Issue 10, 2025, Issue in Progress

Effect of a polymeric compound layer on jetting dynamics produced by bursting bubbles

Abstract

Jetting dynamics from bursting bubbles play a key role in mediating mass and momentum transport across the air–liquid interface, and have attracted widespread interest from researchers across disciplines. In marine environments, this phenomenon has drawn considerable attention due to its role in releasing biochemical contaminants, such as extracellular polymeric substances, into the atmosphere through aerosol production. These biocontaminants often exhibit non-Newtonian characteristics, yet the physics of bubble bursting with a rheologically complex layer at the bubble–liquid interface remains largely unexplored. In this study, we experimentally investigate the jetting dynamics of bubble bursting events in the presence of such a polymeric compound layer. Using bubbles coated by a polyethylene oxide solution, we document the cavity collapse and jetting dynamics produced by bubble bursting. At a fixed polymer concentration, the jet velocity increases while the jet radius decreases with an increasing compound layer volume fraction, as a result of stronger capillary wave damping due to capillary wave separation at the compound interface as well as the formation of smaller cavity cone angles during bubble cavity collapse. These dynamics produce smaller and more numerous jet drops. Meanwhile, as the polymer concentration increases, the jet velocity decreases while the jet radius increases for the same compound layer fraction due to the increasing viscoelastic stresses. In addition, fewer jet drops are ejected as the jets become slower and broader with increasing polymer concentration, as viscoelastic stresses persist throughout the jet formation and thinning process. We further obtain, for the first time, a regime map delineating the conditions for jet drop ejection versus no jet drop ejection in bursting bubbles coated with a polymeric compound layer. Our results may provide new insights into the mechanisms of mass transport of organic materials in bubble-mediated aerosolization processes, advancing our understanding of marine biology and environmental science.

Graphical abstract: Effect of a polymeric compound layer on jetting dynamics produced by bursting bubbles

Supplementary files

Article information

Article type
Paper
Submitted
09 Січ 2025
Accepted
27 Лют 2025
First published
10 Бер 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 7710-7720

Effect of a polymeric compound layer on jetting dynamics produced by bursting bubbles

S. A. Barbhai, Z. Yang and J. Feng, RSC Adv., 2025, 15, 7710 DOI: 10.1039/D5RA00228A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements