Smart biosensors with self-healing materials
Abstract
Real-time, in situ, and continuous biosensors face considerable challenges related to durability, as prolonged operation often leads to mechanical or functional degradation. In this context, materials with self-healing properties offer a transformative advantage. By enabling automatic recovery from physical damage, these materials significantly extend sensor lifespan, reduce maintenance costs, and minimize environmental waste. The emergence of self-healing systems has already driven major advancements in fields such as electronic skins (E-skins), smart textiles, and soft robotics, with even greater potential in the realms of implantable and underwater biosensors. Furthermore, self-healing materials are poised to accelerate the development of resilient wireless sensor networks, facilitating their integration into the Internet of Things (IoT) and human–machine interfaces. In response to these promising opportunities, significant research efforts have been directed toward embedding self-repairing capabilities into biosensor platforms. This review presents the latest innovations in self-healing biosensors, covering a range of designs including E-skins, eutectogel-based devices, textile-integrated sensors, implantable systems, electrochemical and fire sensors, as well as underwater applications. To provide a comprehensive understanding, the discussion begins with fundamental design strategies for engineering self-healing materials and progresses to their implementation in biosensing technologies. The review concludes by outlining future research directions and emerging applications that underscore the pivotal role of self-healing materials in shaping the next generation of robust, intelligent biosensors.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles