
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Chemical
Science

www.rsc.org/chemicalscience

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Chemical Science RSCPublishing 

EDGE ARTICLE 

This journal is © The Royal Society of Chemistry 2013 Chem. Sci., 2013, 00, 1-3 | 1 

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2012, 
Accepted 00th January 2012 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Functionalised staple linkages for modulating the 
cellular activity of stapled peptides 

Yu Heng Lau,a Peterson de Andrade,a Soo-Tng Quah,b Maxim Rossmann,c Luca 
Laraia,a,f Niklas Sköld,a Tze Jing Sum,a Pamela J. E. Rowling,d Thomas L. 
Joseph,e Chandra Verma,e Marko Hyvonen,c Laura S. Itzhaki,d Ashok R. 
Venkitaraman,f Christopher J. Brown,b David P. Laneb and David R. Springa*  

Stapled peptides are a promising class of alpha-helix mimetic inhibitors for protein-protein 
interactions. We report the divergent synthesis of 'functionalised' stapled peptides via an 
efficient two-component strategy. Starting from a single unprotected diazido peptide, dialkynyl 
staple linkers bearing different unprotected functional motifs are introduced to create different 
alpha-helical peptides in one step, functionalised on the staple linkage itself. Applying this 
concept to the p53/MDM2 interaction, we improve the cell permeability and p53 activating 
capability of an otherwise impermeable p53 stapled peptide by introducing cationic groups on 
the staple linkage, rather than modifying the peptide sequence. 
 

 

Introduction 

Many cellular functions are governed by complex networks of 
protein-protein interactions (PPIs). Compounds which are able 
to inhibit specific PPIs are vital tools in chemical biology for 
elucidating the role of individual proteins in a large network. 
Furthermore, developing general methods of inhibiting PPIs 
may open up whole new classes of therapeutic protein targets, 
going beyond the traditional 'druggable' genome of 
predominantly enzymes and receptors.1 
 One major challenge for developing inhibitors of PPIs is the 
lack of natural small molecule binding partners from which 
inhibitors can be designed.2 At the same time, high throughput 
screens often fail to provide hits, as the typical 'rule of five' 
compliant compounds found in many chemical libraries are 
often poor candidates for binding protein-protein interfaces.3 
An alternative approach is the synthesis of secondary structure 
mimetics, using the native protein sequence as a template for 
designing new inhibitors. There are a number of effective 
peptidomimetic strategies reported in the literature.4 In 
particular, Grubbs, Verdine, Walensky and Sawyer have 
established a promising class of mimetics known as stapled 
peptides,5 in which two non-proteogenic amino acids bearing 
alkenyl side chains are joined by ring-closing metathesis to 
constrain a peptide into an alpha-helical conformation. Stapling 
peptides has been shown to improve binding affinity and 
pharmacokinetic properties when compared to the native 
peptide sequence for several different PPI targets in which the 
interface involves a helical motif.5 

 Despite the successes of this methodology, there is no 
guarantee that stapling will endow a peptide with improved 
properties. In some cases, stapled peptides will have a lower 
affinity for their protein target,6 or be unable to enter cells.6b,7 
Given these caveats, many literature studies on stapled peptides 
begin with optimisation of linker length and position to find the 
best staple orientation.5,8 After achieving a high affinity binder 
in vitro, further alterations in the peptide sequence itself are 
often carried out to achieve cell-permeability and cellular 
activity, whilst taking care not to compromise affinity and 
specificity.7,9  
 For macrocyclisation stapling techniques such as 
hydrocarbon stapling,10 each variation in the staple length, 
staple position or peptide sequence requires a new linear 
peptide to be synthesised, as all these parameters are 
predetermined by the choice of non-natural amino acids during 
solid phase peptide synthesis (Figure 1A). We reasoned that a 
more efficient stapling method would involve two components, 
the peptide and a separate stapling linker, which combine to 
form the final stapled peptide (Figure 1B). In this case, it is 
possible to start from a single linear peptide and generate a 
collection of stapled peptides with different properties based on 
the nature of the linker. At present, Lin,9 Greenbaum11a and 
Inouye11b have used two-component approaches to screen 
structurally different linkers, finding the optimal linker length 
for maximal helicity or stapling reactivity. In the context of 
general peptide macrocycles (not necessarily alpha helices), 
Timmerman, Pentelute, Horne, Fasan and Suga have explored 
variable-length linkers for generating different cyclic 
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 With this initial success in our model system, we then 
decided to target the p53/MDM2 interaction, a promising 
therapeutic target for cancer therapy.16 Inhibitors which block 
this PPI can prevent ubiquitination of p53 by MDM2, and free 
the transactivation domain of p53, thereby restoring p53 
function in p53 wild-type cancer cells.16c Whilst we6b and 
others5e have previously had success developing stapled peptide 
inhibitors of this PPI using peptide sequences derived from 
phage display, we specifically chose to apply our new stapling 
method on a p53 peptide derived by substitution of the wild-
type sequence, previously reported to be cell-impermeable even 
after hydrocarbon stapling.7a For such peptide sequences, cell-
permeability can be achieved by mutating away anionic amino 
acids and introducing cationic residues.7,9,17 However, we 
aimed to functionalise the staple as an alternative way of 
optimising cell permeability, independent of changing the 
peptide sequence. 
 Starting from a single fully unprotected p53-based peptide 
SP0, we attempted the stapling with linker 1 using our initial 
stapling conditions. However, a large amount of starting 
material remained unreacted after several days, despite the 
addition of extra reagents. Changing the stapling conditions to 
one equivalent of linker, copper(II) sulphate, tris(3-
hydroxypropyltriazolylmethyl)amine (THPTA) as a ligand and 
three equivalents of sodium ascorbate in 1:1 water/tert-butanol 
gave complete conversion to the stapled peptide. Using these 
improved stapling conditions, five different stapled peptides 
SP1-SP5 were synthesised in one step by introducing the 
linkers 1-5. Importantly, the stapling reaction proceeded cleanly 
in all cases with exceptional functional group specificity and 
tolerance. (Figure 4) Furthermore, no oligomerised and non-
cyclised linear coupling products were observed (Supporting 
Information 4.3).18 

 
Figure 4. HPLC chromatographs of pure starting peptide SP0 (top), and the crude 
reaction mixture after stapling with linker 3 to give stapled peptide SP3 
(bottom), monitored at 220 nm. 

Biophysical comparison of stapled and unstapled peptides 

 Stapled peptide SP1 showed high affinity for binding 
MDM2, as determined by competitive fluorescence polarisation 
and isothermal calorimetry (Table 1). Whilst the binding 
affinity is greatly improved over the wild type p5317-29 peptide, 
the improvement over SP0 is more modest. We also note that 

the binding affinity of SP1 compares favourably to that 
previously reported6b for the related hydrocarbon stapled 
peptide SAH-8 (50.2±5.5 nM), which has several rationally-
designed mutations from the wild-type sequence. The high 
affinity of SP0 itself originates from the replacement of a Pro-
27 residue in the wild type peptide with the azido amino acid in 
both SP0 and SP1. Proline has a poor helix-propensity, and 
molecular dynamics simulations indicate that the helix does not 
extend past Leu-25 for the wild-type peptide, whilst the helicity 
extends through to Glu-28 for both SP0 and SP1 (Supporting 
Information 7). These results are also consistent with previous 
mutational studies on p53 peptides conducted by Zondlo and 
coworkers, where replacing Pro-27 with a serine significantly 
improved binding affinity towards MDM2.19  
 

Table 1. IC50 values and binding affinities for peptides determined by 
competitive fluorescence polarisation (FP) and isothermal calorimetry (ITC). 

Peptidea FP IC50 (nM) FP Ki (nM) ITC Kd (nM) 
wt p5317-29 4807±594 821±56 483±79 

SP0 161±7.7 16.1±1.2 44.3±9.0 
SP1 88.5±3.0 3.21±0.38 6.7±2.8 
SP3 90.2±3.4 3.73±0.42 7.3±1.8 
SP4 121±4.5 7.97±0.69 9.6±2.5 
SP5 149±5.4 11.7±0.91 29.8±5.2 

RRR-SP0 268±12 32.5±2.1 15.2±5.0b 

a Peptide SP2 was not compatible with the competitive assay due to its 
TAMRA-labelled linker, so the Kd was determined by direct fluorescence 
polarisation to be 28.0±7.2. 

b When the ITC data for RRR-SP0 was fitted to a single-site model, the 
resulting curve fitting gave an N value of 1.97, suggesting there may be other 
interactions involved. 

In addition, the wild type peptide displays a random coil signal 
by circular dichroism, whilst both SP0 and SP1 display alpha-
helical circular dichroism spectra (Supporting Information 4.5), 
with SP0 in fact showing greater helicity. However, one 
property which is enhanced by the stapling process is the 
proteolytic stability of the peptide. SP0 was found to have poor 
ex vivo serum stability, with only 18% intact peptide remaining 
after a 30 h incubation period (Figure 5). In contrast, SP1 
showed excellent stability with 79% intact peptide under the 
same conditions, highlighting the importance of the stapling 
process. 

 
Figure 5. Serum stability peptides incubated in mouse serum at 37 oC. 
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Cellular activity of p53 peptides 

 To investigate the efficacy of our stapled peptides to 
activate p53 in a cellular environment, we decided to evaluate 
the cell permeability of our stapled peptides. SP2 was designed 
as a fluorescently-labelled version of SP1, demonstrating the 
ability to simultaneously staple and label a peptide in one step 
using our two-component methodology. When human 
osteosarcoma U2OS cells were incubated with 50 µM SP2 for 
24 h, no fluorescence was observed in cells by confocal 
microscopy, consistent with the previously reported 
hydrocarbon stapled p53 peptides based on the same amino 
acid sequence.7a Utilising the staple linkage as a handle for 
chemical functionalisation, we then incorporated a variable 
number of arginine residues on linkers 3-5 as cell-
permeabilising motifs. Cationic stapled peptides SP3-SP5 
exhibited comparable helicities and binding affinities to MDM2 
(Table 1 and Supporting Information 4.5), confirming that the 
linker modifications could be made without significantly 
disturbing the biophysical properties of the stapled peptide. 
Confocal microscopy on N-terminal dye-labelled versions of 
SP3-SP5 indicated cellular uptake of the peptides when up to 
three arginines were introduced on the linker component 
(Figure 6). 

 
Figure 6. Confocal microscopy images of U2OS cells treated with 50 μM of 
TAMRA-labelled wild type p5317-29, SP3, SP4 and SP5. Nuclei are stained blue, 
whilst peptides appear in pink. Introducing positive charge on the linker induces 
cell permeability without changing the peptide sequence. 

 The unlabelled peptides were then tested in a T22 gene 
reporter assay6b to confirm whether the observed cellular uptake 
would correspond to the activation of p53 in cells. Indeed we 
observed a significant level of dose-dependent p53 activation 
upon treatment of cells with SP5, whilst minimal activation was 
observed in all other cases (Figure 7). We note that whilst 

TAMRA-labelled SP4 (and to a lesser extent SP3) appear to 
enter cells by confocal microscopy, we do not observe 
significant activity in our gene reporter assay with unlabelled 
SP3 or SP4. This may reflect low levels of uptake and the sub-
cellular localisation of the stapled peptide. Appending the 
TAMRA dye itself also appears to affect properties such as 
peptide solubility, and issues involving uptake and the effect 
dye-labelling are currently the subject of further study. Finally, 
to confirm that both the staple and the cationic tag are 
necessary for cellular activity, we synthesised linear peptide 
RRR-SP0, which contains the three arginine cationic motif at 
the N-terminus of SP0, but missing the staple linker 
component. Compared with SP5, this control peptide had a 
reasonable affinity for MDM2 (Table 1), however was less 
helical (Supporting Information 4.5), and did not show any 
activation of p53 in the gene reporter assay. These results 
highlight the importance of the staple, in combination with the 
cationic motif, for achieving a cellular response. 

 
Figure 7. Fold activation of p53 in a T22 gene reporter assay after incubation 
with 25, 50 and 100 μM of peptides. 

Conclusions 

 This proof of principle study demonstrates how our two-
component stapling strategy enables the efficient optimisation 
of stapled peptide activity in cells. All five stapled peptide 
variants were synthesised in one step from the same unstapled 
peptide. We are now looking to gain a greater understanding of 
what factors are important for cellular activity by examining the 
cell-permeability of stapled peptides in greater detail, in 
particular the quantification of peptide uptake and localisation. 
We are also exploring alternative non-peptidic motifs which 
may confer cell permeability and activity. Finally, we will use 
our stapling chemistry together with peptide sequences 
optimised by phage display to efficiently explore more potent 
dual inhibitors of MDM2/MDMX with enhanced cellular 
activity. 
 Given the divergent nature, synthetic ease and functional 
group compatibility of this stapling methodology, we also 
envisage that other properties besides cell permeability could be 
tailored by designing an appropriate functionalised linker. 
Therefore we are exploring new staple structures and functional 
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motifs which have the potential to efficiently generate a vast 
array of chemical tools for enhancing our understanding of PPI 
networks and their inhibition. 
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