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Metal halide perovskite single crystals (MHPSCs) are highly promising materials for optoelectronic applications,

but their stability is hindered by ion migration, thereby impacting their performance. A key factor to understand

this issue is calculating the activation energy. Electrochemical Impedance Spectroscopy (EIS) is a powerful

technique for separating ionic and electronic processes, yet traditional analysis is labour-intensive, involving

extensive measurements, circuit fitting, and manual data interpretation. In this study, we introduce a machine

learning (ML)-driven approach to fully automate EIS analysis. EIS data, collected for MAPbI3 and MAPbBr3
across temperatures from 263 K to 343 K, enabled the creation of a large database. The developed ML model

predicts EIS spectra at unknown temperatures, fits the appropriate electrical circuit, and automatically extracts

passive component values to calculate the activation energy via an Arrhenius plot. This automated workflow

streamlines the calculation process, offering fast and reliable activation energy predictions even when temp-

erature data are incomplete or missing. Our approach enhances the efficiency of EIS analysis, providing valu-

able insights into the stability and performance of MHP SCs.

1. Introduction
In the last decade, metal halide perovskites (MHPs) gained sig-
nificant research interest because of their easy synthesis, com-
position diversity and attractive electro-optical properties.1,2

The exceptional properties of MHPs such as a high diffusion
length and carrier mobility, a tunable bandgap, minimal
recombination and defect tolerance made them ideal candi-

dates for the application of solar cells, light emitting diodes,
photodetectors and lasers.3 Despite their promising appli-
cations, their long-term stability is always questionable
because of their weak ionic bonds,4,5 which are easily modu-
lated in the presence of an electric field, light irradiation,
moisture, heat and oxygen.6 Before going further in the com-
mercial application, the critical question related to the calcu-
lation of ionic bonds or activation energy and methods to sup-
press or modulate the ionic motion needs to be addressed.7–9

The activation energy is commonly calculated by measuring
the current–voltage (I–V), space charge limited current (SCLC)
and electrochemical impedance spectroscopy (EIS) as a func-
tion of temperature.10,11 Particularly, EIS measurements were
found to be advantageous compared to I–V and SCLC measure-
ments since they offer to distinguish electronic and ionic
phenomena to a greater extent. Apart from this, EIS spectra
were recorded in the time or frequency domain, enabling the
separation of different processes (e.g., charge transport, recom-
bination, ion movement) at different timescales. Moreover,
along with the activation energy, EIS studies are also able to
provide information about ion migration, while no such direct
information is deduced from I–V and SCLC measurements.12

However, measurements and analysis of EIS spectra are not
straightforward. It was found that due to the following reasons
EIS measurement has not been employed as a mainstream
characterization tool in the semiconductor or solar industry:
(1) a long measurement time from minutes to hours due to
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tures. See DOI: https://doi.org/10.1039/d4dt03123g
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the selection of the frequency range, average recorder values,
applied bias, temperature or illumination source in order to
get reliable and stable data points;13 (2) selection of an appro-
priate electrical equivalent circuit (EEC) which includes accu-
rately modelling complex electrochemical systems and fitting
the appropriate circuit elements to capture all relevant impe-
dance behaviour;14,15 (3) even after acquiring EIS spectral data,
selecting the appropriate circuit, extracting its elements, and
analysing the resulting parameters to determine material or
device properties can traditionally take days to months, with a
persistant risk of human error.16

Given the challenges in handling EIS spectra, our previous
efforts to use machine learning (ML) and advanced data convo-
lution techniques have significantly helped us to understand
MHPSCs in a better manner.13,17,18 In the present study, we
applied cutting-edge ML techniques to MHPSCs, specifically
focusing on two well-studied compositions i.e.: MAPbBr3 and
MAPbI3, which are commonly used in the fundamental
research of halide migration. Our ML models, trained on a
broad range of experimental EIS spectra were designed to
predict EIS responses across a wide temperature range. The
models not only accurately predict full EIS responses at
specific temperatures, but also fit the data and extract valuable
information about circuit elements. Additionally, a custom
Python script was developed to automate the calculation of the
activation energy based on the extracted circuit element
values, offering a powerful tool for studying MHPSCs under
varying thermal conditions.

2. Results and discussion

The schematic flow adopted in the present study is shown in
Scheme 1. It begins with the synthesis of MAPbI3 and

MAPbBr3 single crystals (SCs), which were subjected to EIS
measurements across a temperature range of 263 K–343 K and
a frequency range of 1 MHz–1 Hz. This generates a comprehen-
sive dataset of 4648 EIS spectra, capturing parameters like
temperature and EIS response as real and imaginary impe-
dance components. The dataset then undergoes feature engin-
eering, involving mathematical transformations, scaling, and
incorporating data from previously unmeasured temperatures.
Six regression algorithms were evaluated during model train-
ing, accompanied by hyperparameter tuning to optimize the
performance of the best model. Once optimized, the model
predicts unseen EIS spectra across various temperatures. The
predicted spectra were subjected to impedance circuit fitting
to derive key electrical parameters. Finally, the activation
energy was determined using an Arrhenius plot for both SCs,
having the results aligned with previous studies. This struc-
tured flow integrates ML to enhance EIS analysis. Nyquist
spectra of the synthesized MAPbI3 and MAPbBr3 SCs were
recorded and are shown in Fig. 1. EIS was measured in a temp-
erature range of 263–343 K and a frequency range of 1 MHz–1
Hz at an applied bias of 0.5 V under 1 sun intensity. The EIS
spectra (Nyquist plots) of both the SCs typically exhibit two dis-
tinct semi-circular features. The obtained features of SCs are
consistent with our previous studies and work reported by
other authors.18–20

In general, high-frequency spectra stem from the geometri-
cal capacitance and bulk conductivity,21,22 while low-frequency
spectra originate from the ionic phenomena (ion accumulation
and transport).22 With an increase in temperature, the radii of
the semicircles (low- and high-frequency spectra) of both the
SCs decrease somewhat at different rates. For both the SCs, it
was observed that with the increase in temperature, the low
frequency response nearby (1 Hz) gets shifted towards higher
frequencies. A similar behaviour was also observed by Clarke

Scheme 1 Schematic flow from crystal synthesis to EIS analysis using machine learning.
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et al. and found that it associated with ionic modulation.23

This will increase the recombination rate (bulk recombina-
tion), which in turn reduces the resistance.24

Fig. S1† illustrates the frequency dependence of the real
and imaginary parts of the EIS for both SCs (iodidie and
bromide respectively), highlighting their temperature depen-
dence characterstics. Fig. S1(a) and (c)† show the real impe-
dance (Z′) of MAPbI₃ and MAPbBr₃ SCs, revealing a progressive
change in slope around the mid-frequency range (kHz).
Meanwhile, Fig. S1(b) and (d)† depict the imaginary impe-
dance (Z″) of both SCs as a function of frequency at different
temperatures. In the case of the MAPbI3 SC, a clear distinct
relaxation process at low and high frequencies for each
measured temperature is evident. This process is indicative of
the time-dependent behaviour of charge carriers. The peak
shifts occurred at higher frequencies, with their magnitude
decreasing as the temperature increased.25 However, in the
case of the MAPbBr3 SC, maximum change was observed in
the mid-frequency range.

To extract the activation energy or electronic and ionic
transport phenomena, EIS spectra in the range of low to mid-
high temperature are required. Acquisition of EIS spectra at
low frequency (less than 10 Hz) as a function of applied temp-
erature and bias together will increase the time of the experi-
ment. For example, in our previous work, we have shown that
the time taken to record a single EIS spectrum from 1 MHz to
300 mHz at a particular applied bias was ∼25 min under the
given set of parameters.24 In the case of temperature
measurements along with the long data acquisition time, a
continuous temperature stabilization process is also
challenging. Even after the EIS data acquisition, the selection
of appropriate circuits, extraction of circuit elements and ana-
lysis of the obtained parameters to extract device or material
properties conventionally required time from days to months.
In addition, the probability of human error can never be
ignored.

To minimize experimental acquisition time, analysis time,
and human error, we employed machine learning (ML).
Specifically, we trained an ML model to predict EIS curves at
different temperatures, reducing the need for extensive EIS
measurements. To reduce the analysis time and minimize
human error, we again utilized ML to analyse the obtained EIS
spectra, extract electrical parameters, and perform the necess-
ary fitting to derive material parameters. The selection of the
appropriate circuit for the fitting of EIS using ML been
adopted from our previous work.13

Machine learning analysis and modelling

In this section, we employed ML techniques to develop the
model based on the experimental data. The model was
designed for uncovering patterns and making precise predic-
tions from the data. The process begins with a comprehensive
examination of the dataset along with employing feature
engineering methods, followed by the training and evaluation
of various models to assess their performance. Subsequently,
we selected the most suitable regressor model for the dataset.
When selecting the appropriate regressor model, our goal was
to ensure that the developed model could perform the follow-
ing functions: (a) predict the EIS response at various tempera-
tures to assist researchers in conducting EIS measurements at
specific temperatures, thereby reducing the overall experi-
mental time; (b) identify the most suitable Electrical
Equivalent Circuit (EEC) for fitting the EIS spectra; and (c)
utilize the extracted EEC parameters to perform the necessary
operations and calculate the material parameters. In the
present work, we primarily focused on the calculation of acti-
vation energy for perovskite SCs.

Initially, a dataset, consisting of 4648 entries of the EIS
spectra of MAPbI3 and MAPbBr3 SCs, was developed. The
dataset included four key features: temperature, frequency, Re
(Z′), and Img(-Z″). The data for both the SCs were organized in
a way so as to maintain the flow of measurements, reflecting

Fig. 1 Nyquist plots representing the complex impedance values for the real (Z’) vs. imaginary (Z’’) parts of EIS in a temperature range of 263–343 K
for the (a) MAPbI3 and (2) MAPbBr3 SCs.
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the systematic temperature and frequency variations used to
capture the real and imaginary impedance components at
each step. Additionally, we analyzed the dataset for null, dupli-
cate, and outlier values. While no null or duplicate entries
were detected, outliers were identified using boxplots, as
shown in Fig. S2.† We found a great deal of outliers in our
data set whose presence, if not handled appropriately could
affect the model’s performance. To handle the outliers and
mitigate the effect of the same on the prediction, we employed
three mathematical transformations on the frequency feature:
square, square-root and logarithmic. Among these, log trans-
formation proved to be the most effective, which significantly
reduces outliers. The details of the same, models and math-
ematical step followed to handle the outliers are discussed in
section 3 of the ESI.†

Model training and evaluation

After preparing the dataset for both SCs, the next step is to
identify the best algorithm from several regression models. For
this, we selected six widely used algorithms such as: Simple
Linear Regression (SLR);26 Gradient Boosting Regression (GBR);27

Extreme Gradient Boosting (XGBoost) Regression;28 Random
Forest (RF);27 Decision Tree (DT);29 and Gaussian Process
Regressor (GPR).30 A subset of the experimental dataset corres-
ponding to five distinct temperatures was completely excluded
during the training, validation, and testing phases to ensure it
remained entirely hidden from the model during development.
The remaining data were split into training, validation, and
testing sets, with a ratio of 70% for training, 15% for validation,
and 15% for testing. After the model demonstrated strong per-
formance based on the testing and validation metrics, the
excluded subset of five temperature spectra was used for
additional testing. This process validated the model’s ability to
generalize effectively to unseen experimental conditions, further
strengthening the study’s conclusions.

Here, we have made use of Google Colab for implementing
the Python code. From the dataset, three features ‘ionic
radius’, ‘temperature’, and ‘frequency’ were selected as the
input parameters (X), while two features, ‘Re(Z′)’ and ‘Img
(-Z″)’, were chosen as the output parameters (Y). We used
sklearn’s train_test_split function to divide the X and Y
subsets into training, validation, and test sets. This split
ensured that we had separate data for training the model, vali-
dating its performance and testing its accuracy. The six algor-
ithms under consideration were then trained and subsequently
analysed based on their performance.

The dataset was trained using the abovementioned six
algorithms to predict the real ‘Re(Z′)’ and imaginary ‘Img(Z″)’
parts of EIS based on the input features. For performance
examination, we used five performance metrics namely, mean
squared error (MSE), mean absolute error (MAE), root mean
squared error (RMSE), R2 score and mean absolute percentage
error (MAPE). While MAE, MSE, RMSE, and MAPE are categor-
ized as error metrics, the R2 score is regarded as a relative
metric. The performance comparison based on three of the
above-mentioned error metrics (MAE, MSE, RMSE) on the

train data is shown in Fig. 2(a) for selected regression algor-
ithms. It was found that for DT, error values reduced to zero
are overfitting, rendering it unsuitable for use. In contrast, the
remaining algorithms warrant consideration for performance
evaluation on validation data.

Following this, GBR, RF and XGBoost Regression turned
out as the three best performing algorithms among others,
based on their results on validation data. To further improve
the performance of the selected algorithms, we applied hyper-
parameter tuning on the same, and eventually compared the
tuned models’ performance on the test data. Here, we used the
GridSearchCV method, which is one of several available tuning
techniques. This final review revealed RF to be the best algor-
ithm, outperforming the other two algorithms, prompting us
to proceed with this regression method. The RF algorithm gen-
erally outperforms others due to its robustness against noise.
It builds multiple independent decision trees and averages
their outputs, reducing the impact of dataset variations.31 In
contrast, GBR and XGBoost Regression are more sensitive to
noise as they sequentially correct errors, which can amplify the
effects of outliers.32 RF also requires fewer hyperparameters to
tune, especially when the data are clean. Its ensemble
approach, where multiple trees are trained on random subsets,
makes it effective for moderate-sized datasets without
overfitting.31,33 Unlike boosting methods optimized for large
datasets and parallel processing, RF has lower computational
demands, making it ideal for moderate datasets like this.34

The performance comparison of the chosen model based on
three performance metrics, MSE, MAE and RMSE, as well as a
table representing the tuned parameters of the same, is pro-
vided in Fig. S4 and Table S1,† respectively. As mentioned
above, we didn’t use a subset of the dataset for the selection of
the best model. This subset included data at five distinct temp-
eratures: 268 K, 293 K, 298 K, 328 K, and 333 K. This entire
dataset was unseen for the selected algorithm and was fully
utilized for the prediction tasks. Initially, this small dataset
(subset of the dataset) was subjected to a similar feature engin-
eering process as discussed in the above section to make it
ready for prediction. The input and output parameters are sep-
arated as discussed previously. The tuned RF model, which
eventually came out to be the best-performing model as men-
tioned above, was utilized to predict the output features. The
predictions were subsequently scaled back to their original
values and compared with the actual data to assess the
model’s accuracy. The predictions for the other temperatures
for both the SCs are shown in Fig. S5.†

To obtain the useful information from the EIS spectra, it is
crucial to extract the resistive and capacitive components with
the help of an EEC. Conventionally in practice, extraction of
the circuit element evolves identification of the EEC followed
by simulation of the EEC via software or by running the codes
in MATLAB or Excel. Fig. 2(d) and (e) illustrate the fitted
Nyquist plot for MAPbBr3 and MAPbI3 SCs at 333 K after
adjusting initial parameters to achieve the best fit which are
shown in Tables S3 and S4† respectively. Similarly, fitting of
Nyquist plots and parameter extraction of MAPbI3 at 268 K,
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293 K, 298 K, and 328 K are shown in Fig. S6 and Tables S5–S8.†
Here, an iterative fitting process was employed with the help of
the developed ML model. The selection of the appropriate EEC
among the widely available EECs, frequency range and iteration
time is wisely decided by the developed ML model which is dis-
cussed in detail in our previous work.13 In the present case, the
ML model chosen two RC pairs with series resistance. The
extracted electrical parameters were refined to achieve the best
possible match between the model and the experimental data for
both MAPbBr3 and MAPbI3 SCs.

25

The developed ML model discussed in our previous work13

was further upgraded to analyze the extracted electrical para-
meters of EEC and to calculate the activation energy. The acti-
vation energy was calculated using an automated analyzer tool,
which processes the circuit elements extracted from the fitted
equivalent circuits (ECs) of the EIS spectra. These circuit
elements are used to compute activation energy values based
on their temperature dependence, following established
electrochemical principles. The calculated values were vali-
dated against the literature, ensuring accuracy and consist-

Fig. 2 (a) Performance comparison of different regression algorithms based on the trained data. Comparison of the actual and predicted Nyquist
plots using RF regressor at 333 K for (b) MAPbBr3 and (c) MAPbI3. Fitted Nyquist plots based on the predicted data at 333 K for (d) MAPbBr3 and (e)
MAPbI3.

Fig. 3 Arrhenius plot representing the linearity curve with slops derived using the experimental data for (a) MAPbBr3 and (b) MAPbI3, respectively.
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ency. The activation energy (Ea) is directly related to the rate of
charge transfer within the crystal.35,36 To calculate the acti-
vation energy, the low-frequency resistance values (Rct) of both
SCs were considered. The charge transfer resistance (Rct) rep-
resents resistance to charge migration and its reciprocal (1/Rct)
is proportional to the rate of charge transfer across the crystal.
The equation used for the calculations is as follows:37

k ¼ Ae � Ea
RT

� �
/ 1

Rct
ð1Þ

where k is the rate constant of an electrochemical process, Rct
is the charge transfer resistance, A is the pre-exponential
factor, Ea is the activation energy, R is the gas constant, and T
is the temperature. Charge transfer resistance values are
extracted through a Python pipeline script for equivalent
circuit fitting.

The Arrhenius equation can be written in the logarithmic
form to justify this use, as seen below:

ln
1
Rct

� �
¼ ln A� Ea

R

� �
� 1000

T
ð2Þ

As observed from eqn (2), to calculate the activation energy,
we plotted ln(1/Rct) obtained from the EIS spectra fitting versus
1000/T (in Kelvin).

Fig. 3 shows the software-generated linear fitting of the
Arrhenius plots obtained for MAPbBr3 and MAPbI3 SCs having R2

scores of 0.8485 and 0.6393 with the extracted activation energy
values of 0.25 and 0.32 eV respectively. The obtained values of
activation energy for both the SCs are the same as the values
reported by other authors and in our previous studies.6,11,38,39

3. Conclusion

The present study focuses on the utilization of ML to automate
EIS data acquisition, predicting EIS spectra at unknown temp-
eratures, fitting the appropriate electrical circuit, and auto-
matically extracting passive component values to calculate the
activation energy via an Arrhenius plot for MHP SCs. Our
developed ML model is capable of predicting the EIS spectra
for unknown temperature values, thereby reducing the data
acquisition time significantly. Moreover, the developed ML
model reduces the human error by automating the extraction
of electrical parameters and performs the needed fitting from
the obtained EIS spectra. Here, the ML-based model extracted
activation energy values of 0.25 and 0.32 eV for the MAPbBr3
and MAPbI3 SCs which are comparable to our previous work
and studies by other authors. The results highlight the poten-
tial of ML to automate the EIS acquisitions and analysis in a
more convenient and efficient way.
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