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1 Abstract

2 Alkanolamines are currently being deployed in carbon capture and storage (CCS) technology 

3 worldwide, and atmospheric emissions have been found to coincide with locations exhibiting 

4 elevated concentrations of methanesulfonic acid (MSA). It is thus critical to understand the fate 

5 and potential atmospheric reactions of these chemicals.  This study reports the characterization of 

6 sub-10 nm nanoparticles produced through the acid-base reaction between gas phase 

7 monoethanolamine (MEA) and MSA, a product of organosulfur compound oxidation in air, 

8 using a flow reactor under dry and humid (up to ~60% RH) conditions.  Number size distribution 

9 measurements show that MEA is even more efficient than methylamine in forming nanoparticles 

10 on reaction with MSA.  This is attributed to the fact that the MEA structure contains both an -

11 NH2 and an -OH group that facilitate hydrogen bonding within the clusters, in addition to the 

12 electrostatic interactions.  Due to this already strong H-bond network, water has a relatively 

13 small influence on new particle formation (NPF) and growth in this system, in contrast to MSA 

14 reactions with alkylamines.  Acid/base molar ratios of unity for 4-12 nm particles were measured 

15 using thermal desorption chemical ionization mass spectrometry.  The data indicate that reaction 

16 of MEA with MSA may dominate NPF under some atmospheric conditions.  Thus, the unique 

17 characteristics of alkanolamines in NPF must be taken into account for accurate predictions of 

18 impacts of CCS on visibility, health and climate.

19

Page 2 of 44Physical Chemistry Chemical Physics



3

21 Introduction

22 Monoethanolamine (HOCH2CH2NH2, MEA) is a multifunctional amine currently 

23 deployed in carbon capture and storage (CCS) technology systems aimed at sequestering CO2 

24 emissions before release into the atmosphere.1-5  The most widely used CCS media is a 30% 

25 aqueous solution of monoethanolamine (MEA).6  Briefly, the solvent medium chemically 

26 absorbs CO2 contained in the flue gas, which leads to a CO2-depleted gas stream exiting the 

27 stack.  The solvent is subsequently regenerated and recycled back into the absorber column, 

28 while the CO2 is compressed and captured.  A potential drawback from these technologies is the 

29 likely release of MEA into the air.4,5,7-14  For example, concentrations of MEA outside a CCS-

30 equipped plant of the order of several ppb have been reported.7  MEA is also used as a solvent in 

31 various consumer products and industrial processes.15-19  In air, recognized fates of gas phase 

32 MEA to date include its reaction with O3 and OH,20-24 the formation of alkylaminium nitrate salts 

33 from its interaction with HNO3
21,24 and acid-base reactions with gas phase and particulate 

34 sulfuric acid.25,26

35 Methanesulfonic acid (CH3SO3H, MSA) is a strong acid formed along with SO2 (a sulfuric acid 

36 precursor) in the oxidation of dimethyl sulfide (DMS) and dimethyl disulfide (DMDS)27-32 which 

37 have a variety of sources both natural and anthropogenic.33-59  Therefore, it is not surprising that 

38 the oxidation product MSA is detected in the gas phase and in ambient particles worldwide.  

39 Ambient gas phase atmospheric concentrations of MSA range from mid-104 to 107 molecules 

40 cm-3, and can reach levels similar to that of H2SO4, which is considered to be a major source of 

41 new particles.60-69  In some instances, the MSA concentration in air can actually surpass that of 
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42 co-located H2SO4.
68,70  MSA has also been detected in ambient particles worldwide, including in 

43 marine and coastal environments,71-77 in coastal areas affected by biomass burning plumes,78,79 

44 and near agricultural regions as well as near urban centers.78,80,81  This acid has been detected in 

45 ultrafine and nucleation mode particles measured in the Arctic,76,82-85 at urban sites86,87 and in the 

46 Antarctic88 as well as in a boreal forest.67,89  Particulate MSA concentrations in the Arctic 

47 summertime have been observed to correlate well with new particle formation (NPF)85,90-94 

48 suggesting a role for MSA in the earliest stages of NPF and growth.  Chen and co-workers95 

49 predicted that the total annual MSA budget would be 20 Gg S yr-1 from DMS oxidation reactions 

50 alone.  However, climate change is dramatically modifying the extent of ice sheet coverage, 

51 exposing more sea water, which increases phytoplankton productivity and DMS emissions and 

52 thus MSA in air.94,96-98  The significant contribution of MSA to atmospheric NPF is supported by 

53 both laboratory experiments99-107 and quantum chemical calculations.108-115

54 Amines and MSA are both found in ambient particles.67,80,116-118  This includes MEA, 

55 which has been detected as one of the most abundant amines in ambient particles in various 

56 locations around the globe,119-124 overlapping with sources of both DMS and MSA.  MEA has 

57 also been detected in biomass burning aerosols collected in St John, Newfoundland, Canada125 

58 and in both aerosol and precipitation samples over the North Atlantic Ocean.126  

59 It is thought that NPF is responsible for a significant portion of the global cloud 

60 condensation nuclei budget.127  In addition to influencing cloud properties, airborne particles are 

61 well known to interact with solar radiation, thus playing a critical role in the Earth’s 

62 climate.128,129  In a recent study, Hodshire et al.130 predicted, using a simplified DMS oxidation 

Page 4 of 44Physical Chemistry Chemical Physics



5

63 model, that inclusion of MSA formation and its role in aerosol processes (either acting as 

64 condensable non- or semi-volatile species, or participating in NPF) influenced the cloud-albedo 

65 aerosol indirect and the direct radiative effect.  

66 While recent theoretical studies predicted  that MEA may play an important role in 

67 NPF,108 to date there have been no direct experimental investigations of particle formation from 

68 MEA and MSA.  We present the first measurements of 4-12 nm nanoparticles formed from this 

69 reaction, including their size distributions as a function of time and relative humidity, as well as 

70 their size-resolved chemical composition.  For comparison, some data for the reaction of MSA 

71 with methylamine (MA), which is known to efficiently form particles,102,103,105,106 is also 

72 reported.  It is shown that MEA is even more effective in forming new nanometer size particles 

73 than MA but surprisingly, is not very sensitive to the presence of water vapor.  Such ultrafine 

74 particles are of particular concerns as they can be deposited deep into the respiratory tract and 

75 even cross cellular membranes to reach other organs.131-136  Thus, this study has important 

76 implications for the potential impacts of CCS on climate,128,129 visibility137-140 and 

77 health.131,132,136,141  

78

79 Experimental Methods 

80 Flow Reactor Description.  Particles were produced from the reaction of gas phase MSA with 

81 gas phase MEA (or MA) in the presence or absence of water vapor in a 1-m long borosilicate 

82 glass flow reactor142 described in the Electronic Supplementary Information (ESI; Fig. S1).  
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83 Clean, dry air was provided by a purge air generator (Parker-Balston; model 75-62), and further 

84 purified by passing through carbon/alumina media (PermaPure, LLC) and a 0.01 m inline filter 

85 (Parker Balston, BQ).  Most of the air was supplied at the front end of the flow reactor through 

86 the perforated ring inlets as indicated in Fig. S1 (rings A, B and C).  In experiments where water 

87 vapor was present, one or two bubblers filled with nanopure water (18.2 M cm; Barnstead, 

88 Thermo Scientific) were used to humidify a fraction of the air introduced into the ring inlets.  

89 The bubblers were kept in a water bath to maintain a constant temperature of 22°C (295 K).  

90 Experiments were carried out at relative humidities (RH) up to ~60% as indicated by a humidity 

91 probe (Vaisala; model HMT 838) located at the end of the flow reactor.  The reactants (MSA and 

92 MEA or MA) were introduced through the spoke inlets (spoke 2 and 3 respectively) located 60 

93 cm downstream of the last ring inlet.  The flow reactor was cleaned regularly with nanopure 

94 water and dried with clean hot air overnight (T = 343 K).  After cleaning, the flow reactor was 

95 conditioned with gas-phase MSA for a least two days prior to an experiment.  All experiments 

96 presented in this work were performed at 1 atm and at room temperature 

97 (T = 297 K).  

98 Reactants.  Liquid monoethanolamine (NH2CH2CH2OH, Sigma Aldrich, >99.5%) was 

99 contained in a small 2-mL glass vial with a septum cap.  Approximately ~1 cm of PEEK tubing 

100 (0.007” inner diameter) was inserted into the septum so that the MEA from the headspace 

101 diffused slowly into a stream of air.  For comparison, parallel experiments were performed using 

102 MA (CH3NH2) with a commercial permeation tube (VICI Metronics).  The amine vial (or 

103 permeation tube) was inserted into separate U-shaped glass tubes immersed into a water bath 

104 maintained at room temperature (T = 295 K).  Glass beads were placed in the upstream arm of 
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105 the U-shaped glass tubes to provide high surface area to keep the gas flow at a constant 

106 temperature.  Air flowed through each tube at a rate of 215 cm3 min-1 for MEA and 93 or 211 

107 cm3 min-1 for MA.  For MSA, air (53 to 216 cm3 min-1) flowed directly over the pure liquid 

108 (Sigma Aldrich, > 99.0%) contained in a glass trap which was maintained at room temperature 

109 using a water bath.  Further details regarding the sampling, analysis and quantification of the gas 

110 phase reactants are given in the ESI (Text S1 and Fig. S2).  The initial concentrations of the 

111 reactants after dilution in the flow reactor were (1.7-6.8)  1010 molecules cm-3 for MSA (0.7-×

112 2.8 ppb), (3.7-8.1)  1010 molecules cm-3 for MEA (1.5-3.3 ppb) and (11.8-26.6)  1010 × ×

113 molecules cm-3 for MA (4.8-10.8 ppb).  Note that these concentrations represent upper limits as 

114 they do not account for potential wall losses.  

115 Particle size distribution measurements.  Particle size distributions were continuously 

116 measured using a moveable stainless steel sampling line (O.D. 0.635 cm) located inside the flow 

117 reactor along the centerline and placed at distances ranging from 3 to 43 cm away from spoke 2 

118 (i.e., the MSA addition port).  All particle size distributions reported in this study are number 

119 size distributions, unless stated otherwise.  These distances correspond to reaction times in the 

120 reactor ranging from 0.3 to 4.5 s (total flow rate 23.4 L min-1) or 0.5 to 7.7 s (total flow rate 10.7 

121 L min-1) based on a conversion factor determined in previous studies.99  Note that the amine 

122 addition port is introducing the reactant backward into the flow stream so that the reaction of 

123 MSA with MEA (MA) is occurring in between spoke 2 and 3, and we chose the MSA addition 

124 port as our t = 0 reaction time.  It is expected that the residual reactants present in the stream 

125 exiting the flow reactor are lost to the walls of the small (ID 0.18 inches) sampling line.  

126 Therefore, the reaction times reported are those in the flow reactor, but these could be 
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127 underestimated if the reaction continues in the sampling line (residence time ~ 0.3-0.4 s) and the 

128 connection to the SMPS (residence time ~ 0.8 s).  Particle losses through the sampling lines to 

129 the SMPS were accounted for as described in the ESI (Text S2; Fig. S3).  The shortest reaction 

130 time accessible (i.e. 0.3 s or 0.5s depending on the total flow in the flow tube, that was 23.4 or 

131 10.7 L min-1 respectively) is expected to be the most vulnerable to residence time artefacts.  This 

132 was tested by sampling at different flow rates through the sampling line (2.4 to 4.8 L min-1), for a 

133 given experiment conducted at 0.5 s.  Results presented in Fig. S4 show no change in the size 

134 distribution measured at all flow rates and suggest that reaction in the sampling line is not 

135 significant.  

136 Size distributions were measured using a scanning mobility particle sizer (SMPS) 

137 consisting of a 210Po radioactive source (10 mCi; NRD LLC; model P-2021), an electrostatic 

138 classifier (model 3080; TSI Inc.) equipped with a nano-differential mobility analyzer (nano-

139 DMA; model 3085; TSI, Inc.), and a butanol-based ultrafine condensation particle counter 

140 (UCPC; model 3776; TSI, Inc.).  To prevent buildup of the reactants in the SMPS during 

141 sampling, the sheath air inside the DMA was not recirculated, but instead air was provided by the 

142 purge air generator (15 L min-1) and a vacuum pump connected to the sheath air flow pulled the 

143 sheath air out of the DMA.  The aerosol flow was set to 1.5 L min-1, which provided 

144 measurements of the size distributions over a mobility diameter range of 2.5 to 64 nm.  The 

145 software AIM v9 (TSI, Inc.) was used to record and process the data.  Particles were observed to 

146 be stable for long periods of time (Fig. S5), allowing for size-resolved measurements that took 

147 up to 20 min per scan to yield enough mass for mass spectrometric analysis.  
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148 Size-resolved chemical composition measurements.  Nanoparticles with diameters ranging 

149 from 4 to 12 nm were sampled using a thermal desorption chemical ionization mass spectrometer 

150 (TDCIMS) 105,143-146 which was connected to the same sampling line as the SMPS.  The particle 

151 stream was sampled through two inlets, each equipped with a 210Po unipolar charger (UPC)143,147 

152 to generate negatively charged particles.  At each inlet, particles were subsequently size-selected 

153 using a radial nano-DMA (rDMA) running in either high resolution mode with a sheath flow of 

154 10 L min-1 and an aerosol flow of 1.0 L min-1 through each nano-rDMA, or low resolution mode 

155 with a sheath air flow of 5.0 L min-1 and an aerosol flow rate of 1.6 L min-1 through each nano 

156 rDMA.148  For both conditions, instead of recirculating the sheath gas within the nano-DMA, 

157 gaseous N2 produced from the headspace of a liquid N2 dewar was used as the sheath flow to 

158 prevent the accumulation of gas-phase MSA or MEA, and a vacuum pump was used at the DMA 

159 sheath flow outlet.  The particles were collected on the tip of a Pt filament by electrostatic 

160 precipitation (applied high voltage of +3.5 kV).  The filament was continuously flushed with an 

161 additional 1.25 L min-1 flow of N2 to minimize sampling artifacts from gas-phase species.  To 

162 select particles with a defined mobility diameter, the voltage on each rDMA was varied from 30 

163 to 325 V.  Note that the use of two separate inlets, which merged at the collection wire region, 

164 increases the flux and mass of particles that are collected on the wire without sacrificing the 

165 rDMA resolution.  

166 The TDCIMS was run in positive ion mode to measure MEA with (H2O)nH+ as the reagent 

167 ions (n=0–3), and in negative ion mode to measure MSA with (H2O)nO2
- as the reagent ions from 

168 the presence of trace amounts of H2O and O2, respectively, in the carrier N2 gas.  

169 Monoethanolamine was detected as two major ions in the mass spectra, the parent [M+H]+ ion 

Page 9 of 44 Physical Chemistry Chemical Physics



10

170 (m/z 62) and a fragment ion corresponding to [M+H-H2O]+ (m/z 44).  The fragmentation of the 

171 parent [M+H]+ ion of MEA is consistent with early experimental and theoretical studies149,150 

172 showing that although the amino group is the favored protonation site due to its higher proton 

173 affinity compared to the alcohol group,151 rearrangement and the loss of H2O dominates over the 

174 loss of NH3.  The corresponding fragment ion associated with the loss of NH3 (m/z 45) was not 

175 observed in any of the mass spectra.  MSA was detected in negative ion mode as the parent 

176 deprotonated [M-H]- ion (m/z 95) followed by a major fragment ion at m/z 80 (SO3
-), with 

177 additional minor ions at m/z 64 (SO2
-), m/z 96 (SO4

-), m/z 97 (HSO4)- and m/z 112 (SO5
-).  Both 

178 positive and negative mass spectra are presented in Fig. S6.  From the desorption profiles 

179 presented in Fig. S7, it is evident that MEA (and MA; data not shown) desorbs first from the 

180 filament followed by MSA, consistent with the differences in their respective saturation vapor 

181 pressures (Psat) at 298 K:  Psat(MEA) = 3.4 10-4 atm152 and Psat(MSA) = 7.4  10-7 atm.153  × ×

182 Additional details on the TDCIMS analysis are described in the ESI (Text S3-S5; Fig. S6-S11).

183  

184 Results and Discussion

185 Figure 1 represents the size distributions of particles from the MSA+MEA reaction under 

186 dry conditions, with each panel (A-F) representing a different reactant concentration condition.  

187 Varying reactant concentrations was achieved by either increasing or decreasing the flow of the 

188 reactant that was introduced into the flow tube, or by changing the total flow rate in the flow tube 

189 (23.4 L min-1 for Panels (A-C); 10.7 L min-1 for panels (D-F)).  Clearly, mixing gas phase MSA 

190 and MEA at low ppb levels results in rapid formation of particles.  Corresponding plots of the 
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191 evolution of the total number concentration as well as the geometric diameter as a function of the 

192 reaction time are presented in Fig. S12.  Even at the smallest reactant concentrations (Fig. 1A, 

193 1.5 ppb MEA, 0.68 ppb MSA), particles measured at the shortest distance (t = 0.3 s; total flow 

194 rate 23.4 L min-1) are formed at a number concentration of 6.3 ×106 particles cm-3 with a 

195 geometric mean mobility diameter (GMD) of ~ 4 nm.  At 2.4 s, the number concentration 

196 increases by a factor of two with little change in size.  At longer times, there is no further 

197 increase in the particle number concentration while the particles continue to grow to a GMD of 

198 ~4.6 nm, suggesting that under these conditions there is a balance between nucleation, growth by 

199 addition of the reactants onto particles, and coagulation.  Particle losses inside the flow tube were 

200 estimated using the particle loss calculator tool developed by von der Weinder et al.154 (using a 

201 density of 1 g cm-3), and was found to be small for all diameters (e.g. for a particle diameter of 

202 2.5 nm, particle transmission is predicted to be 92 or 95% for a total flow rate inside the flow 

203 tube of 10.7 or 23.4 L min-1).

204 Similar behavior is seen as the initial MSA concentration is increased, but with larger 

205 total particle number concentrations formed (Fig. 1B,C; Fig. S12 A,B).  In this case, at longer 

206 reaction times the particle number concentrations start to decrease and the GMD increases due to 

207 coagulation (Fig. 1C).  Similar, but more pronounced, trends are seen at an initial MEA 

208 concentration of 3.3 ppb and increasing MSA concentrations (Fig. 1D-F).  For approximately the 

209 same MSA concentration (Fig. 1B and 1D; Fig. 1C and 1E), doubling the concentration of MEA 

210 leads to an increase in total number concentration of a factor of ~1.2-1.4 at 2.3-2.4 s reaction 

211 time, with an increase in diameter from 4.9 to 5.6 nm (MSA = 1.4-1.5 ppb) and from 5.3 to 6.3 

212 nm (MSA = 2.8-3.0 ppb). 
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213 For the low concentration series, the formation of approximately half of the peak particle 

214 concentration at the first measurement time implies that the rate-determining step is fast.  There 

215 is some uncertainty in the exact reaction time for this first data point since it does not take into 

216 account possible continued reaction in the sampling lines.  However, a half-life of ~ 0.5 s for the 

217 reaction of MSA with excess MEA at 1.5 ppb (Fig. 1A), is consistent with a gas phase 

218 bimolecular rate constant for MEA with MSA of approximately 4 ×10-11 cm3 molecule-1 s-1.  

219 The particle formation rate (J>2.5nm) was estimated using the total concentration of particles 

220 measured at ~2.4 s (peak concentration) for all conditions, and dividing by 2.4 s.  Figure 2 shows 

221 the resulting J>2.5nm values as a function of the product of the MEA and MSA initial 

222 concentrations. There is an initial rapid increase which is approximately linear out to [MEA] ×

223 [MSA] ~ 2 ppb2, suggesting that the initial 1:1 cluster formation is the rate-determining step.  

224 The drop-off at higher concentrations reflects coagulation.  This is consistent with the TDCIMS 

225 measurements (Fig. 3), which show that the acid/base molar ratios in the particles from 4-12 nm 

226 remains within experimental error of one.  All measurements were performed at 4.5 s reaction 

227 time, and at [MEA] initial concentration of 1.5 ppb, and there were no significant differences in 

228 the measured molar ratio across the experiments performed under excess MEA ([MSA] = 0.68 

229 ppb), pseudo-equimolar MEA/MSA ([MSA] = 1.4 ppb) or excess MSA ([MSA]= 2.8 ppb), thus 

230 the data obtained for all [MSA] concentrations was averaged together.  

231

232 MSA concentrations in air can be as high as 107 molecules cm-3 (~0.4 ppt)60,61,66,68 and 

233 MEA in the low ppb range has been recorded outside a CCS facility.7  The slope of the line in 
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234 Fig. 2 at the lowest reactant concentrations is (5.3 ± 0.03) × 106 particles cm-3 ppb-2 so a NPF rate 

235 from the upper limit atmospheric concentrations of MEA (10 ppb) and MSA (0.4 ppt) of as much 

236 as ~21,200 particles cm-3 is predicted.  This can be compared to a range of formation rates of 

237 particles >3 nm diameter (J3) from sulfuric acid of 0.001 – 105 cm-3 observed in different 

238 environments around the world.155  In short, even for conditions where MEA and MSA 

239 concentrations are less than the reported maxima, this single reaction system may contribute 

240 significantly to NPF and its importance may increase as MEA use in CCS increases.

241 Efficient particle formation from MEA and MSA is consistent with the excellent stability 

242 at room temperature and low vapor pressure of the MSA-MEA salt synthesized by Greaves and 

243 co-workers.156  Furthermore, MEA-MSA has been reported to have properties of a protic ionic 

244 liquid, even though it remains a solid at room temperature.156-159  Its properties include a glass 

245 transition of -44 C, melting point of about 100 C, and a thermal stability up to 286-323 C for 

246 the fused salt.156   

247 Tropospheric air contains significant amounts of water vapor, hence the impact of 

248 relative humidity (RH) on particle formation from MEA + MSA was also examined.  

249 Surprisingly, and in contrast to previous results obtained for small alkylamines, the addition of 

250 water vapor to the MSA+MEA system did not significantly increase the number concentration at 

251 RH below ~ 20% as indicated in Fig. 4.  Figure 5A,B shows the evolution of the particle size 

252 distributions as a function of time at an RH of ~50% for two different sets of precursor 

253 concentrations corresponding to the dry conditions presented in Fig. 1A and 1C respectively.  

254 The evolution of the size distributions as a function of time in the flow reactor is similar to that 
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255 observed under dry conditions.  To better compare the dry versus humid case, total particle 

256 concentrations and geometric mean diameters measured at 4.5 s over several repeated 

257 experiments were averaged and are shown in Fig. S13.  The addition of water vapor increased 

258 the total number concentration by about only a factor of 1.3-1.5 as indicated by the bars.  Note 

259 that the enhancement factor (EF) measured at 4.5 s for the high MSA, high RH case is an 

260 underestimate as it already includes coagulation (Fig. 5C).  At the peak particle concentration (t 

261 = 1.4 s reaction time), EF = 1.9.  There is only a small increase in size (red squares) at the 

262 highest MSA concentrations.  

263 Classical nucleation theory predicts that the number of water molecules in the critical 

264 cluster can, under some conditions, be obtained from the slope of a log-log plot of the formation 

265 rate of new particles versus the gas phase water concentration.160  However, this is highly 

266 dependent on a number of assumptions.161  As seen in Figure 6, there is no significant correlation 

267 with H2O concentration. This could indicate that water is not a central ingredient in the critical 

268 cluster formed from MEA and MSA.  Alternatively, it could be due to the absence of an energy 

269 barrier in the reaction so the slope simply reflects a lack of particle formation rate on the water 

270 concentration.161  Furthermore, no change in the acid/base molar ratio was observed in the 

271 TDCIMS measurements in the presence of water compared to the dry case (Fig. 3; blue data 

272 points) indicating that the particles remained neutral.  This lack of dependence on water is in 

273 contrast to previous results obtained for the small alkylamines,102 where a slope of 1.3-2.3 in the 

274 log-log plot was observed.
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275 Shen et al.108 carried out computational studies of cluster formation from MEA and MSA, 

276 They showed that the 1:1 cluster was the least stable and hence formation of this cluster is the 

277 rate-determining step.  This is consistent with the measured rates of particle formation depending 

278 on the product of the MEA and MSA concentrations and the 1:1 acid/base ratio of the particles.  

279 They demonstrated that the binding of MEA and MSA was determined by a combination of 

280 proton transfer from the acid MSA to the nitrogen of the MEA base, along with hydrogen 

281 bonding.  MEA differs from simple amines in that it has both the -NH2 group as well as the -OH 

282 group, providing more than one hydrogen-bonding opportunity to MSA.  Indeed, in all acid-base 

283 clusters, MSA acted as a H-bond donor and in many of the clusters, the -OH group of MEA 

284 acted as a H-bond donor to MSA.  This results in strongly bound clusters held together by both 

285 electrostatic forces and a network of H-bonds, as illustrated in Fig. S14.  It is interesting that the 

286 resulting structures have the -CH3 group of MSA on the edge of the cluster, making the cluster 

287 somewhat hydrophobic.  The hydrate distribution reported by Shen et al.108 predicted that each 

288 cluster was predominantly hydrated by only one water molecule even at relatively high RH 

289 (80%).  They also predicted that if water is present during cluster formation, it will enhance 

290 particle formation by about an order of magnitude at 50% RH due to a decrease in the 

291 evaporation rate of the initially formed 1:1 cluster.  This predicted increase is significantly 

292 greater than the factor of 1.5-1.6 measured in these experiments.

293 In previous studies of NPF from MSA and amines, methylamine (MA) was shown to be 

294 the most efficient of the simple alkylamines in forming particles.102,103,105,106  Figure 7 compares 

295 the size distributions of particles formed from the reactions of 1.4 ppb MSA with 1.5 ppb MEA 

296 or 4.8 ppb MA under dry conditions.  Even with three times the amine concentration, the total 
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297 concentration of particles formed from MA is 17 times smaller than from MEA.  This is 

298 consistent with previously reported theoretical calculations108,114,162 which predict a greater 

299 stability of the clusters with the increased H-bonding capability of MEA and, as a consequence, 

300 particle formation rates that are orders of magnitude higher for MSA+MEA compared to that for 

301 MSA+MA at similar concentrations.  The gas phase basicity151 of MEA (896.8 kJ mol-1) 

302 compared to MA (864.5 kJ mol-1) also favors particle formation from MEA, along with the 

303 increased H-bonding opportunities. 

304 In previous experimental studies, water had a dramatic effect on NPF from MSA reacting 

305 with small alkylamines,102,104-106,163 quite different from MEA.  In the case of MA, the presence 

306 of water during particle formation led to a large increase in both number concentration and size 

307 starting at RH < 10% (Fig. S15).  Calculations indicated that the 4MSA-4 MA cluster with one 

308 water molecule, for example, resulted in a structure that had many potential hydrogen bonding 

309 sites available, allowing the cluster to grow via H-bonding with other species.163  For MEA, 

310 however, the clusters already have strongly hydrogen-bonded internal networks so that 

311 opportunities for further interactions with water molecules are reduced.

312 To compare the relative importance of the MEA and MA reactions with MSA for particle 

313 formation under atmospheric conditions, measurements under 10-50% RH were carried out with 

314 MA (Fig. S15).  Figure 8 shows the NPF rate (J>2.5nm) for MEA compared to that of MA as a 

315 function of the product of the reactant concentrations.  The slope of the linear fit through the data 

316 for the MEA reaction is more than four times that of the MA reaction.  Thus, although NPF from 

317 MA + MSA is greatly enhanced in the presence of water, the MEA reaction is still more efficient 
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318 under similar conditions.  This highlights the significance of alkanolamines in NPF at low 

319 concentrations and points to H-bonding as a driver for NPF with MSA.

320

321 Conclusions

322 This study shows that the acid-base interaction of a short chain alkanolamine, MEA, used in 

323 CCS with MSA is quite strong and produces sub-10 nm particles extremely efficiently compared 

324 to a simple primary alkylamine, methylamine.  Water vapor has a limited impact on NPF rates as 

325 MEA has OH- groups that already promote strong H-bonding network within the clusters.  This 

326 is in contrast with previous work on alkylamines where water had a large impact on nucleation 

327 and growth of new particles.  The particle composition from 4 - 12 nm showed an acid/base 

328 molar ratio close to unity, whereas those from the MA reaction contained more acid at the 

329 smaller diameters.  These findings highlight that there is not a one-size-fits-all when it comes to 

330 treating amine interactions with MSA in atmospheric models.  

331 The overall contribution of MSA-initiated aerosol chemistry may become increasingly 

332 more important in the future.164  For example, there is a reduction of sea-ice coverage at the 

333 poles, leading to an increase in DMS emissions94,96-98 with an associated increase in MSA. At the 

334 same time, there has been a decline in anthropogenic SO2 emissions  over few the past 

335 decades,165-170 with a related reduction in particulate sulfate in ambient particles in the Northern 

336 part of the globe.167,168,171,172  Thus, MSA acid-base mediated NPF will become increasingly 

337 more important in air in the near future.
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338 Lastly, alkanolamines are being widely deployed as in CCS technology which may lead 

339 to an increase in their abundance in the atmosphere.  Thus, assessing and understanding the 

340 impacts of this acid-base driven chemistry on new particle formation in air is more important 

341 than ever.  

342
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361 Figure Captions

362 Figure 1.  Size distributions of particles from MEA (1.5 ppb) reacting with (A) 0.68 ppb MSA, 
363 (B) 1.4 ppb MSA and (C) 2.8 ppb MSA, and size distribution from MEA (3.3 ppb) reacting with 
364 (D) 1.5 ppb MSA, (E) 3.3 ppb MSA and (F) 6.1 ppb MSA.  Measurements were conducted at the 
365 same sampling ports distributed equally along the length of the flow tube, but experiments 
366 displayed in panel (A-C) were performed with a total flow rate of 23.4 L min-1 (resulting in 
367 reaction times between 0.3 and 4.5 s), while experiments displayed in panel (D-F) were 
368 performed with a total flow rate of 10.7 L min-1 (resulting in reaction times between 0.5 and 
369 7.7s).  All experiments were performed under dry conditions, and size distributions are the 
370 average of 3 to 8 replicates (error bars correspond to one standard deviation) for each reaction 
371 time.  All size distributions were corrected for particle losses through the sampling lines.  Total 
372 particle concentrations and geometric mean diameters as a function of reaction times are given in 
373 Fig. S12.  

374

375 Figure 2.  Particle formation rate (J>2.5 nm) for the MSA+MEA system under dry conditions as a 
376 function of the product of the MSA and MEA mixing ratios in ppb.  Each data point represents 
377 an average over 3 to 8 individual SMPS scans taken at 2.3-2.4 s reaction time, with error bars 
378 representing one standard deviation, and corrected for particle losses through the sampling lines.  
379 The red line is a linear fit to the data ([MSA]  [MEA]  2 ppb2) with a slope of (5.3  0.03) × ≤ ±
380  106 particles cm-3 ppb2. ×

381

382 Figure 3. Acid/base molar ratio measured by the TDCIMS for the MSA+MEA system, under 
383 dry conditions (red data points) and at 52% RH (blue data points) measured at 4.5 s reaction 
384 time.  MEA was measured in POS ion mode while MSA was measured in NEG ion mode, and 
385 the ion distributions in the MS spectra were similar at all reactant concentrations (Fig. S6).  Text 
386 S5 provides more detailed information on how the acid/base molar ratios were estimated.  All 
387 measurements were performed with initial MEA concentration of 1.5 ppb.  No significant 
388 difference was observed in the measured molar ratio across for experiments performed with 
389 [MSA] = 0.68 ppb, [MSA] = 1.4 ppb or [MSA] = 2.8ppb, in either dry or humid conditions; thus 
390 the data points represent average values across the [MSA] concentrations range for each RH 
391 condition.  For each data point, the error bars represent one standard deviation.  The dashed line 
392 corresponds to an acid/base molar ratio of unity for reference. 

393

394 Figure 4.  Evolution of the particle size distributions as a function of relative humidity (RH) 
395 from the reaction of MSA (0.7 ppb) with MEA (1.4 ppb).  Panel (A) represents the evolution as a 
396 function of time while panel (B) represents a snapshot of the size distributions at a given RH 
397 (each distribution is an average over three SMPS scans with the error bars representing one 
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398 standard variation).  All measurements were performed at 4.5 s reaction time, and particle size 
399 distributions were corrected for particle loss through the sampling lines.

400

401 Figure 5.  Size distributions (A and B) and evolution of the particle total concentrations and 
402 geometric mean diameters measured as a function of the reaction time (C and D) in the flow 
403 reactor for the MSA+MEA reaction system at 50% RH.  All lines in panels C and D are guides to 
404 the eye.  All data originate from replicate scans (n = 5) and are displayed with one standard 
405 deviation.  All size distributions were corrected for particle losses through the sampling lines.

406

407 Figure 6.  Logarithm of the particle formation rate (J>2.5 nm) for the MSA+MEA system under 
408 humid conditions (RH ranging from 8 to 56%) as a function of the log of the water concentration 
409 (in molecule cm-3).  Each data point represents an average over 3 to 6 individual SMPS scans 
410 taken at 4.5 s reaction time, with error bars representing one standard deviation.  All data points 
411 were corrected for particle loss through the sampling line.  Red data are for [MSA] = 0.68 ppb 
412 and [MEA] = 1.5 ppb while the blue data are for [MSA] = 2.8 ppb and [MEA] = 1.5 ppb. The 
413 slopes of the lines are 0.04 for 2.8 ppb MSA and 0.2 for 0.68 ppb MSA.

414

415 Figure 7.  Representative averaged size distribution (red trace) from the reaction of MSA (1.4 
416 ppb) with MEA (1.5 ppb).  For comparison, a size distribution for MSA (1.4 ppb) reacting with 
417 MA (4.8 ppb) is also shown (green trace).  Both size distributions were taken at ~4 s reaction 
418 time.  Each size distribution was averaged over five consecutive scans and the shaded area 
419 corresponds to one standard deviation uncertainty.  The thick line corresponds to a log normal fit 
420 to the averaged data.  Both size distributions have been corrected for particle losses through the 
421 sampling lines.
422

423 Figure 8. Comparison between particle formation rate (J>2.5 nm) for the MSA+MEA and the 
424 MSA+MA systems under humid conditions (RH ranging from 8 to 56%) as a function of the 
425 product of the MSA and the amine mixing ratios in ppb.  Each data point represents an average 
426 over 3 to 6 individual SMPS scans taken at 4.5 s reaction time, with error bars representing one 
427 standard deviations.  The dashed lines are exponential fits to the data and the solid lines are the 
428 tangent to the fits with slopes of 5.5  106 and 1.2  106 for the MSA+MEA and MSA+MA × ×
429 systems respectively.  All data points were corrected for particle loss through the sampling lines.
430
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Figure 1.  Size distributions of particles from MEA (1.5 ppb) reacting with (A) 0.68 ppb MSA, 
(B) 1.4 ppb MSA and (C) 2.8 ppb MSA, and size distribution from MEA (3.3 ppb) reacting with 
(D) 1.5 ppb MSA, (E) 3.3 ppb MSA and (F) 6.1 ppb MSA.  Measurements were conducted at the 
same sampling ports distributed equally along the length of the flow tube, but experiments 
displayed in panel (A-C) were performed with a total flow rate of 23.4 L min-1 (resulting in 
reaction times between 0.3 and 4.5 s), while experiments displayed in panel (D-F) were 
performed with a total flow rate of 10.7 L min-1 (resulting in reaction times between 0.5 and 
7.7s).  All experiments were performed under dry conditions, and size distributions are the 

[MEA] = 1.5 ppb [MEA] = 3.3 ppb
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average of 3 to 8 replicates (error bars correspond to one standard deviation) for each reaction 
time.  All size distributions were corrected for particle losses through the sampling lines.  Total 
particle concentrations and geometric mean diameters as a function of reaction times are given in 
Fig. S12.  
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Figure 2.  Particle formation rate (J>2.5 nm) for the MSA+MEA system under dry conditions as a 
function of the product of the MSA and MEA mixing ratios in ppb.  Each data point represents 
an average over 3 to 8 individual SMPS scans taken at 2.3-2.4 s reaction time, with error bars 
representing one standard deviation, and corrected for particle losses through the sampling lines.  
The red line is a linear fit to the data ([MSA]  [MEA]  2 ppb2) with a slope of (5.3  0.03) × ≤ ±

 106 particles cm-3 ppb2. ×
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Figure 3. Acid/base molar ratio measured by the TDCIMS for the MSA+MEA system, under 
dry conditions (red data points) and at 52% RH (blue data points) measured at 4.5 s reaction 
time.  MEA was measured in POS ion mode while MSA was measured in NEG ion mode, and 
the ion distributions in the MS spectra were similar at all reactant concentrations (Fig. S6).  Text 
S5 provides more detailed information on how the acid/base molar ratios were estimated.  All 
measurements were performed with initial MEA concentration of 1.5 ppb.  No significant 
difference was observed in the measured molar ratio across for experiments performed with 
[MSA] = 0.68 ppb, [MSA] = 1.4 ppb or [MSA] = 2.8ppb, in either dry or humid conditions; thus 
the data points represent average values across the [MSA] concentrations range for each RH 
condition.  For each data point, the error bars represent one standard deviation.  The dashed line 
corresponds to an acid/base molar ratio of unity for reference. 
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Figure 4.  Evolution of the particle size distributions as a function of relative humidity (RH) 
from the reaction of MSA (0.7 ppb) with MEA (1.4 ppb).  Panel (A) represents the evolution as a 
function of time while panel (B) represents a snapshot of the size distributions at a given RH 
(each distribution is an average over three SMPS scans with the error bars representing one 
standard variation).  All measurements were performed at 4.5 s reaction time, and particle size 
distributions were corrected for particle loss through the sampling lines.
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Figure 5.  Size distributions (A and B) and evolution of the particle total concentrations and 
geometric mean diameters measured as a function of the reaction time (C and D) in the flow 
reactor for the MSA+MEA reaction system at 50% RH.  All lines in panels C and D are guides to 
the eye.  All data originate from replicate scans (n = 5) and are displayed with one standard 
deviation.  All size distributions were corrected for particle losses through the sampling lines.
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Figure 6.  Logarithm of the particle formation rate (J>2.5 nm) for the MSA+MEA system under 
humid conditions (RH ranging from 8 to 56%) as a function of the log of the water concentration 
(in molecule cm-3).  Each data point represents an average over 3 to 6 individual SMPS scans 
taken at 4.5 s reaction time, with error bars representing one standard deviation.  All data points 
were corrected for particle loss through the sampling line.  Red data are for [MSA] = 0.68 ppb 
and [MEA] = 1.5 ppb while the blue data are for [MSA] = 2.8 ppb and [MEA] = 1.5 ppb. The 
slopes of the lines are 0.04 for 2.8 ppb MSA and 0.2 for 0.68 ppb MSA.
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Figure 7.  Representative averaged size distribution (red trace) from the reaction of MSA (1.4 
ppb) with MEA (1.5 ppb).  For comparison, a size distribution for MSA (1.4 ppb) reacting with 
MA (4.8 ppb) is also shown (green trace).  Both size distributions were taken at ~4 s reaction 
time.  Each size distribution was averaged over five consecutive scans and the shaded area 
corresponds to one standard deviation uncertainty.  The thick line corresponds to a log normal fit 
to the averaged data.  Both size distributions have been corrected for particle losses through the 
sampling lines.
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Figure 8. Comparison between particle formation rate (J>2.5 nm) for the MSA+MEA and the 
MSA+MA systems under humid conditions (RH ranging from 8 to 56%) as a function of the 
product of the MSA and the amine mixing ratios in ppb.  Each data point represents an average 
over 3 to 6 individual SMPS scans taken at 4.5 s reaction time, with error bars representing one 
standard deviations.  The dashed lines are exponential fits to the data and the solid lines are the 
tangent to the fits with slopes of 5.5  106 and 1.2  106 for the MSA+MEA and MSA+MA × ×
systems respectively.  All data points were corrected for particle loss through the sampling lines.
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