effective diag-
nostic system that effectively distinguishes between false nega-
tives and false positives is a significant hurdle in disease diag-
nosis. The integration of AI can mitigate error rates by mini-
mizing human bias. Additionally, AI-based systems excel in
efficiently managing vast datasets, a task that is challenging
for humans, leading to more accurate diagnostic outcomes.
With the aid of AI, clinicians may now make appropriate clini-
cal judgments that result in effective and efficient treatment
plans; yet, patient data security must always be the first pri-
ority.63 As a result, there should be strong regulations govern-
ing the use of patient medical records when implementing AI
models in the healthcare industry. In a similar vein, medical
professionals have employed AI technology to process and
analyse cancer picture data in order to accurately diagnose,
characterize, and track cancers—all the while keeping patient
data privacy concerns in mind.64

Clinicians have benefited from providing a suitable clinical
decision to make efficient and efficacious treatment decisions
with the help of AI and IoT, however, it is very important to
keep an eye on patient data safety. Therefore, the implemen-
tation of an AI model in the healthcare sector should have
strict laws regarding the handling of healthcare records of
patients. Similarly, clinicians have used AI technology for pro-
cessing and analysis of cancer images for accurate detection,
characterization, and monitoring of cancers, while bearing in
mind privacy issues regarding patient data.

It is challenging, in reality, to ensure that the characteristics
of the training and testing data come from the same distri-
bution since the machine learning approach is data-driven.
This is because the data source may differ from the training
dataset in a real-world application. A growing number of aca-
demics, healthcare experts, scientists and prominent pro-
fessionals from relevant fields are focusing on the solution to
many such issues, which involves changing the computing
framework to online perpetual learning, which gives the model
the capacity to learn continuously, much like a human
being.14 The integrated working of experts from different
fields is important in order to consider any possible aspect of
their respective fields in order to develop an efficient model
based on AI-driven technologies.
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Regulatory limitations regarding data security and privacy,
the lack of tagged data, data bias, and unbalanced data
prevent AI from being properly used for cancer research. We
cannot incorporate a human verification component in the
process until a human medical expert collaborates with the AI
system. No one believes that AI will ever completely replace the
need for medical experts. Future cancer treatments will rely
heavily on AI-based precision healthcare. Extremely compli-
cated models that can tailor therapy selection, dosage calcu-
lation, monitoring modality and time frame, etc., will be
powered by living databases. The majority of cancer diagnosis,
treatment, and prognosis operations will be automated when
artificial general intelligence (AGI) replaces artificial narrow
intelligence (ANI).

5 Next generation 2D materials for
effective screening of cancer
biomarkers

A wide range of sensor applications in medicine, wearable elec-
tronics, security, the environment, defence, and agriculture
have been transformed by the integration of 2D nanomaterials
with IoTs, AI, and ML. The development of graphene, boro-
phene, and MXene as advanced 2D materials (A2M) for the
construction of next-generation sensors is due to their distinc-
tive physicochemical properties and surface functions.65 By
cutting down on costs, labor requirements, and contami-
nation, ML-AI-based theoretical modelling has effectively
directed the study and development of A2M sensors. A2M
sensors provide several advantages over traditional sensing
techniques, including being adaptable, portable, intelligent,
bio-compatible, mobile, energy-efficient, self-sustaining, point-
of-care, and affordable.66,67 It is rapidly becoming apparent
that 2D materials enhance sensors’ analytical capabilities by
boosting their electrical conductivity and active surface area
and/or by offering novel means of interacting with the
intended analyte.68 A2M sensors, which are state-of-the-art
and effectively identify cancer biomarkers, are discussed
further in this section. In addition to the fundamental issues
causing a discrepancy between theoretical forecasts, empirical
assessments, in-lab technology, the profitability of their poten-
tial solutions, and field-deployable customers are dealt with to
realize marketing, ensuring the capacity of future generations
to uphold sustainable communities.

5.1 Graphene spectrum materials

Owing to their planar honeycomb nanostructures, high
surface-area-to-volume ratio, simplicity of modification, and
distinctive chemical and physical characteristics, the bioanaly-
sis use of graphene-based materials (graphene, GO, and rGO)
is quickly being extending to microfluidic systems.69 By immo-
bilizing the antigen, preventing biofouling, boosting the
effective surface area, allowing the exchange of electrons
across the electrode or the molecule of interest, or simply

acting as an electrode, they are frequently utilized to improve
the effectiveness of detection.70,71

A new nanostructure-based microfluidic device was created
by Mata et al. for the ultrasensitive monitoring of H2O2 pro-
duced from cancer cells.72 The direct drop-casting of exfoliated
graphene solution onto the top of the metal-deposited plat-
form done by the research group enabled the integration of
the graphene nanosheets into the microfluidic system, as
shown in Fig. 7(a). The instrument successfully measured
H2O2 that was released into human plasma by breast cancer
(MCF-7) and prostate cancer (PC3) cells. An excellent LOD of 1
pM in the linear range of 1 pM–10 μM was achieved with simu-
lated visible light conditions; this opens the door for the cre-
ation of electrochemical sensors that are non-intrusive and
plasmon-aided for fluid biopsies.

The oxidized form of graphene is called graphene oxide
(GO), and it contains a lot of oxygen atoms in different shapes,
such as carboxyl, hydroxyl, and epoxy groups. To easily and
evenly attach antibodies to the surface of the electrode, gra-
phene oxide can be deposited onto the electrode. By merely
drop-casting an aqueous solution of graphene oxide onto
paper electrodes, Prasad et al. created an inexpensive paper-
based electrochemical microfluidic system incorporating a
composite electrode based on a biomarker for pancreatic
cancer, pseudopodium-enriched atypical kinase one (SGK269),
PEAK1, for swift quantitative recognition. With a low LOD of
10 pg mL−1 and a wide linear range of 10 pg mL−1 to 106 pg
mL−1, the immunosensor for PEAK1 showed tremendous
potential for quick, accurate, and timely identification of pan-
creatic cancer at the point of care as well as minimal-resource
contexts.73 Reduced graphene oxide (rGO) is an important part
of the graphene family. In most cases, reducing graphene
oxide by eliminating a lot of oxygenated functional groups
yields rGO. It has attracted attention because it is a special
transitional state between graphene oxide and graphene. It has
a greater prospect to create rGO-based photoactive materials
for photoelectrochemical systems because it can increase the
productivity of these artificial biological processes and speed
up the conveyance of photoactive moieties, both of which are
essential advantages over graphene.

Reduced graphene oxide modified BiFeO3 (rGO–BiFeO3)
was used by Zhou et al. to create a magnetically driven photo-
electrochemical sensing (PEC) system for the sensitive detec-
tion of prostate-specific antigen (PSA).74 By pouring an
aqueous suspension of rGO–BiFeO3 onto the surface of the
FTO electrode, the rGO–BiFeO3-modified FTO electrode was
then immediately fitted into the detection cell for PSA detec-
tion (Fig. 7(b)). The addition of rGO significantly improved the
absorbance of rGO–BiFeO3 during visible light irradiation,
easing charge transport and enabling more efficient segre-
gation of photoexcited carriers of charge. The PEC sensing
framework demonstrated good photocurrent responses
towards target PSA under ideal conditions with an excellent
detection limit of 0.31 pg mL−1, demonstrating that the per-
formance of the PEC was noticeably improved with favorable
specificity, good repeatability, and adequate precision.
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Human epididymal secretory protein 4 (HE4) and cancer
antigen 125 (CA125) are important biomarkers for ovarian
cancer diagnosis and advancement screening. In recent work,
label-free HE4 and CA125 immunosensors were created by
employing reusable screen-printed carbon electrodes modified
with reduced graphene oxide, polythionine, and gold nano-
particles for the accurate, quick, and useful measurement of
CA125 and HE4.75 For the electrochemical determination of
antigens in different linear ranges, square wave voltammetry
(SWV), differential pulse voltammetry (DPV), and electro-
chemical impedance spectroscopy (EIS) methods were
employed by the research group (Fig. 7(c)). For each linear
range, significant sensitivity, and a small limit of detection
were obtained. The shelf life of the immunosensors was
reported to be 16 weeks, while the application durability was
60 days. In nine distinct antigen blends, the immunosensors
displayed good selectivity. The sensor’s capacity for reuse was
tested for up to 9 cycles. The concentrations of HE4 and CA125
in the blood were used to construct the risk of ovarian cancer
algorithmic score values, which were then assessed by the
research groups in light of ovarian cancer susceptibility. High
recuperation was attained using the designed immunosensors
and an electrochemical detector to quantify the HE4 and
CA125 levels at pg mL−1 concentration in blood samples for
point-of-care testing. With sensitivity, good specificity, and

reliability, these throwaway label-free graphene-based immu-
nosensors can be utilized in point-of-care testing for the quick
and pragmatic detection of cancer biomarkers.

The goal of efforts by Singh et al. was to create a biosensing
platform that was both affordable and expandable for the
quick and accurate screening of the cancer biomarker carci-
noembryonic antigen (CEA).76 Here, the research group pro-
vided results from the sensitive and focused detection of CEA
utilizing biosensing technology based on graphene. On a
copper (Cu) substrate, homogeneous, continuous graphene
films were produced using the chemical vapor deposition
(CVD) process using hexane as a liquid precursor. The films
were reported to be large (2.5 1.0 cm2), single- and few-layers,
and single- and continuous-layers. Additionally, CEA anti-
bodies (anti-CEA) were covalently immobilized onto the Cu/
PBSE/graphene electrode to further make the sensor specific
to CEA. An electrochemical approach enabled the selective and
sensitive identification of CEA. The constructed sensor exhibi-
ted a linear response under ideal conditions in the physiologi-
cal range of 1.0–25.0 ng mL−1 (normal value 5.0 ng mL−1), dis-
playing a sensitivity of 563.4 ng mL cm2 with an R2 of 0.996
and a limit of detection (LOD) of 0.23 ng mL−1. In this
approach, one-step electrode manufacturing with a large
surface area offers a unique biosensing platform that is light
weight, inexpensive, dependable, and scalable for the sensitive

Fig. 7 (a) Schematic of a nanostructured microfluidic device for PEC detection of H2O2 (copyright permission RSC 2020); (b) schematic illustration
of a magnetically controlled photoelectrochemical (PEC) sensing system (copyright permission Elsevier 2017); (c) the preparation stage of CA125
and HE4 immunosensors.
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and precise detection of CEA. With the use of this bioelec-
trode, several other molecules can also be detected success-
fully as it has recognition components.

For the detection of various types of cancer-affected cells,
Patel et al. suggested different meta-surface sensor designs,
with different kinds of inner and outer gaps by using graphene
moieties. When the refractive indices of each of the cell types
were examined, it became clear that the cancer-contaminated
cell and its respective usual counterparts exhibited consider-
able changes in optical characteristics. An estimated 80% of
the cells in a liquid were cancerous. To create the best design,
many construction parameters were used. Several factors, such
as the quality factor (Q factor), the sensors’ absolute and rela-
tive sensitivities, the limit of detection, and the figure of merit
(FOM), were examined. For each structural design, the greatest
absolute and relative sensitivities were attained. The ideal
design of a metasurface with both inner and outer gaps
achieves a Q factor and FOM of 13.11 and 3.86 RIU1, respect-
ively, with the lowest limit of detection of 0.17 RIU.

For an accurate early cancer diagnosis, multiplexed bio-
markers must be sensitively detected simultaneously. By utiliz-
ing an oscillating band-pass filtering array for electrochemi-
luminescence (ECL) spectrum discrimination, an integrated
waveband and potential-resolved ECL platform for multiplexed
immunoassay were presented by Xue et al.77 Using nano-
composites of gold nanoparticles/graphene oxide/N,N′-capro-
ate sodium-3,4,9,10-perylenedicarboximide (AuNPs/GO/PDI),
CdSe nanocrystals (NCs), and CdTe NCs as ECL tags, three
lung cancer biomarkers—carcinoembryonic antigen (CEA),
neuron-specific enolase (NSE), and cytokerkeratin 19 fragment
antigen (CYFRA21-1)—were detected. The values of intensities
from the ECL in the signalling of antibody bio-conjugates were
evaluated in one potential scan run with K2S2O8 as the co-reac-
tant. The intensity at 649 nm in the waveband-resolved ECL
mode was used to rectify the interference from the O2/S2O8

2−

enriched ECL of the three ECL tags. NSE, CYFRA21-1, and CEA
were all measured simultaneously under ideal circumstances
with detection limit values of 0.86, 2.6, and 0.53 fg mL−1,
respectively.

While graphene-based materials do have significant draw-
backs, such as costly synthesis and poor resistance to high
temperatures under aerobic circumstances, once the pro-
duction/integration challenge is addressed, they nevertheless
show promising application potential.69,78 Creating hybrids
and composites based on graphene or dotting graphene with
nanoparticles are further options for adjusting the electrical
characteristics and boosting surface-to-volume ratios for
reduced limits of detection.79

5.2 MXenes

The optical, electrical, structural, and even biological features
of MXenes are just a few of the many traits that distinguish
them. The properties of MXenes enable a wide range of appli-
cations, with perhaps the most contemporary one becoming in
the biomedical industry. Large surface area, hydrophilic func-
tional group metals, and paramagnetic activity are only a few

of MXenes’ distinctive properties. The rigidity and elasticity of
MXenes—both of which are crucial for the creation of thin
films as a component of bio-electronic devices—are also influ-
enced by the functional groups on them. The flexibility and
variable composition of MXene, a recently discovered multidi-
mensional 2D material, are provided by surface-modified
carbide. The typical formula for them is Mn+1XnTx, where n =
1–3. They are composed of strata of early transition metals,
interspersed with n layers of carbon or nitrogen (identified as
X), and terminating with surface functional groups (denoted
as Tx/Tz). High conductance of electricity, exceptional mechan-
ical equilibrium, and great optical characteristics are just a few
of the unique qualities that MXenes have to offer. MXenes also
have favorable biological characteristics, including a high
surface area for drug holding and administration, favorable
hydrophilicity for biocompatibility, and additional electronic
characteristics for CT and MRI scans. The innovative 2D
materials have sparked an increase in research interest due to
their appealing physico-chemical and biological compatibility
features for use in biomedicine and advanced biotechnology.

Using a platelet membrane, a gold nanomaterial/delami-
nated V2C nano-sheet (PM/AuNPs/d-V2C)-amended electrode
as a substrate of the sensing connection and a methylene
blue/aminated metal–organic framework (MB@NH2-Fe-
MOF-Zn) as an electrochemical signaling probe, Lian et al. pre-
sented a facile and sensitive sandwich-type antifouling
immunoassay (Fig. 8(a)).80 The biosensor has successfully
combined the outstanding loading property of NH2-Fe-
MOF-Zn with the high permeability of AuNP-loaded V2C
MXene to enhance the sensing efficiency. Additionally, the
uniform cell membrane’s outstanding antifouling qualities
could successfully stop the adsorption of modeled proteins.
The acquired anti-fouling biosensor demonstrates outstanding
analytical accuracy for the examination of CD44 with a linear
range from 0.5 ng mL−1 to 500 ng mL−1 and is capable of ultra-
sensitive screening of CD44 and CD44-positive cancer cells in
convoluted solutions. The development of additional compli-
cated biosensors using this approach of creating cell mem-
brane-based detection platforms with improved antifouling
capability is simple, and the use of cutting-edge biological
probes and analytical techniques makes it possible to precisely
quantify the biomarkers linked to tumor advancement.

The ECL sensor created by Nie et al. is an innovative
MXene-derived quantum dot (MQD)@gold nanobone (Au NB)
heterostructure (Fig. 8(b)).81 First, MXene and MQDs were
created using a green preparation method that prevented
hydrofluoric acid’s negative effects on both people and the
planet. The MQD@Au NB heterogeneous structure led to a sig-
nificant increase in the ECL signal. To limit the excess influx
of electrons to the conduction band of MQDs, Au NBs could
transfer them to themselves owing to the surface plasmon
resonance (SPR) effect, which functioned as an “electronic reg-
ulator”. In the ECL sensing technique, the bright signal of
MQDs can be effectively produced and enhanced. The work
function of MQDs in the heterogeneous structure with good
conductivity was reported to be quite similar to that of Au
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NBs. This efficiently suppresses ECL quenching brought on by
short-range electron transport between the luminophore and
the gold nanomaterial. With the help of the ECL sensing
device, miRNA-26a levels in the samples of individuals with
triple-negative breast cancer were found. The research group
not only offers suggestions for environmentally friendly
MXene synthesis but also provides a manual for using the
MQD@Au NB heterostructure in the context of ECL detection.

To identify the breast cancer biomarker Mucin1 (MUC1), an
adversarial electrochemical apta-sensor built around a cDNA-
ferrocene/MXene probe was developed by Wang et al. MXene
(Ti3C2) nano-sheets with a high specific surface area and out-
standing electrical conductivity are used as aptamer probe
bearers (Fig. 8(c)).82 To create a cDNA-Fc/MXene probe, ferro-
cene-labeled DNA that is complementary (cDNA-Fc) was first
coupled to the exterior of MXene. After that, Au–S bonds hold
the MUC1 aptamer to the electrode. The Apt/Au/GCE sensing
electrode carries this designation. An aptasensor made of
cDNA-Fc/MXene/Apt/Au/GCE is created once the probe and
aptamer are comparable to one another. When MUC1 is
detected with the aptasensor, antagonism between the cDNA-
ferrocene/MXene probe and MUC1 causes the cDNA-Fc/MXene

probe to separate from the detecting electrode, which, in turn,
lowers the electrical signal. To determine the quantitative
change in bound MUC1, a comparison of the equivalent redox
peak current before and following detection was done by the
research group. The competitive electrochemical aptasensor
that has been proposed has a promising linear range of 1.0
pM to 10 M and a low detection limit of 0.33 pM (S/N = 3).

For the electrochemical detection of tumor cells, gold elec-
trodes were augmented with MXene nanosheets by Vajhadin
et al.83 Electrostatic interactions were used to immobilize an
HB5 aptamer with remarkable specificity for HER-2-positive
cells on the MXene sheets. HER-2 positive flowing tumor cells
were magnetically separated using CoFe2O4@Ag magnetic
nano-hybrids attached to HB5 to reduce biofouling with blood
components. To properly screen the transfer of electrons of a
redox probe and enable accurate cell screening utilizing an
alteration in current, sandwich-like arrangements are formed
between the magnetically trapped cells and the functionalized
MXene electrodes. This label-free MXene-based cytosensor
device produced excellent selectivity and sensitivity in the
detection of HER2-positive cells in blood samples, as well as a
broad linear range of 102–106 cells per mL and a low limit of

Fig. 8 (a) Sandwich-type anti-fouling immunoassay, reprinted with permission from ref. 80 copyright 2022 American Chemical Society; (b) MQDs
based gold nanobone. reprinted with permission from ref. 81 copyright 2022 American Chemical Society; (c) preparation of an electrochemical
apta-sensor (copyright permission Elsevier 2020).
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detection of 47 cells per mL. Using CoFe2O4@Ag magnetic
nanohybrids and MXenes for monitoring cancer growth via cir-
culating tumor cells in the blood at an affordable price has a
lot of potential, as shown by the sensor presented by the
group.

In a study by Kumar et al., label-free, extremely sensitive
recognition of the cancer marker carcinoembryonic antigen
(CEA) was achieved using ultrathin Ti3C2-MXene nanosheets
that had been systematically enriched with aminosilane
(f-Ti3C2-MXene) and synthesized using minimally labor-inten-
sive layer delamination techniques.84 Hexaammineruthenium
([Ru(NH3)6]

3+), which was studied by the research group as a
result of the impact of several redox probes on the electro-
chemical behavior of f-Ti3C2-MXene, was determined to be the
most effective redox probe for biological sensing. The biomodi-
fied Ti3C2-MXene that was manufactured had a linear detec-
tion range of 0.0001–2000 ng mL−1 and a sensitivity of 37.9 A
ng mL cm2 per decade. f-Ti3C2-MXene’s greater linear range of
detection was reported to be higher than that of previously
reported pristine 2D nanomaterials by the research group and
even it was indicated to be on par with other hybrid 2D nano-
materials. This research opens new possibilities for the cre-
ation of MXene-based highly sensitive DNA, enzyme, antibody,
aptamer, and cell-based biosensors, which may also have
applications in drug administration.

Sharifuzzaman et al. reported, for the first time, a one-pot
electroplating method for depositing 2D MXene-Ti3C2Tx nano-
sheets (MXNSs) onto conducting electrodes within a short
period—termed electroMXenition.85 Under the influence of a
constant applied voltage, the redox process in the colloidal
solution produces a charged field that directs the nano-
particles toward a particular electrode interface where they get
electroplated. 4-Amino-1-(4-formyl-benzyl) pyridinium
bromide (AFBPB), a task-driven ionic liquid, is used as a multi-
plexed substrate for the significant immobilization of MXNSs
and the covalent attachment of antibodies. By examining the
advantages of AFBPB coated on MXNSs, a dual interdigitated
microelectrode (DIDE), which was micro-prepared and single-
masked, was provided by the research group. Due to homo-
geneous accumulation, the resulting MXNS-AFBPB-film-func-
tionalized biosensor displayed a 7 times greater redox peak
current than untreated electrodes. This newly created dual
immunosensor displayed accurate and wide linear ranges over
five orders of magnitude with detection limit values as low as
0.3 and 0.7 pg mL−1, respectively, for Apo-A1 and NMP 22 as
model bladder cancer biomarkers.

5.3 Borophene

The scientific community has paid close attention to 2D nano-
materials because of their exceptional and distinctive features.
The higher surface areas, greater chemical and physical
activity, and quantum-confinement implications of ultrathin
2D nano-sheets mean that almost all of their atoms are sub-
jected to exterior photonic, catalytic, electronic, and magnetic
properties.86 These ultrathin 2D nanosheets have a wide range
of potential applications in biosensors, bio-mimicking

resources, carriers of drugs, gadgets, and other fields. The dis-
covery of graphene sparked a significant reaction from the
materials world and significantly boosted the use of 2D
materials in a variety of industries.

However, many of the material’s uses in photodynamic
treatment, medical imaging, and electronics are hampered by its
zero bandgap. Scientists have been looking for 2D materials with
a honeycomb structure resembling graphene, or mono-elemental
2D nano-sheets that are near or in the same group as the carbon
element, to create materials with superior qualities that are
similar to graphene. Fortunately, the emergence of materials with
graphene-like structures, such as square boron nitride (h-BN),
transition metal disulphides (TMDs), and mono-elemental 2D
materials like stanene, germanene, silicene and borophene may
not only overcome the drawback of the graphene’s zero bandgap
but also possess additional unique attributes that will contribute
to new application possibilities. Borophene is generally syn-
thesized using etching methods (Fig. 9).

Mono-elemental nanoparticles have three distinct benefits
over conventional 2D materials. (I) They are better suited to
current semiconductor innovation. For instance, the primary
building blocks for conventional semiconductor substances
are silicon and germanium. (II) Because they only contain one
element, it is fairly trivial to synthesize high-grade nano-
particles. (III) They are simple for biological systems to break
down and metabolize. Another of the mono-elemental 2D
nano-materials with high bio-compatibility is black phos-
phorus. As a starting point for ATP and DNA, it can be broken
down to phosphate in vivo and contribute to preserving many
crucial biological processes.

The mono-elemental 2D materials are also better possibili-
ties application in electron devices, drug administration,
optical treatment, biological imaging, and other sectors due to
their extremely large specific surface areas and varied levels of
reactivity to light, pH, electricity, etc.87 As a mono-elemental
2D material, borophene is comparable to black phosphorus
and graphene in that it not only has a substantial surface area
and drug-placing ability (borophene: 114%, black phosphorus:
108%, graphene oxide: 200%, other nanomaterials: 10–30%)
but also responds to optical, pH, and heat stimuli by respon-
sively releasing drugs. One of the most enigmatic mono-
elemental 2D nanomaterials is borophene, whose versatility
sets it apart from other mono-elemental 2D materials.88

The geometries and attributes of the many allotropes of
borophene produced under various settings and processes are
diverse. One such fascinating Dirac material, projected to have
Dirac cones and unique electrical properties, is Pmmn boro-
phene. Since some are extremely anisotropic whereas others
are isotropic, there are differences between their properties.
This implies that we can govern and manage the conditions of
processing to synthesize borophene to satisfy application spe-
cifications.87 There have not been many reports regarding bor-
ophene in recent years, and the unique characteristics that
have been discovered are only the tip of the iceberg. There
remain a lot of subtleties that scientists can investigate
further.
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The extraordinary transverse nano-material 2D borophene
is now making an appearance, replacing its forebears in the
fields of diagnostic tools, biomedical sensors, energy storage
devices, high-performance medical equipment, and super-
capacitors. In comparison with other 2D nanomaterials, boro-
phene has powerful attributes and controlled mechanical,
optical, thermal, magnetic, and electrical properties, which
make it s distinct material. However, efforts to transform con-
ceptual and empirical understanding into practical systems
are ongoing. Computational and analytical chemistry investi-
gations are required to optimize borophene with desirable
traits to fill the related knowledge gap.

The extraordinary transverse nano-material 2D borophene
is now making an appearance, replacing its forebears in
diverse fields. In comparison with other 2D nanomaterials,
borophene has powerful attributes, and controlled optical,
magnetic, thermal, mechanical, and electrical properties. High
electrical conductivity brought on by HOMO (highest occupied
molecular orbital) destabilization, monolayer nano-engineer-
ing, chemistry-focused biological compatibility, and photo-
induced characteristics makes borophene suitable for use in
sensing, imaging, and treatment of cancer and other therag-
nostic applications.89 In addition, the morphs of borophene
have helped enable particular binding for DNA sequencing
and the construction of powerful medical equipment. The
development of efficient biomedical systems using borophene-

based futuristic biomedical applications, such as AI, the IoT,
and the internet of medical things (IoMT), as well as chal-
lenges and opportunities, are extensively being explored. So,
based on the investigated properties of borophene for future
biomedical uses, this material will be a crucial supporting
platform.

5.4 Quantum dots

Quantum dots (QDs) are semiconducting nano-sized crystals
with an inter-molecular spacing of roughly 2 to 10 nm. From
everyday products like photovoltaic systems, lights, or sign
boards to more complex, sensitive, and precise medications
intended for human administration, QDs are used in a variety
of applications. When utilized as drug carriers for medi-
cations, QDs can also be used as diagnostic instruments for
ailments when viewed under specific wavelengths of light. The
distinctiveness of QDs comes from the fact that distinct QDs
exhibit unique emission bands when stimulated under a wave-
length of the same range. QDs can be synthesized using a
variety of well-established, documented processes that are
based on the components employed in their production and
the resulting particles are luminous dots.90 The application of
such luminescent nano-dots in the field of nanomedicine is
made possible by the simplicity of conjugating QDs with drug
delivery carriers, which include micelles, liposomes, polymers,
solid lipid nanomaterials, and carbon-based nanomaterials. In

Fig. 9 Borophene obtained by an etching process for guided photothermal therapy.
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recent years, the use of nanoparticles has been observed in the
detection and management of even complex problems such as
cancer, diabetes, cardiovascular disease, and neurological dis-
orders. QDs are employed in a variety of nano-biomedical tests
for chronic illnesses, including cancer, to determine the severity
and location of the disease because of their ability to excite light.

The ability of graphene quantum dots (GQDs) to detect bio-
markers using electrochemical biosensing systems has shown
promise as a cancer diagnostic tool, particularly for spotting
early tumorigenic changes and detecting ultra-low levels of
indicators that differentiate between benign and malignant
cells. The study by Kalkal illustrates the construction and use
of a fluorescence turn-on biosensor for extremely sensitive
detection of a small cell lung cancer biomarker using gold
nanoparticles (AuNPs) as the energy recipient and biofunctio-
nalized graphene quantum dots as the energy provider
(Fig. 10(a)).91 To detect neuron-specific enolase (NSE), a label-
free and effective luminous biosensor that utilizes nano-
surface energy transfer (NSET) between anti-NSE/amine-
N-GQDs and AuNPs was created. As a result of the NSE
antigen, fluorescence turnaround investigations of the anti-
NSE/amine-N-GQDs@AuNPs nanoprobe showed a quick reac-

tion time of 16 min, a wide range of linear detection of 0.1 pg
mL−1 to 1000 ng mL−1, and an incredibly small limit of detec-
tion of 0.09 pg mL−1. Additionally, with a median recovery
value of 94.69% in real samples, the luminous biosensor
demonstrated exceptional performance.

In situ hybridization (ISH) and immunohistochemistry are
now the two main test modalities approved for the assessment
of HER2, which is a biomarker for breast cancer; these tests
are not suitable for point-of-care diagnostics. As a result, a lot
of work has been put into creating new alternative approaches.
The field of point-of-care device analysis is currently made
possible by amazing instruments made possible by “lab-on-a-
chip” and contemporary biosensor technology.92 Different
sensing technologies have been applied to detect cancer bio-
markers like sensing techniques based on antibody/affibody
screening,93 sensors based on molecularly imprinted polymers
(MIPs),94 magnetic immunoassays, ensembles of nanoelec-
trodes, cellulose-based assays,95 polycytosine-based immuno-
sensors,96 and a nano-shearing based microfluidic device.97

Each of these approaches is shown to have adequate empirical
accomplishments, but owing to their lengthy and arduous pro-
cedures, their applicability is still constrained.

Fig. 10 (a) Mechanism for the detection of cancer biomarkers through gold quantum dots, reprinted with permission from ref. 91 copyright 2020
American Chemical Society; (b) representation of the immunosensor construction and detection strategy (copyright permission Elsevier 2020); (c)
energy transfer in quantum dots (copyright permission Elsevier 2023).

Review Nanoscale

5478 | Nanoscale, 2024, 16, 5458–5486 This journal is © The Royal Society of Chemistry 2024

Pu
bl

is
he

d 
on

 2
3 

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
1-

06
-2

02
5 

07
:2

1:
51

. 
View Article Online

https://doi.org/10.1039/d3nr05648a


The extracellular domain of the human epidermal growth
factor receptor 2 (HER2-ECD), a biomarker for breast cancer, is
easily and effectively detected using an environmentally
friendly immunosensor electrochemically developed by Freitas
et al.92 A sandwiched immunoassay was created as a transdu-
cer on bare carbon electrodes that had been screen-printed
(Fig. 10(b)). Core/shell CdSe@ZnS quantum dots were used as
the electro-active tag to monitor the binding process using
differential pulse voltammetry (DPV) throughout a 2-h test,
with the functional time being less than 30 min. The reported
immunosensor displayed acceptable precision and a limit of
detection (2.1 ng mL−1, corresponding to a detected amount
(sample volume = 40 L) of 1.18 fmol) that was roughly 7 times
lower than the established cut-off value (15 ng mL−1). The pro-
posed immunosensor responded linearly to HER2-ECD con-
centration over a wide range (10–150 ng mL−1). Samples of
spiked human serum were used to gauge the effectiveness of
the suggested technology. By examining a different biomarker
for breast cancer (CA15-3) and various human serum proteins,
the validity of the proposed biosensor for the specific screen-
ing of HER2-ECD was validated. Another bioassay for the
detection of HER2-ECD was reported by the same research
group in which they did a thorough evaluation and further
investigation of (ultimately) HER2-positive breast cancer based
upon the identification of HER2-ECD and cancer cells in
samples.98 MBs and SPCE were used as the transducer surface,
core/shell CdSe@ZnS QDs were used as the electro-active
labels, and an efficacious immuno-magnetic test with an assay
duration of 90 min was created by the research group. DPV
was used to assess the Cd2+ ions released by the breakdown of
the QDs’ acid. Utilizing human serum samples, the device’s
usability was evaluated, and its specificity was verified by
examining potential interferent serum components and other
cancer indicators. Additionally, the HER2-positive SK-BR-3
breast cancer cell line, HER2-negative MDA-MB-231, and less
expressive HER2 (MCF-7) breast cancer cell lines could all be
identified using the immuno-magnetic test developed by the
group. A signal dependent on the concentration from the
SK-BR-3 cell lines was greater than 12.5 times stronger than
the signal from the other cells. The bioassay was successful in
evaluating tumor markers in cancer patients’ serum in a
quick, accurate, and focused manner.

Chang et al. provided a fresh, clever donor–acceptor (D–A)
energy transfer-based method for making water-soluble multi-
modal pH-responsive hetero-junction nanomaterials as shown
in Fig. 10(c).99 Co-assembled nanomaterials made of fluo-
rescent blue-colored GQD as the recipient with spontaneously
formed water-loving tertiary amine-grafted polythiophene
(WPT) as the source of energy serve as a very sensitive and
effective sensor for the identification of cancer cells. These
WPT/GQD nanoparticles show a variety of distinctive physical
properties, including a wide range of configurable GQD-
loading materials and morphology of particles, very little cyto-
toxicity in healthy and cancerous cells, and highly receptive
pH-responsiveness and swift acid-triggered fluorescent behav-
ior under aqueous acidic conditions. The research group has

demonstrated that these characteristics are brought about by
GQD’s self-agglomeration within the nanomaterials and
GQD’s consequent agglomeration-induced fluorescence after
the nanoparticles are disassembled and the D–A contacts are
broken in an acidic environment. An important finding was
that WPT/GQD nanomaterials were progressively absorbed by
both healthy and malignant cells in vitro, as indicated by
in vitro fluorescent imaging tests. Later, in the acidic micro-
environment of the cancer cells, GQD aggregates were specifi-
cally formed, and the inside of the cancer cells fluoresced
strongly blue; similar events did not happen in healthy cells.
Conversely, in cancer or normal cell lines, immaculate WPT or
GQD did not show cellular microenvironment-triggered fluo-
rescence shifts. As a result, the recently found water-soluble
heterojunction combination could serve as an extremely
precise and fluorescent bio-probe for quick screening of
cancer cells.

5.5 Transition metal dichalcogenides

Transition metal dichalcogenides (TMDs) have become more
prevalent in 2D nanomaterials in recent years. TMDs consist of
a surface of transition metal atoms wedged between two strata
of chalcogen atoms that interact by inept van der Waals inter-
actions to form a hexagonal lattice, such as MoS2, NbS2, WS2,
TiSe2, VSe2, and WTe2. TMDs, which resemble graphene in
many ways, are less strong and thinner than graphene but
have superior electrical conductance due to the presence of a
direct gap band. TMDs are semiconductors, hence their
bandgap is dependent on their thickness and widens as the
thickness narrows. TMDs offer good electrical, optical, and
photoluminescence capabilities; TMDs have garnered a lot of
interest from a variety of energy, materials, catalysis, elec-
tronics, and bio-analysis disciplines.

Because of its better capabilities, MoS2 is the TMD that is
most frequently employed in microfluidic devices. Instead of
simply using MoS2 nano-sheets, metal nanomaterial-decorated
MoS2 nanosheets are typically synthesized and incorporated
into microfluidic systems to further improve the electro-
chemical properties of these materials. These materials not
only maintain the unique properties of both MoS2 nanosheets
and metal nanomaterials but also convey novel properties as
an outcome of their arrangement. As a new family of 2D
materials with intriguing features, TMDs are suited for a wide
range of applications in optoelectronics, materials science,
electronics, and even biomedical technology. These materials
are effective for a variety of applications due to their ease of
exfoliation and potential for surface alteration. Modern-day
biological applications seem exciting even though they have
strong candidates in the fields of materials, electronics, and
optoelectronics. They are suitable for dual-model cancer diag-
nosis due to their comparatively high photothermal
coefficients.

Due to their biocompatibility, variety and multifunctional-
ity, tunable bandgap, and superior photoelectric properties,
TMDCs are widely exploited for chemical detection, and bio-
sensing, specifically for tumor detection. TMDs have been
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intensively explored due to their high quenching efficacy, great
dispersion, and simple large-scale preparation. They have a
weak quenching capacity and a propensity to agglomerate,
which could result in a decline in electrochemical perform-
ance. TMDs and other materials in combination are a poten-
tial research avenue that can address this deficiency.
Microfluidic chips using TMD-based nanocomposites have
high surface areas, better electrical conductivity, and catalytic
abilities that are projected to become increasingly popular in
the future.

TMD-based field-effect sensors are attracting significant
interest due to their promising properties, but due to their bio-
compatibility, variety, and high electrical performance, stabi-
lity deterioration in liquid environments is essential for FET

biosensors to function practically. Ji et al. reported the detec-
tion of the CA125 biomarker in samples from patients by
using a high-performance, self-prepared InSe-FET bio-
sensor.100 Due to the passivation effect on the InSe channel,
the InSe-FET is merged with a homemade microfluidic
channel and displays remarkable electrical constancy. InSe-
FET biosensors have a detection time of 20 min and are
capable of quantitatively detecting the CA125 biomarker in
breast cancer in the range of 0.01–1000 U mL−1. For the detec-
tion of protein biomarkers, this work offers a generic identifi-
cation technique (Fig. 11(a)). The indicated biosensor has
reported a standard error of <8.78% and can detect a broad
range of the antigen CA125, from 0.01 to 1000 U mL−1.
Clinical sample recognition has revealed that InSe-FET bio-

Fig. 11 (a) Schematic of the InSe-FET biosensor for CA125 biomarker detection (copyright permission 2023); (b) preparation of a sensing platform
for biomarker detection (copyright permission 2023).
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sensors have a lot of potential for real-world uses, including
the early detection and prognostic of cancer, the investigation
of the pathophysiology of serious ailments, and smart moni-
toring of health. A low-cost, extremely sensitive PEC biosensor,
which may be used to quickly identify different types of lung
cancer cell types in hydrologic atmosphere (Fig. 11(b)), was
also successfully created. The MoS2/Cu2O biochip material
created by electrochemical deposition was used by the research
group to evaluate the photocurrent response. The amount of
oxidized characteristic materials, glutathione and glutathione
disulfide, grows along with the detected cancer cell count, and
as a result, the photocurrent is reduced. Di-electrophoresis can
also be used to detect un-labelled cancer cells, assemble
cancer cells into pearl strings, and mould lung cancer cells by
using the slope of the admittance values. Different types of
cancer cells in the pleural fluid are identified by comparing
the coefficients of the linear regression curve with the admit-
tance result and the photocurrent assessment values.

6 Quantum technology for cancer
management: a revolution in precision
medicine

Cancer continues to be one of the most challenging and preva-
lent diseases worldwide, with millions of lives affected every
year. Despite significant advancements in conventional cancer
treatment methods, the need for more effective, precise, and
less invasive approaches remains paramount. In this pursuit,
the emerging field of quantum technology has begun to offer
remarkable potential for revolutionizing cancer management.
Quantum technology leverages the principles of quantum
mechanics to create innovative tools and techniques with un-
precedented capabilities. These quantum-enabled advance-
ments hold promise across various facets of cancer manage-
ment, from early detection and accurate diagnosis to personal-
ized treatment strategies.

One of the most exciting applications of quantum techno-
logy in cancer management lies in early detection. T cells are a
type of white blood cell that play a crucial role in the immune
response to cancer. Quantum technology has been used to
develop T cell-based therapies for cancer management. For
example, researchers have used quantum dots to track T cells
in vivo and monitor their migration to tumors.101 Quantum
sensors, such as superconducting qubit-based detectors and
nitrogen-vacancy (NV) centers in diamonds, offer unparalleled
sensitivity and precision in detecting minute changes in bio-
markers associated with cancer.102 These sensors can identify
cancer-related molecules and genetic mutations at their ear-
liest stages, facilitating timely intervention and significantly
improving survival rates. Quantum computing’s immense
computational power is poised to transform the field of cancer
treatment. Traditional algorithms struggle to process the vast
amount of genomic and clinical data required for personalized
therapies. Quantum computers, with their ability to perform

complex calculations exponentially faster, can analyze this
data swiftly, helping oncologists tailor treatments to each
patient’s unique genetic profile. This promises more effective
therapies with fewer side effects.

Imaging techniques have long been crucial in cancer diag-
nosis and monitoring. Quantum-enhanced imaging methods,
such as quantum-enhanced MRI and quantum dot-based
imaging agents, offer higher resolution, sensitivity, and speci-
ficity. These innovations enable non-invasive, real-time track-
ing of tumor growth, response to treatment, and the detection
of metastasis, enhancing our ability to manage cancer pro-
gression effectively. Protecting patient data privacy is of utmost
importance in cancer management. Quantum communication,
utilizing the principles of quantum cryptography, offers
unbreakable encryption methods that ensure the security of
sensitive medical information.103 This technology is particu-
larly crucial when sharing patient data for collaborative
research and treatment planning.

7 Challenges for 2D materials in
effective screening of cancer
biomarkers

Next-generation 2D materials, like graphene and transition
metal dichalcogenides, present transformative possibilities for
the biomedical field, especially in the realm of cancer diagnos-
tics.104 Their unique electronic, mechanical, and optical pro-
perties provide an attractive platform for biosensing appli-
cations. However, harnessing their full potential for effective
screening of cancer biomarkers presents several challenges:

7.1 Sensitivity and specificity in biomarker detection

2D materials, such as graphene, have displayed enhanced elec-
tronic properties, which can potentially aid in the detection of
biomolecules. However, tailoring these materials to have a
high binding affinity exclusively for specific cancer biomarkers
is complex.105 Ensuring they bind selectively and efficiently
without unnecessary interactions with other molecules is
crucial for accurate diagnostic outputs. Biological samples,
especially fluids like blood or urine, are intricate mixtures
teeming with various molecules. For a 2D material-based
sensor to be effective, it must pinpoint target biomarkers with
remarkable specificity, even when these biomarkers are
present in extremely low concentrations amidst this vast mole-
cular landscape.106

7.2 Stability in biological environments

Biological matrices present a multifaceted challenge for any
diagnostic material. The presence of diverse proteins, salts,
and other bio-molecules can lead to unintended interactions,
potentially altering the structure or function of 2D materials.
Over time, this can degrade the material or diminish its diag-
nostic efficacy.107 Ensuring that 2D materials retain their
desired properties in such intricate environments is a signifi-
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cant hurdle. To enhance their selectivity for specific bio-
markers, 2D materials often require functionalization—a
process where certain molecules or groups are attached to
their surface. However, functionalizing these materials uni-
formly and efficiently, without compromising their intrinsic
properties or introducing defects, remains technically challen-
ging.108 Moreover, ensuring that these functional groups
remain stable and active in biological settings further compli-
cates the matter.

7.3 Economic and scalability concerns

While 2D materials offer promising novel properties, seam-
lessly integrating them into existing diagnostic technologies is
not straightforward. Whether it is embedding them into
microfluidic devices, biosensor arrays, or other platforms,
achieving optimal compatibility and performance is a meticu-
lous task. This involves not only the physical integration of the
material but also ensuring that data acquisition, processing,
and interpretation align with the platform’s standards.109

Beyond the intrinsic scientific and technical challenges, the
practical aspects of producing and implementing 2D materials
in diagnostic settings cannot be overlooked. Scalable pro-
duction of high-quality, defect-free 2D materials suitable for
medical applications is non-trivial. Variations in material
quality across batches can significantly impact diagnostic
reliability.110 Furthermore, the costs associated with develop-
ing, validating, and deploying 2D material-based diagnostic
platforms might be substantial, raising questions about their
economic viability and accessibility.

Whilst next-generation 2D materials hold immense promise
for revolutionizing the early detection of cancer biomarkers,
several multifaceted challenges lie ahead. Addressing these
challenges necessitates an interdisciplinary approach, bringing
together expertise from materials science, oncology, nano-
technology, and quantum technology. The potential benefits,
in terms of enhanced cancer detection and patient outcomes,
underscore the importance of continued research and inno-
vation in this domain.

8 Conclusion and future
perspectives

The medical field is experiencing a seismic shift with the inte-
gration of AI, and nowhere is this more palpable than in
cancer imaging. As it stands, most radiologists have recog-
nized the transformative potential of AI-driven therapeutic
applications, making it an exciting frontier for innovation and
research. Cancer imaging is undergoing rapid evolution.
Advancements in AI, especially those rooted in ML, are paving
the way for more accurate, efficient, and timely diagnostic pro-
cedures. However, as with any technological leap, there are
challenges to overcome. One primary constraint is the avail-
ability of vast amounts of high-quality imaging data, which are
crucial for training and refining ML algorithms. In the
absence of such data, the development of new ML techniques

may be stymied. However, the silver lining here is the emer-
gence and accessibility of biobanks and open-source reposi-
tories. These platforms offer a treasure trove of well-curated,
real-world imaging data. By leveraging these data, researchers
can bypass some of the data-related limitations that might
otherwise impede the development of ML techniques.
Additionally, the increasing emphasis on open-source tools
presents a democratized approach to algorithm development.
Such collaborative platforms can foster greater accessibility
and promote collaborations across centers, transcending geo-
graphical and institutional barriers. Despite palpable excite-
ment in the field, a note of caution is warranted. The long-
term viability and impact of these AI-driven tools in terms of
clinical outcomes and cost-effectiveness remain topics of
debate. While many algorithms demonstrate high diagnostic
accuracy in controlled settings, their real-world effectiveness,
scalability, and return on investment remain to be conclusively
established. Furthermore, the regulatory landscape for AI in
healthcare remains fluid and somewhat nebulous. As AI-driven
solutions burgeon, the need for a robust regulatory framework
becomes paramount. It is essential to ensure that these tools
undergo rigorous scrutiny before clinical deployment, safe-
guarding patient interests and ensuring clinical efficacy.
Education plays a pivotal role in this AI-driven transformation.
Radiologists, being at the forefront of this revolution, need a
deep understanding of these technologies. They must be
equipped with the knowledge to critically assess, validate, and
integrate AI solutions into their practice. This is not just about
understanding the algorithms but also about appreciating
their implications, potential biases, and limitations. It is
crucial to incorporate AI for effective prediction, screening and
detection in designed systems. We hope that this review can be
used as a starting point to address the issues that can arise
with the incorporation of AI into the field biosensors for
cancer monitoring. AI biosensors have the potential to revolu-
tionize almost every facet of healthcare and hold promising
potential for future innovations in the field of oncology. The
foreseeable prospects of biomedicine and healthcare are quite
promising when it comes to the incorporation of AI into
sensor technology. The achievement of tailored healthcare is
one of the main advantages of AI-escalated sensor systems. AI
algorithms may produce individualized suggestions for illness
prevention, early prediction, and management by continually
monitoring physiological indicators and unimpeded merging
of them with a person’s medical history. Additionally, AI-
enabled sensors can provide instantaneous tracking of vital
signs, allowing for the quick discovery of anomalies and
prompt action, which could potentially save lives.

The choice of the 2D material incorporated into the sensing
platform is crucial for applications involving chemical and
physical sensors. The specificity of the device may change if
only perfect and defect-less materials are used. In order to facili-
tate analyte absorption, anchoring groups may be included on
the surface. Although various 2D material-based biomedical
devices have shown in vitro biocompatibility, the fundamental
obstacle to their practical usage lies in their in vivo biological
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compatibility. It has been demonstrated that mechanical
elements with biomimetic qualities or coatings made of bio-
compatible moieties can lower immune reactions and inflam-
mation. With a few notable exceptions, the majority of 2D
sensing derivatives require biomolecule modifications since
they are typically unable to detect the target analytes on their
own. This feature restricts their applicability in addition to
raising production costs due to their unstable nature. Despite
these obstacles, a large body of research indicates that 2D nano-
materials have the potential to be effective at cancer detection.

Finally, the integration of AI into cancer imaging, detection,
and the emerging realm of circulating tumor cells (CTCs) is
not a solitary journey. It necessitates a multidisciplinary
approach, bringing together radiologists, oncologists, pathol-
ogists, computer scientists, engineers, and data scientists. As
CTCs offer a real-time snapshot of a patient’s tumor profile,
combining their analysis with AI-driven tools can lead to un-
precedented accuracy and insights. Cancer management
embraces cutting-edge smart technologies, including ML, AI,
and DL, to revolutionize personalized monitoring, as shown in
Fig. 12. By analyzing vast datasets, these technologies enable
precise diagnostics, therapy optimization, risk assessment,
and optimized diagnostics. Real-time monitoring, coupled
with intelligent algorithms, ensures timely adjustments for
optimized therapy outcomes. This synergistic integration of
advanced technologies empowers healthcare professionals
with data-driven insights, offering personalized care that is
adaptive, efficient, and minimizes potential side effects. The
fusion of healthcare and smart technologies marks a transfor-
mative era in cancer management, fostering tailored, high-pre-
cision approaches for improved patient outcomes. In the past,
people have made practically all healthcare choices. Using
intelligent devices to help or make judgments raises questions
about privacy, consent, responsibility, and openness.

The combination of smart technology and nano-enabled AI
promises to revolutionize cancer care in the next years. Early
cancer detection through non-invasive screenings is made
possible by nano-scale sensors that are precisely calibrated for
molecular interactions. By incorporating AI algorithms into
this nano-framework, cancer risk may be accurately and
quickly predicted using extensive data analysis. Connectivity is
improved by smart technologies, which can provide individua-
lized insights for customized treatment regimens. With a focus
on early identification and individualized therapy, this com-
prehensive strategy represents a significant turn toward proac-
tive and accurate cancer management. With AI in healthcare,
there will probably be a lot of ethical, technological, medicinal,
and vocational changes. Healthcare organizations, together
with governmental and regulatory agencies, should set up
systems to keep an eye on crucial concerns, respond responsi-
bly when necessary, and implement governance procedures to
minimize unfavorable effects. Since this is one of the more
potent and significant technologies to affect human society, it
will take years of careful policymaking and ongoing atten-
tion.28 The convergence of AI and CTCs has the potential to
revolutionize early detection, monitor treatment efficacy, and
even predict recurrence with more precision than ever before.
As the landscape of healthcare monitoring continues its rapid
evolution, driven in part by AI and innovative methodologies
centered on CTCs, the onus is on these stakeholders to
embrace, understand, and guide this transformation in a
manner that prioritizes patient welfare above all.
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Fig. 12 Revolutionizing cancer care through personalized monitoring with advanced smart technologies such as AI, ML, and DL, enhancing
patient-centric approaches for comprehensive and proactive management.
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