Bright yellow fluorescent N-doped Ti3C2 MXene quantum dots as an “on/off/on” nanoprobe for selective As3+ ion detection

Abstract

Ti3C2 MXene quantum dots (MQDs) are considered to be an emerging nanomaterial in recent times, but the majority of MQDs exhibit limited emission properties in the blue-light region. Longer-wavelength emissive quantum dots are highly desirable in terms of various biological aspects including deep tissue penetration, superior signal-to-noise ratio, reduced radiation damage, etc. In this study, bright yellow fluorescent nitrogen-doped MQDs (N-MQDs) were successfully prepared using a one-pot hydrothermal method. The synthesized N-MQDs showed maximum emission at 570 nm upon excitation at a wavelength of 420 nm, with an optimum fluorescence quantum yield of 13.8%. Interestingly, the emission of the N-MQDs was significantly quenched upon the addition of As3+ ions. A mechanistic investigation revealed that static quenching was involved in the decrease in the fluorescence via the formation of a non-fluorescent complex due to the interaction of the functional groups of the N-MQDs and As3+. The quenched fluorescence was surprisingly recovered upon treatment of the complex with 2-amino-6-methoxybenzothiazole (MBTZ). The strong interaction of MBTZ with As3+ led to the detachment of the quencher from the N-MQDs, resulting in fluorescence recovery. The re-appearance of the functional groups of the N-MQDs after the addition of MBTZ was confirmed via spectroscopic study. Thus, the fluorescence “on/off/on” phenomenon of the N-MQDs nanoprobe was utilised for the instantaneous detection of As3+ and MBTZ. The limit of detection values were calculated to be 30 nM and 0.44 μM with a good linearity for As3+ and MBTZ, respectively. In addition, a solid sensor has been fabricated to recognize As3+ in wastewater, revealing its potential for on-site application in the near future.

Graphical abstract: Bright yellow fluorescent N-doped Ti3C2 MXene quantum dots as an “on/off/on” nanoprobe for selective As3+ ion detection

Supplementary files

Article information

Article type
Paper
Submitted
08 Жов 2024
Accepted
05 Лют 2025
First published
06 Лют 2025

Nanoscale, 2025, Advance Article

Bright yellow fluorescent N-doped Ti3C2 MXene quantum dots as an “on/off/on” nanoprobe for selective As3+ ion detection

S. Bera and S. K. Bhunia, Nanoscale, 2025, Advance Article , DOI: 10.1039/D4NR04139A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements