
This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 1425–1437 |  1425

Cite this: Soft Matter, 2024,

20, 1425

Obstructed swelling and fracture of hydrogels†

Abigail Plummer, ‡a Caroline Adkins, ‡b Jean-François Louf, cd

Andrej Košmrlj *ef and Sujit S. Datta *c

Obstructions influence the growth and expansion of bodies in a wide range of settings—but isolating

and understanding their impact can be difficult in complex environments. Here, we study obstructed

growth/expansion in a model system accessible to experiments, simulations, and theory: hydrogels

swelling around fixed cylindrical obstacles with varying geometries. When the obstacles are large and

widely-spaced, hydrogels swell around them and remain intact. In contrast, our experiments reveal that

when the obstacles are narrow and closely-spaced, hydrogels fracture as they swell. We use finite

element simulations to map the magnitude and spatial distribution of stresses that build up during

swelling at equilibrium in a 2D model, providing a route toward predicting when this phenomenon of

self-fracturing is likely to arise. Applying lessons from indentation theory, poroelasticity, and nonlinear

continuum mechanics, we also develop a theoretical framework for understanding how the maximum

principal tensile and compressive stresses that develop during swelling are controlled by obstacle

geometry and material parameters. These results thus help to shed light on the mechanical principles

underlying growth/expansion in environments with obstructions.

I. Introduction

Many growth and expansion processes are sculpted through
confinement by rigid obstructions. Familiar examples include
muffins rising into their characteristic shape during baking,1

trees growing around boulders,2 and even cities expanding
around inhospitable geographic features.3 Obstructed growth
and expansion also play pivotal roles—both harmful and
beneficial—in many practical applications. For example, exces-
sive tissue growth around metal mesh tubes inserted into blood
vessels is a common, but life-threatening, complication of
stenting;4–6 conversely, the expansion of spray foam into cracks
and in between walls underlies the thermal insulation of many
energy-efficient buildings.7 More broadly, obstructed growth
and expansion critically influence the emergence of form and
function across diverse non-living and living systems, ranging

from hydrogels added to soil for water retention to biofilms and
biological tissues in complex environments.8–14 Therefore,
we ask: are there general principles that dictate how obstruc-
tions influence growth and expansion? And if so, how do we
discover them?

When the growth/expansion of a body is resisted by sur-
rounding obstructions, large and spatially-nonuniform stresses
can develop, influencing subsequent growth/expansion in
turn.15,16 Being able to understand the distribution and magni-
tude of these stresses is thus a necessary step in the development
of widely-applicable, predictive models of growth and expansion.
However, model systems in which the coupling between growth
and stress can be systematically studied in structured environ-
ments are scarce. Here, we address this issue using studies of
spherical hydrogel beads swelling in 3D-printed obstacle arrays
with defined geometries. Hydrogels are cross-linked networks of
hydrophilic polymers that can absorb large amounts of water
and swell while still retaining integrity. As a result, they are
extensively used in biomedical, environmental, and manufactur-
ing applications, and have well-characterized and highly-tunable
properties such as their degree of swelling and elasticity.17–20

Indeed, the comprehensive theoretical literature on hydrogel
swelling makes computations of shape and internal stresses
accessible for a variety of boundary conditions. While much
work has focused on the case of a hydrogel swelling while
adhered to another material,21–30 non-adhered swelling around
obstructions has received more limited attention,22,31–35 often in
the context of indentation testing.
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Our study extends this body of work. First, we use experi-
ments to directly visualize how hydrogel swelling is altered by
obstacles of systematically-varying geometries. When obstacles
are positioned further apart, the hydrogel swells through the
spaces between them and maintains its integrity. By contrast,
when the obstacles are closer together, we observe a dramatic
phenomenon: the hydrogel fractures, repeatedly tearing itself
apart as it swells! We then use theory and simulations to
rationalize these observations, and importantly, quantify and
understand the distribution of stresses. Taken together,
our work provides a prototypical example of obstructed
growth/expansion and uncovers complex swelling behaviors
and mechanical instabilities that can result during this
process—highlighting the rich physics waiting to be explored
in this area of soft mechanics.

II. Experiments

Our experimental platform is schematized in Fig. 1(A) and
detailed in Materials and methods (Section VI). To define the
obstacles, we 3D-print four rigid cylindrical columns of radius
robs to be placed an equal distance rctr from a central point; in
the experiments, we vary robs and rctr between 2.5–15 mm and
7.5–25 mm, respectively. The cylinders are securely attached to
horizontal, parallel laser-engraved acrylic plates spaced verti-
cally by a fixed amount, Dz = 40 mm (see ESI,† Section B for a
discussion on the selection of this value). Importantly, these
plates are transparent, permitting direct visualization of a
hydrogel as it swells between the cylindrical obstacles and

parallel plates. Hence, at the beginning of each experiment,
we place a spherical polyacrylamide hydrogel bead of initial
radius B6 mm (initial state characterized in ESI,† Section A) in
the center and submerge the entire apparatus in a bath of
ultrapure Milli-Q water—thereby initiating swelling, which we
track using a camera focused on the top plate.

We first examine the case of obstacles that are spaced
further apart. As the hydrogel swells, it contacts the top and
bottom plates, as well as the cylinders, and continues to swell
through the space between them (Fig. 1(B) and Movie S1, ESI†).
It eventually reaches an unchanging four-lobed equilibrium
shape. As the hydrogel swells, the yellow dye fixed in its
polymer network becomes more dilute; thus, the color intensity
serves as a proxy for the local polymer concentration. However,
the deformed 3D shape of the hydrogel makes it challenging to
extract quantitative information about relative expansion from
a purely top-down view. We leave this effort for future work.

The case of closer-spaced obstacles of the same size is
dramatically different. We observe similar behavior to the
previous case of less confinement at early times: the hydrogel
contacts the surrounding surfaces and swells through the space
between them. As these lobes continue to swell, however,
cracks abruptly form at the hydrogel surface (48 h in
Fig. 1(C)), reflecting the development of large stresses during
obstructed swelling. Remarkably, this sequence then con-
tinues, resulting in elaborate, multi-step fracturing of the
hydrogel as it swells, repeatedly ejecting fragments of the
hydrogel outward (Fig. 1(C) and Movie S2, ESI†). The fracturing
process is dynamic: As cracks propagate through compressed
areas, releasing stresses, those regions are then able to increase

Fig. 1 Hydrogels swelling around obstacles remain intact at equilibrium when obstacles are further apart, but fracture when obstacles are closer
together. (A) Schematic of the experimental platform, showing a hydrogel (yellow) surrounded by cylindrical obstacles with radius robs separated
according to rctr and confined vertically by parallel plates separated by Dz. (B) and (C) Top view images taken over the course of swelling, with robs =
5 mm. The approximate borders of the obstacles and hydrogels are outlined for clarity. (B) When the obstacles are further apart (rctr = 20 mm), a hydrogel
reaches a four-lobed clover-like shape at equilibrium. (C) When the obstacles are closer together (rctr = 10 mm), cracks appear at the surface of the
hydrogel as it swells, driving the repeated production of discrete fragments.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

2.
03

.2
02

5 
23

:3
9:

31
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01470c


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 1425–1437 |  1427

their solvent content and swell. The process eventually stops as
the central hydrogel body reaches its final equilibrium degree
of swelling. Another representative example of a fracturing
hydrogel with a different obstacle geometry is shown in Movie
S3 (ESI†). The fracturing process varies significantly between
samples, reflecting the acute sensitivity of crack formation and
propagation on the random imperfections in the hydrogel and
the complex topography arising from previous fracturing.36–38

These observations suggest that, when appropriately obstructed,
a growing/expanding body can tear itself apart. To characterize the
dependence of this phenomenon on confinement, we repeat these
experiments with obstacles of varying sizes robs and spacings rctr.
We observe a similar phenomenon in all cases, as summarized in
the state diagram in Fig. 2. When the obstacles are far apart, the
hydrogel swells and retains its integrity (&), while when the
obstacles are closer i.e., rctr is below a threshold value, the hydrogel
repeatedly self-fractures as it swells (�). The fracturing threshold
also depends on the size of the obstacles: For a given rctr, fracturing
occurs below a threshold value of robs. The finding that smaller
obstacles promote fracture is reminiscent of wire cutting tests
in fracture mechanics, in which thin wires pushed into soft
materials induce cutting.39,40 The two geometric parameters rctr

and robs thus delineate a boundary between swelling without
fracture and obstructed swelling causing fracture, as shown by
the light and dark green regions, respectively, in Fig. 2. Intui-
tively, this non-trivial dependence of the onset of fracturing on
both obstacle spacing and size reflects the balance between the
osmotic pressure driving swelling—which is set by the difference
between the solvent chemical potential in the unswollen hydro-
gel compared to at its boundary—and the tensile stresses that
develop in the hydrogel as it swells against narrow obstacles.8,41

We theoretically model and computationally quantify this bal-
ance in the following sections.

To demonstrate the generality of this phenomenon, we
repeat our experiments in fully 3D granular packings, which
more closely mimic the obstructions experienced by hydrogels

in many applications.42–51 Our previous experiments8 using
this platform used a solvent that promoted only slight hydrogel
swelling, and therefore accessed the case of weak confinement;
however, repeating these experiments with a solvent that pro-
motes more hydrogel swelling indeed gives rise to self-
fracturing, as shown in Fig. S4 (ESI,† Section C). Thus, this
phenomenon of obstructed growth/expansion causing fracture
arises not just in idealized geometries, but also in more realistic
complex spaces.

III. Theory and simulations

What are the essential physical principles that govern this
phenomenon? To address this question, we develop finite
element simulations that incorporate the energetic penalty of
contacting obstructions into a model of hydrogel swelling
based on classic Flory–Rehner theory. Our goal is to better
understand the complex distribution of stresses that arises
during obstructed swelling, not to quantitatively capture all
the features of the experiments; as such, we use a simplified
two-dimensional (2D) model that permits straightforward
visualization of stresses and thereby enables us to develop an
intuitive and analytic description of the underlying physics.
The dimensional reduction is discussed at length in ESI,†
Section D.

We describe stretching of the hydrogel polymer network and
solvent-polymer interactions with the commonly-used free
energy density:22–24,33,52,53

Fen

A0kBT
¼ np

2
FiKFiK � 2� 2 lnðdetðFÞÞð Þ

þ 1

O
OC ln

OC
1þ OC

� �
þ w

OC
1þ OC

� �
:

(1)

The first term describes the elastic free energy: np is the
number of polymer chains per unit dry reference area A0 and

FiK ¼
@xi
@XK

is the deformation gradient tensor, with FiKFiK ¼

trðFTFÞ ¼
P
i

li2 in terms of principal stretches li. Following

standard conventions, deformed/current configurations are
denoted by lowercase letters and dry reference configurations
are denoted by capital letters unless otherwise noted.16 The
second term describes the mixing free energy: O is the area of a
solvent molecule, C is the nominal concentration of solvent
(number of solvent molecules per unit dry reference area), and
w is the Flory–Huggins interaction parameter. Both terms are
scaled by the product of the Boltzmann constant and tempera-
ture, kBT.

Given that the hydrogel network is held together by perma-
nent cross-links between its polymer chains, we additionally
assume that it only changes volume by uptake of solvent, which
allows us to express concentrations in terms of the deforma-
tion: det(F) = 1 + OC. We require the chemical potential m to be
zero on the boundary of the hydrogel to mimic submerging it in
pure water, as in the experiments. To impose this boundary
condition, we perform the standard Legendre transform of

Fig. 2 Experiments reveal a hydrogel fracture threshold that depends on
obstacle radius and spacing. Each & indicates an experiment in which the
hydrogel reached an intact equilibrium shape as in Fig. 1(B), while each �
indicates an experiment that resulted in fracture as in Fig. 1(C). Schematics
show a top view of the obstacle geometries for the indicated points. The
grey excluded region in the top left shows parameters for which the
obstacles would overlap. The green background shading provides a guide
to the eye.
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eqn (1) and derive a new free energy F̂en in terms of m as
F̂en(xi,m) = Fen(xi,C) � mC.23 Finally, we model contact by
imposing an energy penalty for overlap between the hydrogel
and obstacles; as detailed in Materials and methods, our results
are insensitive to the choice of this parameter. Note that the
chemical potential boundary condition m = 0 is enforced in the
regions of contact between the hydrogel and the obstacles. It
would be interesting to also consider the impact of dynamic
boundary conditions in this problem: for example, a boundary
condition requiring no normal solvent flux in the regions where
the hydrogel contacts obstacles could be imposed.33 Since we
focus on equilibrium quantities in this work, we use a constant
chemical potential boundary for simplicity.

To visualize and track hydrogel deformation during
obstructed swelling, along with the concomitant development
of internal stresses, we implement this model in FEniCS,54 an
open-source finite element platform. Our simulations consider
a circular hydrogel swelling around four fixed obstacles.

Although our primary focus is the stress distribution in the
hydrogel at equilibrium, we simulate the full dynamics of
obstructed swelling to provide numerical stability and ensure
that there is a realistic path from the initial to the final
equilibrium swollen state (ESI,† Section E).

We begin by examining hydrogel swelling around obstacles
that have the same size, but varying spacing—just as in the
experiments shown in Fig. 1(B) and (C). Four representative
examples, varying from the case of weak to strong confinement,
are shown in Fig. 3(A)–(D). The corresponding maximum
tensile and compressive principal stresses on the line connect-
ing the hydrogel center to an obstacle center are plotted in
panels (E) and (F). We quantify these variations using D/r* � (r*
� rctr)/r*, where r* is the equilibrium, fully-swollen, unconfined
radius of the hydrogel and D is the difference between r* and
the distance from the center to the closest obstacle rctr. The case
of weak confinement in (A) has D/r* = 0.02, increasing to D/r* =
0.6 for the case of strong confinement in (D). As seen by the

Fig. 3 Finite element simulations quantify how the equilibrium strains and stresses that develop in the hydrogel depend on obstacle geometry. (A)–(D)
Maps of the solvent concentration per unit dry reference area with the finite element grid superimposed (left column) and the principal stresses (right
column) in the hydrogel at equilibrium, normalized by the area of the solvent molecule O and the fully-swollen hydrogel shear modulus G0, respectively.
Confinement increases from top to bottom, in this case by changing the obstacle spacing with fixed robs/r* = 0.3; thus, D/r* = 1 � rctr/r* = 0.02, 0.1, 0.5,
0.6 from top to bottom, where D is the difference between the unconfined swollen hydrogel radius r* and the distance to an obstacle from the center rctr.
Each mesh point in the right column bears two perpendicular lines, oriented and scaled according to the direction and magnitude of the principal
stresses s1, s2 at that point, and colored such that compressive stresses are blue and tensile stresses are red. The stresses exceed the range of the color
bar for (C) and (D). (E) and (F) Points show the maximum principal tensile and compressive stresses obtained from the simulations, taken along the line
connecting the hydrogel center to an obstacle center, at this same fixed robs/r* = 0.3 as a function of D/r*. Stresses are again normalized by G0. The values
of D/r* corresponding to (A)–(D) are marked by the grey diamonds. The predictions of linear indentation theory (solid lines) agree well with the simulation
data for small D/r* (purple shaded region). With increasing D/r*, the maximum tension exceeds linear predictions, but can be reproduced by a
geometrically nonlinear elastic theory with a linear constitutive law (blue shaded region, ESI,† Section H). For compression, the linear theory is accurate
over a larger range of D/r*, but the geometrically nonlinear theory cannot explain the deviations; instead, an elastic model incorporating material
nonlinearities better captures the data (eqn (10) and Fig. S9, ESI†). As D/r* increases even further, the hydrogel exhibits a symmetry-breaking instability (D,
red shaded region).
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color maps of solvent concentration and principal stresses in
panel (A), in this limit of weak confinement, the hydrogel is
barely deformed and the resultant stresses are not visible when
plotted on the same scale as (B–D). Thus, as we describe in
Section IIIA, the hydrogel stresses can be captured analytically
using linear theories in this regime. Increasing hydrogel
confinement to the point shown in panel (B) causes the
magnitudes of the stresses to increase (panels E and F), but
they still remain primarily localized near the obstacles; as
discussed in Sections IIIB and C, the largest compressive
stresses can still be described by linear theory, but the largest
tensile stresses require consideration of a geometric nonlinear-
ity due to their connection to the rotation of material as it
conforms to the obstacle boundary. As the separation between
obstacles decreases further, large compressive stresses span the
entirety of the hydrogel (panel C), eventually triggering a
symmetry-breaking instability (panel D) as discussed in Section
IIID. Finally, while our model is not suitable to treat fracture
directly, we discuss the connection between our calculations of
stresses and the experimental observations of swelling-induced
self-fracture in Section IV.

A. Weak confinement

Consider a hydrogel disk that has swollen around obstacles to
reach equilibrium. The chemical potential is spatially uniform
and therefore all solvent transport has stopped. Nonetheless,
due to contact with the obstacles, the distribution of solvent is
inhomogeneous through the hydrogel: solvent preferentially
enters the uncompressed lobes of the hydrogel between the
obstacles, as shown by the yellow color in Fig. 1(B).41 Now,
consider another hydrogel that was first swollen, unobstructed,
to its equilibrium size, and then slowly and incrementally
squeezed by an identical set of obstacles moving towards its
center, acting as four indenters. Solvent must exit the hydrogel
where it is indented by the obstacles; recall our condition
1 + OC = det(F). For the same final obstacle geometry, these
two scenarios must have identical solvent distributions and
stress profiles at equilibrium. Thus, the long time limit of
obstructed swelling can be treated as an indentation problem,
which is well-studied in the limit of small deformations. Mak-
ing this analogy between obstructed swelling and indentation
allows us to apply lessons from a large body of literature on
linear contact mechanics and poroelasticity to derive expres-
sions for the stress tensor in the hydrogel.31,32,55,56

Assuming that deformations relative to the fully swollen
state are small, we linearize eqn (1) to find effective linear
elastic parameters in equilibrium (ESI,† Section F,57,58). In
particular, for a 2D hydrogel, the effective equilibrium Pois-
son’s ratio n and Young’s modulus E are given by

n ¼ 1� 2npO npO 1þ 1

l02

� �
þ 1

l02ðl02 � 1Þ �
2w
l04

� ��1
; (2)

E = 2(1 + n)npkBT, (3)

where l0 is the principal stretch corresponding to the fully swollen
state. The expression for the Poisson’s ratio can be understood as
its value for an incompressible 2D solid, n = 1, minus a correc-
tion—reflecting the fact that the compressibility of the swollen
hydrogel in equilibrium is generated via solvent transport (i.e., the
hydrogel responds to an instantaneous deformation like an
incompressible solid before solvent is able to equilibrate). This
linearization also yields the shear modulus, G0 = npkBT, which we
use to normalize stresses throughout this paper.

Given these effective equilibrium elastic parameters, we
solve for the stresses in the hydrogel as a 2D linear contact
mechanics problem (ESI,† Section G,59,60). This approach pro-
vides expressions for the stress tensor sij along the line directly
beneath the top obstacle as a function of y as shown in
Fig. 4(B):

sxx ¼
2z
p

2r�3

ðr�2 þ y2Þ2 �
1

r�
� 2ðr� � yÞ

a2

�

þ 2ðr� � yÞ2 þ a2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� � yÞ2 þ a2

p
!
;

(4)

syy ¼
2z
p

1

r� þ y
� 1

r�
þ 2r�y2

ðr�2 þ y2Þ2 þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr� � yÞ2 þ a2
p

 !
; (5)

sxy = 0, (6)

where z o 0 is the force applied to the indenters and the half
contact width a is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 4z

Ep
1

robs
þ 1

r�

� �
vuuut ; (7)

as defined in Fig. 4(B). Note that y is defined with respect to the
hydrogel’s unobstructed, fully-swollen state and ranges from
�r* to r*.

Given these analytical expressions, we next ask: under what
confinement regimes (as parameterized by D/r*) does this
linearized theory work, and when does it break down? And
since we would like to gain an intuitive understanding of
obstructed swelling-induced fracture, how does the maximal
principal tensile stress—which can be used to approximate
material strength36—vary with confinement? To address these
questions, we first re-cast eqn (4) and (5) in terms of D/r* to
facilitate direct comparison with the results of the nonlinear

simulations. To do so, we integrate the strain uyy ¼
syy
Y
� n
Y
sxx

using eqn (4) and (5) to find the displacement at the surface of
the indenter relative to the center of the hydrogel, and expand
the result to linear order in a/r*. This procedure gives

D ¼ � z
Ep

ln
16r�2

a2

� �
þ 1

2
ðp� 6� pnÞ

� �
; (8)

which we then invert, apply eqn (2) and (3), and substitute the
resulting expression for z(D) into eqn (4) and (5). The resulting
expressions for sxx(D) and syy(D) cannot be expressed in terms
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of elementary functions, so we omit them, but are shown by the
solid lines in Fig. 4 for the illustrative case of robs/r* = 0.3; for
comparison, the symbols show the results of the full nonlinear
simulations.

As expected, when D/r* { 1, the linearized indentation
solution agrees well with the nonlinear simulation results,
while as D/r* increases, the discrepancy between the two
becomes more apparent. In particular, as exemplified by the
data for D/r* = 0.16 (dark blue circles) and D/r* = 0.13 (yellow
squares) in Fig. 4, the linear solution underestimates the
compression at both the center y = 0 and boundary y = r* of
the hydrogel, as well as the tension that builds up at y/r* E 0.75
(Fig. 4(A), inset). Indeed, though tension (sxx 4 0) does appear
in the linear solutions for small D/r*, it disappears with
increasing D/r*, in contrast to the simulation results (see arrow
in Fig. 3(C), for example).

Since we are interested in fracture behavior, we thus focus
our attention on the maximal value of this tensile stress for the
same illustrative case of robs/r* = 0.3. By symmetry, we expect
the largest stresses to lie beneath each obstacle, since stresses
must go to zero at the hydrogel boundary away from obstacles
in the weak confinement regime. Moreover, because the
straight edges of the finite element mesh can introduce spur-
ious tensile forces at the edge of the hydrogel-obstacle contact
(described further in ESI,† Section I), we plot the maximum and
minimum values of the principal stresses along the x = 0 line
shown in the schematic inset of Fig. 4(B). The results are
displayed in Fig. 3(E) and (F). As noted in Fig. 4(A), the linear
theory only predicts the presence of tension for small confine-
ment before deviating from the nonlinear simulation results at
D/r* \ 0.02, as shown by the solid line and points in Fig. 3(E),
respectively. Interestingly, however, linear theory captures the
maximum compressive stress over a broader range of confine-
ment, shown by the solid line in Fig. 3(F), which agrees well
with the simulation data up to D/r* E 0.2.

Thus, while linear indentation theory can predict both
tensile and compressive stresses during obstructed swelling in
weak confinement, it underpredicts both for larger deforma-
tions—suggesting that the assumptions made in the linear theory
are no longer valid. We revisit these assumptions for both tension
and compression in the next two sections, respectively.

B. Tension beyond the linear regime

The linear theory in the previous section relies on a number of
assumptions that can fail as deformations increase:

(1) The effective equilibrium elastic parameters [eqn (2) and
(3)] are independent of strain,

(2) The stress is linearly related to the strain,
(3) The strain tensor is linear in the displacements.
To assess the validity of these assumptions, we compare the

results of our full nonlinear simulations to those of more
complex elastic models that incorporate material/geometric
nonlinearities.

First, we explore the limits of assumption 1 by relaxing
assumptions 2 & 3. Specifically, we compare the hydrogel
simulation results to those of a compressible neo-Hookean
elastic material with elastic parameters given by eqn (2) and
(3). As detailed in ESI,† Section F, the neo-Hookean model
closely reproduces the stress profiles of the hydrogel simula-
tions over a broad range of D/r* up to E0.4, well beyond the
limits of the linear theory at B0.02. Therefore, nonlinearities
due to the effective elastic parameter mapping can be neglected
up to this point.

Next, we explore the limits of assumption 2 by relaxing
assumption 3. Specifically, we use a St. Venant–Kirchhoff

elastic model with strain tensor uij ¼
1

2

@ui
@xj
þ @uj
@xi
þ @uk
@xi

@uk
@xj

� �
;

thus, the strain tensor is nonlinear in displacements, but we
still require that the hydrogel material follows a linear consti-
tutive law. Note that derivatives are taken with respect to
coordinates in the unobstructed, fully-swollen state, denoted

Fig. 4 When a hydrogel is weakly confined, linear indentation theory can
be used to predict the stresses, but misses key features in stronger
confinement. (A) and (B) Stress components sxx and syy, respectively,
determined from simulations (points) and linear theory (lines) along a line
running from the center of the hydrogel (x = y = 0) to the point of contact
with the top obstacle (x = 0, y = r*) with fixed robs/r* = 0.3. The inset to (B)
defines the variables used: the hydrogel-obstacle contact width is 2a and
the indenter displacement is D, defined relative to the undeformed
hydrogel radius r* (dashed orange line). As the indentation depth
D/r* � 1 � rctr/r* increases, the discrepancy between the linear theory and
simulations increases, as expected. With increasing confinement, tension
(sxx 4 0) builds up at rctr/r* E 0.75, as shown by the magnified inset in A.
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here with lowercase letters for simplicity of presentation.
Intriguingly, as detailed in ESI,† Section H, the St. Venant–
Kirchhoff model quantitatively reproduces the maximum prin-
cipal tensile stress in the hydrogel simulations up to D/r* E 0.1,
well beyond the limit of the linear theory at E0.02. Hence, the
excess tension sxx that develops beneath the obstacles just
beyond the linear regime is driven by geometric nonlinearity,
related to the rotations of the hydrogel material as it accom-
modates the obstacles during swelling, and does not require a
nonlinear constitutive relationship. At even larger displace-
ments D/r* 4 0.1, the St. Venant–Kirchhoff simulations are
unstable and we expect that both geometric and material
nonlinearities contribute to the tensile stress.

How exactly does geometric nonlinearity generate tension
during obstructed swelling? We answer this question using an
illustrative argument reminiscent of the derivation of the
Föppl–von Kármán equation.61 As detailed in Materials and
methods, we first find the variation of the integrated St. Venant–
Kirchhoff strain energy function with respect to displacements,
which can be written in terms of the second Piola–Kirchhoff
stress tensor, sPK

ij . In 2D, this quantity gives the stress compo-
nent in a material direction i perpendicular to a line that has
unit length and normal j in the reference configuration.62 We
then make approximations specific to our obstacle geometry.
Ultimately, we find

sPKxx � �
@sPKyy
@y

1� D
r�

� �
robs: (9)

Since sPK
yy becomes more negative as y increases,

@sPKyy
@y

o 0

(Fig. 4(B)), and therefore sPK
xx 4 0 indicating tension. Thus,

geometric nonlinearity generates tension beneath an indenter
perpendicular to the indentation direction, qualitatively match-
ing our simulations.

C. Compression beyond the linear regime

A notable result shown in Fig. 3 is that while linear indentation
theory predicts tensile stresses for D/r* o 0.02, it captures the
compressive stresses over a broader range, up to D/r* E 0.2.
Intuitively, this robustness is due to the fact that the large
compressive stresses appear perpendicular to the obstacles and
are relatively unaffected by rotations of the hydrogel material
around the obstacles. Which nonlinearities drive the deviations
that arise at even larger displacements? We answer this ques-
tion by following the same procedure as in the previous section,
detailed further in ESI,† Sections F and H. In contrast to the
case of tension, we do not find any parameters for which the St.
Venant–Kirchhoff model is more accurate than the linear
model. Furthermore, as shown in Fig. S9 (ESI†), past the linear
regime, the compressive (Cauchy) stress underneath the top
obstacle scales like that of a compressible neo-Hookean elastic
material experiencing uniaxial compression, with the principal
stretch parallel to indentation set to l1 = 1 � D/r* and the

principal stretch perpendicular to the indentation set to 1:

syy � G0 1� D
r�

� �
þ 2G0n

1� nð Þ

ln 1� D
r�

� �

1� D
r�

� � � G0

1� D
r�

� �: (10)

Thus, unlike the case of tension, deviations from the linear
theory do not arise from geometric nonlinearities and can
instead be attributed to material nonlinearities.

D. Symmetry-breaking instability

A striking phenomenon arises in our simulations as the separa-
tion between obstacles decreases further: as shown in Fig. 3(D),
the hydrogel displays a symmetry-breaking instability and
swells preferentially along a diagonal. Why does this instability
arise? Inspecting the spatial distribution of compressive stres-
ses provides a clue. As the hydrogel swells in increasing
amounts of confinement, its central core becomes increasingly
compressed (see, e.g., Fig. 3(C) and (D)). Compressing this
circular core along a single axis, forming an ellipse, requires
less energy than does compressing this core isotropically.
Thus, as confinement increases, one expects the case of asym-
metric swelling to be energetically preferred, leading to this
instability—as described further in ESI,† Section J.

IV. Comparison between simulations
and experiments

Our theoretical analyses and simulations capture the essential
features of the hydrogel deformation observed in experiments
(e.g., Fig. 1(B) and 3(C)). They also enabled us to explore how
stresses develop during obstructed swelling more generally
(Fig. 3 and 4). While our model is not suitable to directly treat
the swelling-induced self-fracture observed experimentally, the
simulated stresses help rationalize this phenomenon. To this
end, we compare the simulations to the experimental state
diagram shown in Fig. 2 by plotting the maximum principal
tensile and compressive stresses as a function of robs and rctr.
The results, shown in Fig. 5, bear a compelling resemblance to
the experimental results. In particular, the convexity and shape
of the experimental fracture boundary are similar to the simu-
lated contours of maximum principal stress. Indeed, appealing
to a commonly-used fracture criterion for brittle materials,36 we
expect that hydrogel fracture occurs when the maximum tensile
stress exceeds a threshold—whose exact value would establish
the position of the experimental fracture boundary in Fig. 5(A).
We conjecture that this threshold is reached prior to the
symmetry-breaking instability revealed by the simulations, as
we do not observe it in our experiments; experiments using
tougher hydrogels than those studied here may be a useful way
to probe this deformation mode in future work.
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V. Discussion

Despite the ubiquity of obstructed growth and expansion in our
everyday lives, how exactly this process generates large, spa-
tially non-uniform stresses in a body—and how these stresses
influence its subsequent growth/expansion in turn—has
remained challenging to systematically study. One reason is
the lack of model systems in which this intricate coupling
between growth and stress can be probed both experimentally
and theoretically. We addressed this need by studying
the swelling of spherical hydrogel beads in obstacle arrays
of tunable geometries. Our experiments revealed a striking
phenomenon: under weak confinement, a hydrogel retains its
integrity and assumes a symmetric, four-lobed clover-like
shape, while in stronger confinement, it repeatedly tears itself
apart as it swells. We elucidated the underlying physics by
adopting established models of hydrogel swelling to map the
tensile and compressive stresses arising during swelling. In
particular, we found that when a hydrogel is weakly deformed,
stresses are well-described by linear indentation theory, while
as a hydrogel is increasingly deformed, geometric and material
nonlinearities engender large tensile and compressive stresses
tangential and normal to the obstacles, respectively, driving the
hydrogel towards fracture.

Because our study represents a first step toward fully unra-
velling the mechanics of obstructed growth and expansion, it
necessarily has limitations. For example, while the experi-
mental results shown in Fig. 2 revealed a fracture threshold
that varies with obstacle geometry, quantitative comparison to
theory and simulation will require more precise control over

the system geometry and dimensionality,63,64 both in experi-
ments and in the model, along with a more detailed treatment
of the microscopic processes underlying fracturing.65–70 More-
over, many more experimental trials near this threshold and
with hydrogels of varying mechanical properties, along with
high-resolution imaging of crack propagation,71 will be useful
in characterizing the details of the fracturing process, which
likely depend on the presence of microscopic imperfections in
the hydrogel. Finally, although here we restricted our attention
to the case of rigid obstacles, many scenarios involve growth/
expansion around compliant constraints—e.g., the develop-
ment of biofilms, tissues, and organs in the body,72–75 with
potential implications for biological function.76,77 Extending
our study to the case of deformable obstacles would therefore
be a useful direction for future work.

Our results may be especially relevant to diverse applications
of hydrogels, and other swellable materials, that frequently
involve their confinement in tight and tortuous spaces. For
example, driven by growing demands for food and water,
hydrogels are increasingly being explored as additives to soils
to absorb and release water to plants and therefore reduce the
burden for irrigation.42,47–50 They are also widely adopted in
other applications, such as oil recovery, construction, mechan-
obiology, and filtration, all of which involve hydrogel swelling
in confinement.43–46 A common assumption made in all these
cases is that the hydrogel retains integrity as it swells; however,
our study indicates that these applications should be evaluated
for the possibility of swelling-induced self-fracture. Indeed,
fracture could lead to the production and dispersal of many
small hydrogel fragments, potentially reducing their utility and
leading to environmental contamination. This process should
therefore be carefully considered in a wide range of real-world
contexts.

VI. Materials and methods
A. Experimental design

To create the obstacle array, we 3D print cylindrical columns in
Clear v4 resin using a Form3+ industrial 3D printer (Formlabs),
and cut the acrylic plates using an Epilog Laser Mini 24 laser
cutter and engraving system. We secure the columns to the
acrylic plates using a twist-and-lock mechanism. The hydrogels
are polyacrylamide beads (‘‘water gel beads’’ obtained from
Jangostor) and are stored in a screw cap container prior to
experiments; as such, they experience some slight swelling due
to ambient humidity. The hydrogel beads have varying sizes and
colors, but all appear to have the same swelling behavior and
beads of similar sizes are used for experiments (ESI,† Section A).
These hydrogel beads were extensively characterized in our
previous experiments,8,41 which provide additional detail.

Early in the swelling process (e.g. 2 h in Fig. 1(B) and (C)),
each hydrogel appears out of focus since it has not yet made
contact with the top plate (focal plane for imaging), and cusps
are visible on its surface due to differential swelling as water
enters the hydrogel from its outer surface.21,78–80 We verify that

Fig. 5 Simulations predict that hydrogel stresses grow as obstacles are
made smaller and brought closer together in a manner similar to the
experimental findings. (A) and (B) Most positive (tensile) principal stress
smax and magnitude of the most negative (compressive) principal stress
|smin|, respectively, again normalized by the fully-swollen shear modulus
G0. Each (light or dark) green square corresponds to a simulation. As in
Fig. 2, the grey region corresponds to overlapping obstacles. Note that we
take the maxima/minima over the entire mesh, rather than just beneath an
obstacle, to avoid non-monotonic behavior in the instability regime.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

2.
03

.2
02

5 
23

:3
9:

31
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm01470c


This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 1425–1437 |  1433

the hydrogel beads swell to an equilibrium shape without
rupturing when no obstacles are present (either with or without
the 40 mm z-confinement), indicating the transient stresses are
insufficient to drive fracture as in other less tough gels.71,81

Because the plates and obstacles are made of acrylic or a
polymeric resin, respectively, we do not expect or see evidence
of adhesion between the polyacrylamide hydrogel surface and
the confining surfaces. For experiments in which we image the
entire process of obstructed swelling, we verify that the hydro-
gel reaches an equilibrium shape (in the cases of no fracturing)
when its size/shape does not noticeably change for at least
three hours. In the trial shown in Fig. 1, for example, equili-
bration took 88 h. In other trials where we do not image the
entire process of obstructed swelling, we let the hydrogel swell
either until fracture has occurred or for at least 40 h past the
time to fracture for a trial with the same robs and a smaller rctr.
If we already recorded an outcome of ‘no fracture’ for a trial
with the same robs and a smaller rctr, we waited a minimum of
8 h beyond the equilibration time for an imaged reference trial
with similar geometry. Each symbol in Fig. 2 represents a single
experiment.

B. Simulation design

We create meshes using FEniCS’s built-in mesh generation
function with cell size set such that there are 30 vertices along
the radius. We confirmed that this mesh resolution was suffi-
cient for numerical convergence. We set npO = 0.001 and w = 0.3.
The penalty function is integrated over the hydrogel boundary,
and is given by

Fpen

2pr0kBT
¼ p

4pr0

X
i

hrobs2 � ðx� xiÞ2iþ2; (11)

where p is the penalty strength, xi is position of the center of the
ith obstacle, r0 is the dry reference radius of the hydrogel, and
the sum is over all obstacles. The brackets h� � �i+ take the

positive part of the argument, defined as hxiþ ¼
xþ jxj

2
. Thus,

when evaluated at positions away from any obstacles, the
penalty function is zero, but takes a large positive value inside
the obstacles. We set p = 6.25p/r0

4 to generate the data shown in
this text, and have verified that using p = 62.5p/r0

4 produces the
same results.

Following the suggestions of ref. 33, 82 and 83, we use the
backwards Euler scheme for time integration (see ESI,† Section
E for further discussion of dynamics), Taylor–Hood mixed
elements (quadratic elements for the displacement field and
linear elements for the chemical potential field), and early time
ramping of the chemical potential boundary condition to
ensure numerical stability. The Newton–Raphson method is
used at each time step, and equilibrium is defined by when zero
iterations are required for a step to complete.

To find the maximum/minimum principal Cauchy stresses,
we first calculate the eigenvalues of the stress tensor for a given
displacement field. We project these eigenvalue fields onto a
function space of discontinuous Lagrange elements of order 1.
We then compare the eigenvalues defined on this mesh.

The largest positive eigenvalue is the maximum principal
(tensile) stress smax, and the most negative eigenvalue is the
minimum principal (compressive) stress, smin. To find the
minimum and maximum stresses beneath an obstacle (data
in Fig. 3(E) and (F)), we instead project the stress tensor onto
the vertical line directly beneath the top obstacle. The mini-
mum value of syy and the maximum value of sxx along this line
are plotted as the below top obstacle minimum and maximum
stresses respectively.

C. Tension generated by geometric nonlinearity

We describe the argument leading up to eqn (9) in more detail,
which demonstrates how tension can appear beneath an obsta-
cle when a nonlinear strain tensor is used. The variation of the
integrated St. Venant–Kirchhoff strain-energy function with
respect to displacements in terms of the second Piola–Kirchh-
off stress tensor is

dW ¼
ð
sPKij duijdA ¼

ð
sPKij

@dui
@xj
þ @uk
@xi

@duk
@xj

� �
dA: (12)

Upon integrating by parts, assuming we cannot vary the dis-
placements at the boundaries due to the presence of obstacles,
we find

dW ¼
ð

@sPKij
@xj

dui þ
@

@xj
sPKij

@uk
@xi

� �
duk

 !
dA;

¼
ð

@sPKij
@xj

dui þ
@sPKij
@xj

@uk
@xi

duk þ sPKij
@2uk
@xixj

duk

 !
dA:

(13)

Next, in order to make approximations specific to our geometry,
we explicitly list all the terms that appear for a two-dimensional
solid. Since we will examine stresses directly beneath an
obstacle, we set sPK

xy = 0 by symmetry, yielding:

dW �
ð
dAdux

@sPKxx
@x

1þ @ux
@x

� �
þ
@sPKyy
@y

@ux
@y

 

þ sPKxx
@2ux
@x2
þ sPKyy

@2ux
@y2

�

þ
ð
dAduy

@sPKyy
@y

1þ @uy
@y

� �
þ @s

PK
xx

@x

@uy
@x

 

þ sPKxx
@2uy
@x2
þ sPKyy

@2uy
@y2

�
:

(14)

In equilibrium, the coefficients of dux and duy must be zero
(in the absence of body forces). We focus our attention on the
coefficient of duy. If we consider the internal stresses directly
beneath the obstacle, we can set quy/qx to zero by symmetry.
We approximate the deformation as an affine contraction in the
y direction, which sets quy/qy E �D/r* and q2uy/qy2 E 0. We

assume that the curvature of the y displacement,
@2uy
@x2

, is

determined by the curvature of the obstacle, 1/robs. With these
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substitutions, the equilibrium condition becomes

@sPKyy
@y

1� D
r�

� �
þ sPKxx

robs
� 0: (15)

Solving for sPK
xx , we find

sPKxx � �
@sPKyy
@y

1� D
r�

� �
robs: (16)

Just beyond the linear regime, sPK
yy should follow the same

trends as syy predicted by the linear theory. In Fig. 4(B), we
observe that syy decreases as y increases (qsyy/qy o 0) until it
plateaus at y/r* E 1. Thus, qsyy/qy reaches its minimum a small
distance away from the obstacle boundary, and our argument
predicts that the largest geometric nonlinearity-generated
tensions will appear there. This location is indeed where the
greatest tensile stresses appear in simulations (arrow in
Fig. 3(C)). We can also compare the magnitude of the tension
predicted by eqn (16) using syy from the linear theory with the
tension measured in hydrogel simulations—however, we find
an estimate of the tension that is approximately twenty times
larger than the maximum tension found via simulations and
scales incorrectly with increasing D/r*. These discrepancies are
not surprising given the many approximations made in this
calculation.
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