Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The valence and coordination structure of transition metals in electrode materials play a crucial role in the electrochemical energy storage process. However, it is still challenging to modulate the chemical environment of transition metals in multi-metal-based electrode materials because of the presence of charge exchange between the different metal ions. Here, a bimetallic-based electrode material, Co0.03Ni0.97LDH, with low electrochemical activity is transformed into a highly active one through a simple and efficient electrochemical activation process with the assistance of carbon quantum dots (CQDs). It reveals that CQDs can provide a fast charge transfer channel for the unique valence regulation between Co and Ni, resulting in the generation of high concentrations of Co3+ and Ni2+, which is beneficial for upgrading the energy density of the electrode material and mitigating the Jahn–Teller distortion during the conversion of Ni2+/Ni3+. Moreover, the distinctive 5-coordination structures of Co can effectively stabilize the active sites of both Ni2+ and Co3+. The activated CQD-modified Co0.03Ni0.97LDH composites (A-CQD/Co0.03Ni0.97LDH) deliver a high specific capacity of 2408 F g−1 at 1 A g−1 and maintain a high capacity retention of 90% after 2000 cycles at 10 A g−1. The assembled asymmetric supercapacitor and the aqueous Ni–Zn battery show a high energy storage density of 0.25 mW h cm−2 at a power density of 2.25 mW cm−2 and 1.44 mW h cm−2 at 0.72 mW cm−2, respectively. The impressive results provide a feasible strategy for the rational design of multi-metal-based electrode materials.

Graphical abstract: Carbon quantum dot regulated electrochemical activation of Co0.03Ni0.97LDH for energy storage

Page: ^ Top