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hysiochemistry: feedback on air
quality, climate change, and human health

Rodrigo Rangel-Alvarado, Houjie Li and Parisa A. Ariya*

During the last several decades, numerous researchers have provided evidence that physical and

biogeochemical processes at air-snow/ice-water interfaces are very complex, and, in many cases,

interlinked. This review focuses on the current state of knowledge regarding snow-borne particles. It

integrates snow science from different angles: from the formation of snow and precipitation to

transformations through natural and anthropogenic processes and impacts and snow management in

urban areas sites. We discuss the physical, chemical, and biological characteristics of particles in snow,

such as their composition, abundance, size distribution, ice nucleation properties, genomic features, and

microphysical processes, in urban settings, remote areas of the Arctic, and remote industrial regions (oil

sands). We explore physicochemical processes of snow particles: from microbial to emerging

contaminants, like nano/microplastics, light-absorbing carbonaceous organics, halogenated and

nanometals particles. We review the possible contributions of snow particles to atmospheric radiation

and climate, biogeochemistry, human health, and urban snow management. We propose further

research directions to improve understanding of air-snow feedback, and sustainable snow management

in urban areas, in the age of emerging contaminants in a changing climate.
Environmental signicance

Fresh snow is a snapshot of atmospheric processes. Airborne particles or aerosols are pivotal for heterogeneous ice nucleation, ice growth, accumulation of ice
crystals, and snow precipitation. Snow can accommodate and uptake particles (natural, anthropogenic including emerging contaminants) and gaseous species,
as it falls. In this paper, we explore the selected physicochemical characterization of snow-borne particles and their roles in complex snow transformations,
biogeochemical processes, microphysics, and snow reectivity or albedo. We discuss the role of snow particles on freezing–melting cycles and their impact on
snow interactions with the Earth's atmosphere, lithosphere, hydrosphere, and cryosphere.
1. Introduction

Overview: Fresh snow is a snapshot of atmospheric processes.1

Airborne particles or aerosols are pivotal for heterogeneous ice
nucleation, ice growth, accumulation of ice crystals, and snow
precipitation. Airborne particles are also important factors in
determining the type, intensity, and frequency of precipitation.2

Snow can accommodate and uptake particles and gaseous
species, as it falls. In this paper, we explore the selected physi-
cochemical characterization of snow-borne particles and their
roles in complex snow physicochemical transformations,
biogeochemical processes, microphysics, and snow reectivity
or albedo (Fig. 1). We also discuss the role of snow particles on
freezing–melting cycles and their impact on snow interactions
with the Earth's atmosphere, lithosphere, hydrosphere, and
cryosphere.3
tmospheric and Oceanic Sciences, McGill
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the Royal Society of Chemistry
Snow-borne particle characterization provides insights into
the understanding of aerosol-cloud interactions, which is
a research priority identied by the Intergovernmental Panel on
Climate Change (IPCC).4 The lack of understanding of aerosols
and their interactions in cloud processes has been identied as
an important uncertainty in the formation of precipitation. To
address this challenge, the physical and chemical properties of
aerosols, such as size, composition, contact angle – the liquid-
vapor interface angle with a solid surface, hygroscopicity,
surface properties, and photochemistry should be understood.5

Interestingly, the health effects of aerosols are also determined
by these physicochemical properties. The World Health Orga-
nization (WHO)6 has considered airborne particles, particularly
nanoparticles (<100 nm diameters), as a top research priority
and a signicant cause of premature human death. In this
paper, we also explore how snow particles originating from the
atmosphere can affect climatic processes and others that have
also the potential for adverse health effects.

Urban snow: The urban areas cover only about 3% of the
World's land surface.8 Yet, urban atmospheric emissions are
responsible for �50% to 80% of the total global greenhouse gas
Environ. Sci.: Atmos., 2022, 2, 891–920 | 891
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Fig. 1 Simplified schematic of the role of particles in snow formation, precipitation, and physicochemical transformation in the presence of
natural and anthropogenic activities. A few cartoons have been obtained from online public domains and inspired by a Meteorological textbook.7

For simplification, only one pathway represents condensation and immersion freezing nucleation processes.

Environmental Science: Atmospheres Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
 2

02
2.

 D
ow

nl
oa

de
d 

on
 2

02
5/

7/
24

 0
:4

6:
35

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
emissions9–11 and are a signicant source of airborne particles
that include nanoparticles and emerging contaminants. The
United Nations has estimated that the majority of the world
population (�55%) live in an urban area, and this number will
grow to 68% by 2050.12 As shown in Fig. 2, many cities in the
world receive snow precipitation. Snow is a (photo)biogeo-
chemical interface for uptake, transformation and emission of
Fig. 2 The top world map shows the major cities of the globe, and the
Southern Hemisphere, there are several cities in themountainous areas w
from the public domains made by the public maps made by two organ
giving 3-dimensional effects, and hence the original pictures are change

892 | Environ. Sci.: Atmos., 2022, 2, 891–920
gases and particles.13,14 In polluted urban regions, snow has
been shown to be effective for uptake of particulate matter,
including airborne nanoparticles.15 Yet, aer snow events and
upon melting–freezing cycles, the emission of airborne nano-
particles to the atmosphere is observed.15 In urban regions,
vehicle combustion particulate emission has been shown to
alter snow composition.14,16 Furthermore, the usage of salt
bottom picture shows snowy regions in the world. Note that in the
hich receive snow (white-blue dots). The original graphs were obtained
izations: United Nations (UN) and NASA. We herein modified them by
d.19,20

© 2022 The Author(s). Published by the Royal Society of Chemistry
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particles widely used for snow removal in wintertime, has been
shown to signicantly impact atmospheric compositions and
pollutant fates, and thus affecting air quality.17,18

Particles in snow – from natural to emerging particles: Snow
particles are linked to a few climate processes. Particles are
known to alter snow albedo,21 and thereby reect energy by snow
surfaces. Furthermore, dust and volcanic ash can induce insu-
lation effects on snow and ice.21 Coal mine dust particles, for
instance, are suggested to accelerate Arctic snowmelt.22 Snow-
borne microbes have been shown to be inuential on metal
cycling at snow-air interfaces.23,24 Snow particles such as black
carbon and other light-absorbing particles25 affect the energy at
the snow-air interface, and affect the cryosphere and melting
processes,25 which will be described in detail in this paper.

Like snow and ice that are ubiquitous in the Arctic, the
Antarctic, some subarctic, mid-latitudes, and mountainous
regions, snow-borne particles are prevailing features of different
types of snow (Fig. 2). They can reveal information about their
sources, for instance we can determine whether they come from
anthropogenic or natural emissions and also any atmospheric
transformation processes they have undergone.26,27 Snow-borne
particles vary in size, from nm to sub-millimeter, and are of
diverse composition: organic, inorganic (including certain
metals), and biological.27–31 Snow-borne microorganisms have
been identied under harsh weather conditions.26,32,33 and have
been shown to impact the degradation of organic compounds
such as proteins, and carbohydrates,33,34 and nutrient cycling.35,36

The snow particle composition, number density, and distri-
bution vary in various regions of the globe and at different
times.37 As the atmosphere is the fastest moving uid in the
Earth's ecosystem, air pollutants such as aerosols can be
distributed widely, affecting the snow composition locally,
regionally, and globally. For instance, due to their small sizes,
airborne nanoparticles are subject to long-range transport. Even
in remote areas such as the Arctic regions, snow composition is
changing due to long-range transport of pollutants and local
industrial activities such as metal mining,38 oil exploration,39

military activities, and tourism.40 It is important to note that
aerosols and snow-borne particles may contain toxic compo-
nents (e.g., polycyclic aromatic hydrocarbons (PAHs) or pesti-
cides).41–43 There is increasing evidence that a wide range of
snow particles around the world contain components such as
microplastics and nanometals, which are considered as
emerging contaminants.43,44Micro- and nano-plastics have been
detected in snow, marine, and terrestrial ecosystems including
oceans, rivers, air, drinking water, sediments, and food45–48 The
major human exposure pathways to microplastics and some
other emerging contaminants such as PAHs are via inhalation
and ingestion.49 Snow surfaces have been shown to be efficient
for uptake of airborne nano- and microparticles, trans-
formation, and releasing them into the atmosphere.15 Charac-
terization of the snow-borne particles can thus provide us with
information that can advance our understanding of climate
change, human health, and our environment.

Snow in remote industrial sites can be inuenced by
anthropogenic activities such as rening Canadian oil sands.50

Industrial activities generate concern due to their impacts on
© 2022 The Author(s). Published by the Royal Society of Chemistry
both human health and the environment.51,52 In oil sand elds
located at northern latitudes, an elevated concentration of
metals in particles has been observed in snow.53 Many of these
metals are considered toxic or priority pollutants of health
concern under the US Environmental Protection Agency's Clean
Water Act (e.g., Cr, Ni, As, Se, Cd, and Pb).54

Goals of this review: There are several reviews on snow-gas
interactions in the atmosphere, which include reactions of
halogens in polar regions and biogeochemical processes.55–59 In
this paper, by focusing on snow particles, we provide insights
into the variability of snow-borne composition in different
regions, and compare three sites in North America: (a) Arctic
sites, (b) a model urban sites, and (c) a remote-industrial region
(Alberta oil sands). We will focus on the importance of particles
of diverse origins, from natural to emerging contaminants, in
the formation of snow in the atmosphere, precipitation
processes, their transformation within snow, and their poten-
tial climatic feedback and release to the Earth's ecosystem
including the atmosphere and water, where they can impact
ecosystem health. We also discuss newly developed analytical
techniques with potential application for snow particle
research, and the existence of emerging contaminants (e.g.,
nano- and microplastics). Besides, we explore possible health
effects of particles observed in snow. In addition, we discuss the
ice nucleation and radiative impacts of light-absorbing carbo-
naceous aerosols in cryosphere. Since there are limited studies
for the snow particles in southern hemisphere,60–63 we thus
focused this review predominantly in the Northern Hemi-
sphere. Lastly, we show different snow management strategies
in urban areas, while proposing future research directions.
2. Snow particle physicochemical
characterization: anthropogenic vs.
natural

In this section, we discuss the physicochemical characterization
of snow, including size, composition, and number distribution
of particles in three different climates: (1) Arctic, (2) remote
industrial site, and (3) a model cold-climate urban environ-
ment. We learn how snow particles can vary in size, undergoing
transformations, and undergo a cycle of melting and freezing,
allowing interactions with other parts of the ecosystem,
including the Earth's atmosphere.

Since fresh snow uptakes aerosols, snow particles can orig-
inate from either anthropogenic or natural sources (including
biogenic sources), or both anthropogenic and natural sources in
the case of complex particles. Aerosols from both sources can be
either organic or inorganic (including a wide range of metals).
Tables 1 (VOC & SVOC), 2 (BTEX & PAH's), and 3 (metals)
indicate various types of chemical compounds observed in snow
in various locations. There is additional information on the
concentration of snow components and the methodology used
to obtain their quantications. In Table 2, the snow composi-
tion of BTEX (benzene, toluene, ethyl benzene, and xylene) and
PAHs and their increase in concentration aer exposure to
exhaust, allowing to comprehend better how efficient snow is in
Environ. Sci.: Atmos., 2022, 2, 891–920 | 893
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the uptake of pollutants, where some of snow particles can be
transformed or re-emitted to the atmosphere. Table 3 shows the
concentration of various metals, including known toxic metals,
observed in different types of snow, some of which were
explicitly obtained in snow particles.37

Tables 1–3 reveal some key information. Firstly, there is
a signicant temporal and special variability (different time and
location) in the measurement of various organic and inorganic
compounds as well as metal analysis. Secondly, predominant
anthropogenic organic compounds such as those listed in Table
1, are usually more abundant in urban areas or other polluted
Table 1 Selected observed organic compounds the Arctic, Alpine, and U
condensed phases. Many of these organic compounds have been show

Compound Type of snow Conc

Benzene Arctic 0.437
Arctic 4.17
Urban 1.48
Urban 6.48
Alpine 0.069

Toluene Arctic 0.271
Arctic 43.6
Urban 2.18
Urban 22.6
Alpine 0.397

Chlorobenzene Arctic 0.104
Arctic 2.74

Ethylbenzene Arctic 0.008
Arctic 2.65
Arctic 1.0–1
Urban 0.13–
Alpine 0.074

m-/p-Xylene Arctic 0.162
Arctic 0.65
Urban 8.59
Arctic 3.0–3
Urban 0.17–
Alpine 0.026

Styrene Arctic 3.46–
Arctic 0.22
Urban 7.82

Trimethylbenzene Arctic 0.031
Arctic 0.4–1
Alpine 0.030

Dichlorobenzene Arctic 7.18–
Arctic 4.35

1,2-Dimethylbenzene Arctic 0.16
1,2,4-Trimethylbenzene Urban 4.59

Arctic 5.41
Acetophenone Arctic 1.25
1-Methylnaphthalene Alpine 0.838
Biphenyl Alpine 1.05
Fluorene Alpine 1.11

Urban 0.001
Phenanthrene Urban 0.208

Alpine 5.65
Fluoranthene Urban 0.417

Alpine 0.319
Pyrene Urban 0.097

Alpine 0.146
Naphthalene Urban 0.09
Acenaphthylene Urban 0.223

894 | Environ. Sci.: Atmos., 2022, 2, 891–920
sites, in comparison to remote regions. This trend is not
universally valid, as there are sources of anthropogenic activi-
ties in remote sites too. Thirdly, snow accommodates various
particles and gaseous pollutants. Table 2 collectively illustrate
that the same snow samples when exposed to gasoline exhibit
much higher level of PAHs and BTEX in particulate forms.
Fourthly, as shown in Table 3, in contrast to mostly anthropo-
genic organic compounds, snow concentrations of alkali, post-
transition, transition, and rare metals are not always the highest
in polluted regions. For instance, the highest concentration of
iron is observed in Arctic sites due to the abundance of the
rban snow. All analyses used molten snow, showing that they were in
n to form particles and droplets78

entration (mg L�1) Technique Ref.

–3.76 SPME/GC-FID 79
SPME/GC-MS 80
SMPE/GC-MS 14
SPME/GC-MS 80

–0.148 HS-SPDE/GC-FID 81
–2.81 SPME/GC-FID 79

SPME/GC-MS 80
SMPE/GC-MS 14
SPME/GC-MS 80

–0.651 HS-SPDE/GC-FID 81
–1.08 SPME/GC-FID 79

SPME/GC-MS 80
–0.132 SPME/GC-FID 79

SPME/GC-MS 80
.1 PTI/GC-MS 82
2.7 GC-MS 83
–0.29 HS-SPDE/GC-FID 81
–1.89 SPME/GC-FID 79

SPME/GC-MS 80
SPME/GC-MS 80

.3 PTI/GC-MS 82
7.4 GC-MS 83
–0.169 HS-SPDE/GC-FID 81
39.0 SPME/GC-FID 79

SPME/GC-MS 80
SPME/GC-MS 80

–1.16 SPME/GC-FID 79
.3 PTI/GC-MS 82
–0.477 HS-SPDE/GC-FID 81
20.1 SPME/GC-FID 79

SPME/GC-MS 80
SPME/GC-MS 80
SPME/GC-MS 80
SPME/GC-MS 80
SPME/GC-MS 80
HS/GC-MS 84
HS/GC-MS 84
HS/GC-MS 84
SPME-GC-MS 14
SMPE/GC-MS 14
HS/GC-MS 84
SMPE/GC-MS 14
HS/GC-MS 84
SMPE/GC-MS 14
HS/GC-MS 84
SPME/GC-MS 14
SPME/GC-MS 14

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Quantification of BTEX and PAHs in snow (in mg L�1) upon
exposure of snow to exhaust engine emissions.14 They were observed
in melted snow, and they were condensed. Both BTEX and PAH have
been shown to form droplets105

Table 3 Reported field data concentrations of alkali, post-transition,
transition, and rare metals in snow/ice matrices. Different types of
metals are in different colors
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Arctic dust, partly transported from the Asian deserts and
deposited in the Arctic snow,27 whereas the highest concentra-
tion of cobalt is observed in snow in the Athabasca oil sands
region (Alberta, Canada), as cobalt is commonly used in oil
industries.40

Complementary to the chemical characterization and
quantication in Tables 1–3, Fig. 3 illustrates various types of
snow particle morphology, as well as particle size and number
density distribution, respectively.

Several technologies have been used for chemical character-
ization of snow. Fig. 5 depicts the analysis using electrospray
chemical ionization and matrix-assisted laser-induced ablation
mass spectrometry spectra of biological material in snow. High-
resolution electron microscopy images identify the existence of
likely bio-organic particles in melted snow samples in Alert due
to the optical contrasts in the image. Electron dispersive imaging
(Fig. 5) indicates that the identical particles also contain various
metals such as Al, Fe, and Mg, which are consistent with the
ultra-trace metal analysis in Table 3, using triple quadruple
inductively coupled plasma mass spectrometry (QQQ-ICP/MS/
MS) for metals. Since there are various chemical compounds in
snow as particles or attached to a particle, in the following
section, we only focus on a few categories of snow particles, to
better understand their characteristics and impacts.

2.1. Instrumental analytical analysis

Characterization of particles in snow include the study of their
chemical composition and physical properties like size and
morphology, some of these include the following.

Mass spectrometry (MS): this technique is the most widely
used to obtain the chemical composition of particles in snow.
© 2022 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2022, 2, 891–920 | 895
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Fig. 3 High Resolution Transmission Electron Microscopy (HR-TEM) images of selected biological nano-size and micron-size particles in the
Arctic snow samples in an Arctic site (modification of Mortazavi et al., 2015 (ref. 29)).
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Common techniques using MS include GC-MS for SVOC and
combustion products like PAHs.64–66 Matrix-assisted laser
desorption/ionization time-of-ight (MALDITOF-MS) for large
molecules like polymers and biopolymers including DNA,
proteins, and carbohydrates.1,47

Induced Coupled Plasma (ICP): For the analysis of metals in
snow, ICP coupled with MS,27,38,67–69 optical emission spec-
trometry (ICP-OES)41,70 and atomic emission spectroscopy (ICP-
AES)71 are the primary methods used.

Particle sizers: these techniques give the particle size distri-
bution in a sample. For some of these techniques, snow needs
to be melted prior to the analysis. Dynamic Light Scattering
(DLS)72 and Nanoparticle Tracking Analysis (NTA)1,72 are tech-
niques that can calculate the size of a particle in a liquid based
on their Brownian motion. Other techniques include the aero-
solization of particles and the measure their sizes in air, these
include Scanning-Mobility Particle Sizer (SMPS) Optical Particle
Sizer (OPS).1,73

Microscopy: microscopy techniques such as scanning elec-
tron microscopy (SEM), and transmission electron microscopy
(TEM) have been used to study particles aer melting an
drying74 of snow samples.26,75,76 While these techniques can
analyze particles from a variety of chemical composition and
sizes, the samples preparation prior to analysis can alter the
particles and the distribution of particles within the samples,
not to mention that obtaining particle distributions with these
techniques is oen challenging.77
2.2. Examples for snow-particle interactions with the earth
ecosystem

2.2.1. PAHs. Polycyclic Aromatic Compounds (PACs)
contain at least two fused aromatic rings and can contain other
elements other than carbon like nitrogen and sulfur, however
PACs that only contain carbon are more abundant, these are
known as PAHs. The primary source of anthropogenic organic
896 | Environ. Sci.: Atmos., 2022, 2, 891–920
aerosols found in snow is the combustion of fossil fuels and
biomass burning, PACs being a common product of this
combustion,85 with an estimated production of 33.2 Tg of soot
particles containing PACs per year.86 Low-molecular-weight
PACs occur in the atmosphere mainly in the gas phase,
whereas multi-ringed PACs are bound mainly to particles.87

Studies suggest that the main source of PACs in snow is
airborne particulate matter generated from local combustion,88

namely diesel engine exhaust, and coal and biomass combus-
tion.89 PACs containing sulfur are dibenzothiophene and its
derivatives are commonly found in bitumen and petroleum
products indicating petrogenic activities as their origin. Cana-
dian oil sands regions are common areas where these products
are generated.39,90–92 Thia- and aza-arenes are PACs containing
nitrogen that can be found in bitumen, but also can be gener-
ated by combustion and mining of oils sands.39,90,93,94

The EPA considers 16 PAHs as priority pollutants, however,
pyrene, phenanthrene, naphthalene, and uoranthene have
been identied as the most common PAHs in snow,89 and
several of these are known as carcinogenic compounds.95 Other
studies have indicated that many of the PAHs found in snow
may end up in rivers and other water bodies aer snowmelt in
spring as part of the natural hydrological cycle of snow.96 PAHs
can also have toxic effects on aquatic organisms or be absorbed
by plants and consumed by terrestrial animals making their way
up in the food chain.49 Upon snow melt, the release of airborne
particles has been observed.15 Human exposure is through
inhalation of air and re-suspended soil and dust, consumption
of food and water, and dermal contact with soil and dust.15

2.2.2. Secondary organic aerosols. Organic aerosols can be
produced from volatile and semi-volatile organic compounds
via atmospheric photo-oxidation and condensation processes.
These particles are called Secondary Organic Aerosols (SOA).
They can be further deposited on snow.97 Table 1 shows re-
ported data of volatile and semi-volatile compounds found in
snow. Precursors of SOA can be anthropogenic and biogenic in
© 2022 The Author(s). Published by the Royal Society of Chemistry
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origin, however, biogenic sources produce 5.5 times more SOA
precursors than anthropogenic sources. A large portion of these
precursors are terpenes, which are usually oxidized by ozone,
NO3, and hydroxyl radicals among other oxidants.98,99 It is also
considered that many SOA are formed when partially oxidized
organic vapors condense on ice particles and undergo chemical
reactions. These are removed from the atmosphere when the
snow precipitates.100 SOA can act as ice-nucleating particles
(INPs), but also water can condense on their surface to form
water droplets and then act as INP.101

2.2.3. Water soluble organic particles. Water-soluble
organic particles are released in high concentrations during
the early stages of the snow melting process, whereas hydro-
phobic compounds and particle-bound compounds are
released at later stages.102,103Depending on the snowpack depth,
the release process efficiency differs. Shallow snowpack, for
instance, experiences an irregular melting process (numerous
melting episodes over winter), and thus releases small quanti-
ties of chemicals and particles throughout wintertime.104

2.2.4. Biological particles. Another type of organic aerosols
of biogenic origin are bioaerosols, which include microorgan-
isms and remnants of biological activities such as reproductive
material (e.g., pollen) and decaying matter.106 Forested areas
represent the major source of bioaerosols inland, yet, oceans
are proposed to be the major sources of bioaerosols overall. It is
believed that bubble-bursting in the ocean surface layer is
a predominant pathway in which bioaerosols are released from
the oceans into the atmosphere.107 It has been revealed that up
to 25% of insoluble aerosols are bioaerosols,108 which can travel
long distances and end up on snow.109–111 Fig. 3 and 5a–d show
some examples of particles, including biological particles of
different sizes, from a few nanometers to a few micrometers, in
Arctic snow samples.

Next generation sequencing (NGS) technology or massively
parallel sequencing approach to DNA sequencing,27 has allowed
the rapid sequence of the entire genome of a species like
humans. NGS has also evolved in environmental microbiology
genomic research signicantly. During the last decade, the
usage of NGS paved the way for further understanding of the
large types of biological particles in snow, such as bacteria, in
urban and remote sites.29 Most environmental microbes cannot
be cultured.28,112 NGS provides an opportunity to identify all
potential bacteria communities or other microorganisms in
a given snow sample. NGS analysis may allow distinction
between bacterial communities in the Arctic and Urban
snow.27,113 For instance, in one study, the snow genomic analysis
known phyla or candidate divisions were detected with the
majority of sequences related to one of the ve major phyla:
Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and
Cyanobacteria. As shown in Fig. 3, the morphology of biological
particles was obtained using high resolution electron micros-
copy with energy-dispersive X-ray. NGS analysis led to the
identication of metal interacting bacteria particles in all types
of snow and frost owers in the Arctic.27 The combination of
various cutting-edge mass spectrometry techniques, cryo-high-
resolution electron microscopy and various optical sizers,
along with NGS and culture methods, may allow much more
© 2022 The Author(s). Published by the Royal Society of Chemistry
comprehensive understanding of the role of snow biological
particles in the future.

2.2.5. Inorganic particles and mineral dust. Like organic
aerosols, inorganic aerosols in snow can be of anthropogenic
and natural origins. Mineral dust particles are one of the largest
contributors to the formation of snow.114 Mineral dust particles
are generated from soil and ground by the effect of rapid winds.
The common elemental composition of mineral dust includes
metal elements like alkaline metals and transition metals
(Fig. 5e and f). Deserts such as the Saharan desert in Africa and
the Gobi and Takla-Makan deserts in China, are abundant
sources of mineral dust in the Northern Hemisphere.115 In the
following sections, we discuss how dust and black carbon
particles in snow can affect snow albedo and physicochemical
processes such as melting.

2.2.6. Other snow particles like sea spray and volcanic
particles. In the Arctic and sub-Arctic regions, sea spray,
volcanic activities, and forested areas are among the most
critical sources of particles. There is, consequently, a wide
diversity in size distributions of particles in snow in the Arctic
and sub-Arctic regions, as shown in Fig. 4,116 which depicts the
size-aggregated particles, including nanoparticles in snow, that
exchange with the atmosphere.15 Long-range transport of
mineral dust, organic particles, and soot, among other parti-
cles, to the Arctic region further enriches the chemical diversity
of particles that can be deposited on snow.117

Most of the aerosols generated by sea spray, volcanic activi-
ties, and forested areas are salts (like Cl�, Na+, Mg2+, Ca2+, K+,
NO3

�, and SO4
2�), along with organic components including

biological compounds or organic remnants of biological
processes like microorganisms' debris, membrane proteins or
organelles.118 Forested areas and vegetation are also among
those generating biological particles (Fig. 2).119 In general,
unless the Arctic region is close to a signicant source of
particles, such as mining activities, the concentration of
chemicals is smaller in contrast to urban regions (Table 1).
Particles in the range of <200 nm are themost abundant particle
sizes in snow and comprise 38–78% of the total number of
particles (by mass, smaller particles make up a small fraction of
all particles), with 11–19% under 100 nm.1 Atmospheric aerosol
size distribution systematically shows that nano-size particles
(<200 nm) are the most abundant particles in the air in cold
climate.15 Hence, there is a similar trend with the abundance
and size distribution of aerosols in the atmosphere and fresh
snow, conrming that most upper layers of snow exchange
efficiently with the atmosphere. Clearly, aged snow particles are
expected to inuence on surfaces such as soil and water, and
upon freezing-thawing periods.120

2.2.7. Importance of snow particles in selected photo-
chemical processes. There are several eld observations as well
as experimental and modelling research pointing to the
importance of photochemical and/or heterogeneous reactions
in the presence of snow borne particles.124,125 For example,
researchers have found that not only the snow albedo but also
the photochemical processes can occur as a function of the
black carbon content in snow.124 Snowpack is an effective venue
for photochemistry.55,56,126 It has also been shown that
Environ. Sci.: Atmos., 2022, 2, 891–920 | 897
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increasing black carbon concentration in the snow reduces the
rate of photolysis of impurities and pollutants in the snowpack
such as nitrate.127–129 Furthermore, the redox reactions of toxic
compounds such as mercury are shown to be affected by snow
particles and biological particles.24,130 Further research is rec-
ommended to evaluate the complex (photo)chemical reactions
in snow matrices in the presence of a variety of particles.
2.3. Why do we care about snow-borne particles?

Here we summarize a few processes that make particle-bound
species in snow important to understand in the Earth's
ecosystem. The role of particles in the ice nucleation and
potential implication on freezing–melting processes are dis-
cussed separately in Section 3.

2.3.1. Albedo (reectivity). In brief, the importance of snow
particles such as black carbon on radiative properties (albedo),
as well as changing properties and air-snow interactions have
been studied.131 Previous research has found a signicant
correlation between black carbon in snow and spectral surface
albedo.131 For example, the addition of even 10 ng per gram of
equivalent black carbon in snow lowered the snow's albedo by
0.004, noting the recorded concentrations of black carbon in ice
cores usually range from 0.01 to >20 ng g�1.131,132 Increasing the
amount of the equivalent black carbon by an order of
Fig. 4 Abundance of different size fractions in North American snow. Dat
mobility particle sizer and an optical particle sizer with size limits from 11.5
on x-axis.

898 | Environ. Sci.: Atmos., 2022, 2, 891–920
magnitude further results in the albedo reduction effect
increasing 5-fold.131 Current atmospheric models fail to predict
with high accuracy the real distribution of particles in the
atmosphere, including the transport of particles from their
sources to snow-covered areas and their deposition, as well as
their effects on snow albedo, snow grain shape, and the particle-
snow internal mixing.133,134 Particles that change snow albedo
can also modify the melting and freezing processes of snow.27

Black carbon reduces snow albedo, which increases the
absorption of radiation, resulting in early snowmelt.135,136

Research has also shown that trace amounts of dust, HULIS
(HUmic Like Substances) and black carbon deposited on or
within a snowpack can reduce its albedo relative to pure
snow.137,138

2.3.2. Ecosystem and health. As mentioned earlier, certain
particles in snow are hazardous to ecosystems and human
health (such as PAHs and toxic metals).121 Furthermore, with
the development of newer cutting-edge technologies, emerging
contaminants such as nano- and micro-plastics are being
detected in the Arctic and urban snow.52 During the precipita-
tion, melting, and evaporation cycle of snow, these contami-
nants are released back to the air and surrounding surfaces like
soil. More water-soluble species can also be released into
aquatic systems especially as snow melts in spring. This results
in the discharge of pollutants stored in the snowpack into the
a obtained from references.1,102 The data was obtained using a scanning
to 9033.88 nm. Each color represents a different size fraction, which is

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Images (a and b) show electrospray chemical ionization and matrix-assisted laser-induced ablation mass spectrometry spectra of bio-
logical material in snow, and images (c and d) are high resolution electron microscopy images identifying the existence of likely bio-organic
particles in melted snow samples in Alert due to the optical contrasts in the image. Images (e and f) show electron dispersive imaging indicating
that the same particles also contain various metals such as Al, Fe, and Mg. The analysis was done on a copper grid1 and thus the Cu signal is
predominantly from the grid itself.
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environment. Exposure to PACS and PAHs from the snowmelt
can lead to toxic effects like reduction and delay of reproduction
of aquatic lifeforms, increased physiological sensitivity, and
reduced physical abilities like swimming and aerobic
capacity.139,140 Other effects include increased indices of cancer
and death.94 Toxic effects of metals in snowmelt contaminated
by oil sands include increased sensitivity of sh and amphibian
species and delays in some developmental stages.141,142

2.3.3. Importance of addressing the shortcomings of
current air quality and aerosol. Numerical models currently
provide regional and global understanding of particle distri-
bution in snow, aerosol-cloud interactions, and reactions at
snow/ice surfaces.143 These models use simplied schemes to
investigate the role aerosols and aerosol-cloud interaction play
in air pollution.133,143 However, uncertainties make the
© 2022 The Author(s). Published by the Royal Society of Chemistry
prediction of air quality, cloud processes, and climate change
challenging.4 Furthermore, blowing snow transport and subli-
mation can further change the surface distribution of snow,
redistribute ice particles vertically, and cool and moisten the
atmospheric boundary layer.144 In a northern urban setting,
pollution from anthropogenic activities, namely local traffic and
industry combined with long-range transport, adds to the
complexity of snow composition and makes the understanding
of snow processes more difficult.145 Yet, they should be under-
stood, as they are required for regional and global air quality
and the climate processes.

2.3.4. Snow as a reaction medium: scavenging and trans-
formation of particles. During or aer snow formation, aerosols
can be scavenged in clouds. Scavenging of aerosols can also
occur aer snow precipitates from the clouds. Snow crystals and
Environ. Sci.: Atmos., 2022, 2, 891–920 | 899
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scavenged aerosols are deposited on the Earth's surface via
precipitation.146 The time it takes for an aerosol particle to be
deposited onto the Earth's surface depends on different factors,
one of which is the particle size. In general, particles larger than
10 mm do not remain suspended long enough to be removed
through wet deposition.147 Evidence suggests that dry deposi-
tion is the dominant way in which large particles are removed
from the atmosphere and settle on snow.148 Smaller particles
and trace compounds are preferentially removed via wet depo-
sition.149 Common species that are deposited with falling snow
are black carbon (soot), metals (e.g., Mg, Al, V, Mn, Fe, Co, Cu,
As, Se, Sb, Tl, Pb), and ions or salts (e.g., Cl�, Br�, NO3

�, SO4
2�,

C2O4
2�, NH4

+, Na+, K+, Mg2+, Ca2+). Black carbon (including
carbon nanostructures) is poorly removed from the atmosphere
through dry deposition processes. A recent study have found
that ice nucleation and cloud condensation nucleation are the
predominant pathways in which black carbon particles are
scavenged and removed,150,151 although ice could also reduce the
rate of wet scavenging of black carbon particles due to Wege-
ner–Bergeron–Findeisen process.151 Particles containing
organic compounds can also be scavenged or deposited on
snow. In general, large, non-polar organic particles are more
efficiently scavenged by snow than rain, while small, polar
molecules are better scavenged by rain, especially at �0 �C, as
polar species are more soluble in water than ice. Below �10 �C,
organic compounds tend to be preferably scavenged and
deposited by snow.152

Soon aer snow falls on the ground, the ice crystals start
changing in a process called snow metamorphism. Snow
metamorphism is the change of the crystal structure of snow
due to processes like melting–freezing and sublimation–depo-
sition, or recrystallization processes that happen within snow.
This process keeps happening even aer fresh snow is depos-
ited onto the snowpack. Due to metamorphism, the different
chemicals in snow can be transformed and redistributed within
the snowpack. Aer snow melts, the newly formed or trans-
formed chemicals can be released into the environment. For
instance, the concentration of incorporated organic particulate
matter can increase when particles are deposited into the
snowpack, which in turn will likely reduce the snow albedo.143

The reduction of snow albedo is due to a higher concentration
of insoluble light-absorbing particles, like black carbon, which
reduce the diffuse reection of solar radiation within snow.153 A
recent study154 has shown that a loss in dissolved organic
carbon concentration can be expected aer fresh snow meta-
morphizes into ne rn in a glacier due to early snowmelt, while
an enrichment can be expected aer ne rn becomes granular
ice due to erosion of surrounding surfaces, and therefore
releasing DOC, when rn melts (late snowmelt) and becomes
granular ice. Upon snowmetamorphism, black carbon particles
within the snowpack can decrease snow albedo, contributing to
an early snowmelt in spring.155 Further studies on the diverse
roles of snow particles are recommended.

2.3.5. The potential impact of salt particles on air quality.
In the Arctic, it has long been established that there is halogen
exchange between the upper layer of snow and the atmo-
sphere.59,156–158 In urban regions, during the cold seasons,
900 | Environ. Sci.: Atmos., 2022, 2, 891–920
different materials are used for de-icing roads. The most
commonly used materials worldwide are salts (e.g., NaCl, CaCl2
and MgCl2).159 Recent studies have shown that the addition of
salts in wintertime coincides with elevated Cl� concentrations
in PM2.5 aerosols and snow.18 Additionally, halogens can react
with various organic and inorganic species in these cold urban
regions, and thus affect the atmospheric chemical composition.
For instance, a signicant amount of photolabile chlorine (e.g.,
ClNO2, Cl2, etc.) has been observed in Montreal, Canada, during
wintertime.118 The city receives approximately 2.1 m of snow
and annually uses 140 000 tons of salt (NaCl, CaCl2 with addi-
tional gravel at different temperatures), to de-ice roads.160 Other
studies have identied road salts as the primary source of
chloride-containing aerosols (e.g., ClNO2 that is considered
a source of nitrogen oxides and chlorine radicals in the air) in
inland urban areas in the wintertime.17 Because of the abun-
dance of anthropogenic reactive halogens in urban and remote
industrial sites, their interactions with snow affect the air
quality and biogeochemistry of these regions.

2.3.6. Little known processes. There are gaps of knowledge
in our understanding of contaminant cycling at aerosol/air,
snow/air, ice/air, and air/water interfaces. Additionally, inter-
facial processes such as absorption–adsorption, homogeneous
and heterogeneous reactions, photochemistry, and biological
transformations are inadequately understood. Particle size
distributions and their chemical compositions in snow can be
determined with cutting-edge technologies such as optical
spectroscopy and cryo-electron microscopy. However, little is
still known about the details of exchange and transformation
processes.
2.4. Air-snow transfer of particles: a case study for snow
exposure to vehicle exhaust

The transportation sector is a major source of primary particles
and gases that undergo gas to particle conversion (e.g., vehic-
ular emissions such as diesel exhaust) in urban snow.1 Research
has shown that ice and snow can interact with particles by
providing a large surface area in which pollutants (like soot and
PAHs) can be adsorbed and then undergo physicochemical
reactions.13,55,57 Additionally, the low temperatures of snowpack
can promote condensation of low-volatility organic gases which
can then oxidize and form SOA.161

The existence of snow and cold temperature can affect the
snow-air exchange processes. Low temperatures can also reduce
the motion of smaller particles, which decreases the collision–
coalescence processes that form large particles.162 When snow
melts, nanoparticles can be released back into the environment
through the meltwater;163 this way snow can act as a source or
a sink of nanoparticles under different environmental
conditions.

In a laboratory experiment done in an environmental
chamber (Fig. 6), it was found that both snow and exhaust
emissions affected each other. Snow modied the size distri-
bution (a shi of the modes to lower sizes) of exhaust,
presumably by limiting its growth.16 Additionally, exhaust
exposure changed the chemical composition of snow. The
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ea00067a


Fig. 6 At LHS, a simplified schematic of snow chamber-exhaust facility is shown.16 At RHS, high-resolution transmission electron microscopy
(HR-TEM) with energy dispersive spectroscopy (EDS) of duplicate melted snow samples in a site before and after exhaust exposure, are illus-
trated. An increase of particles in snow upon gasoline exposure was also observed.
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concentrations of benzene, toluene, ethylbenzene, xylene
(BTEX), and some PAHs were higher in snow samples subjected
to exhaust emissions compared to fresh snow, as shown in
Table 2.16

3. The role of particles in ice
nucleation processes: impacts on
freezing-melting process

Clouds are required for snow precipitation, but not all clouds
make precipitation.7 Indeed, only a tiny fraction of clouds
precipitate, such as nimbostratus clouds that can produce snow
(Fig. 1).7 Several physicochemical processes are needed, from
the formation of ice nuclei and their growth, to snow precipi-
tation. In this section, we explore a brief background about the
role of particles in heterogeneous nucleation processes, and
examples of different compositions and sizes of ice nuclei.

3.1. Heterogeneous ice nucleation: a brief survey of theory

Homogeneous nucleation is a process in which water vapour
molecules become solidied or frozen, in absence of a foreign
phase (aka a nucleating agent), at low temperatures (#37 �C).7

Heterogeneous nucleation follows almost the same concept of
homogeneous nucleation. However, this type of nucleation
involves preferential sites such as phase boundaries, surfaces,
© 2022 The Author(s). Published by the Royal Society of Chemistry
or impurities like aerosols such as dust.164 Aerosols serve as
nucleating agents on which ice crystal growth occurs. In
heterogeneous nucleation, due to lower surface energy, the free
energy barrier reduces and facilitates nucleation at these pref-
erential sites. The existence of aerosols renders heterogeneous
nucleation to require less activation energy than homogeneous
nucleation. As such, the freezing process occurs at a higher
temperature in heterogeneous nucleation processes in
comparison to homogeneous nucleation processes.

There are four different types of heterogeneous nucleation:
these are (a) deposition freezing, (b) condensation freezing, (c)
contact freezing, and (d) immersion freezing, as shown in Fig. 1.

To better understand heterogeneous nucleation, we consider
a hypothetical scenario that the nucleation proceeds via
immersion freezing. When a spherical nucleus is formed at
a preferential active site (considered from here on a surface), the
spherical surface is reduced, and thus the area of the interface
between the nucleus and the surrounding uid, for instance,
supercooled liquid water, is less than 4pr2. This geometric
reduction decreases the surface area term in eqn (1) and thus
lowers the nucleation activation barrier.165

DGHomo ¼ �4

3
pr3DGV þ 4pr2g (1)

Here DGV is the difference in Gibbs free energy per unit volume
between the thermodynamic phase where ice nucleation is
Environ. Sci.: Atmos., 2022, 2, 891–920 | 901
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taking place and the phase that is nucleating, r is the ice
nucleus radius, and g is the surface energy/tension between the
ice nucleus and its surroundings. At very low values of r, the
surface term (r2 term) dominates, and the free energy is positive,
and at higher values, the volume term (r3 term) dominates, and
the Gibbs free energy is negative.

In the Earth's atmosphere, heterogeneous nucleation is
achieved using aerosols as seeds for heterogeneous ice nucle-
ation (Fig. 1). For heterogeneous ice nucleation, eqn (1) can be
corrected by a factor to compensate for the loss of surface area
and volume.

DGHeter ¼ DGHomo � f(q) (2)

where f(q) is a function of the contact angle between the particle
and the ice embryo.166

f ðqÞ ¼ 1

4
ð2þ cos qÞð1� cos qÞ2 (3)

The contact angle (q) is the degree between the interactions
of the ice embryo with the INP. It should not be confused with
the contact angle used to measure the wettability of a surface
that is commonly used in material sciences. Geometric obser-
vations show that as the contact angle decreases, and so does
the spherical surface area. Therefore, the smaller the contact
angle, the lower the activation barrier and hence, the faster the
nucleation rate.165

In laboratory studies, the contact angles of ice nucleating
materials, including those found in snow, are usually calculated
as described in Marcolli et al. (2007).167 Contact angles (a) were
calculated from the compatibility function fhet for supercooled
water.

fhet ¼ 1

4
ð2þ cos aÞð1� cos aÞ2 (4)

Which is responsible for the reduction of the Gibbs free
energy DG barrier in the presence of an ice nucleating particle.

DGðTÞ ¼ 16p

3

vice
2ðTÞssl

3ðTÞ
½kT ln SðTÞ�2 (5)

where nice is the volume of a water molecule in ice, ssl is the
interfacial tension between water and the ice embryo, and S is
the ice saturation ratio. These parameters were calculated as in
Zobrist et al. (2007)168 using the heterogeneous ice nucleation
rate coefficient jhet and the surface area of the ice nucleating
particle in a droplet of water.

Particles with small contact angles tend to be more efficient
at nucleating ice than large contact angle particles. Water
suspensions of various environmental particles, including
those found in snow, have been shown to exhibit strong prop-
erties to act as effective ice nuclei.169,170 For example, long-term
studies of snow in the Arctic and sub-Arctic and mid-latitude
sites indicate that melted snow freezes above �10 �C,1,171 even
aer removing particles larger than 200 nm, indicating that
snow nano-size particles, including nanoparticles can be good
902 | Environ. Sci.: Atmos., 2022, 2, 891–920
ice nuclei. These agglomerates of nanoparticles, still nanosized,
have a high surface-to-volume ratio and sufficient curvature, to
have adequate contact angle for ice nucleation. A few laboratory
studies have shown that such nano-size agglomeration of
different materials can lead to high ice nucleation
capability.169,170,172

Diverse types of particles are suggested to act as INP in the
atmosphere, e.g., metal containing particles (e.g., Fe2O3),
mineral dust, soot, and biological particles (e.g., airborne
bacteria and viruses), and emerging contaminants such as
nano- and micro-plastics.97,172 INP can also nucleate ice directly
from water vapor or act as cloud condensation nuclei to form
a water droplet and then freeze it.173 Three factors are
predominantly responsible for enhancing the rate of nucle-
ation: (i) an overlayer of water acting like a template material,
having a similar crystalline structure to ice;169 (ii) the appear-
ance of a contact layer, being buckled in an ice-like fashion, and
(iii) improved nucleation on compact surfaces, having very
strong adsorption energy.174
3.2. Examples of particles' impact on ice nucleation and
freezing–melting processes

Previous studies have conrmed the presence of different
microorganisms (e.g., bacteria, algae, and viruses) on snow and
glacier ice.175 For example, some groups have investigated the
genomics of bacterial populations in snow,26 identifying ve
major phyla: Proteobacteria, Actinobacteria, Bacteroidetes, Fir-
micutes, and Cyanobacteria, several of which have properties
like ice nucleating.176 Beside bacteria, several other types of
microorganisms have been found in Arctic snow which seem to
have resistance to heavy metals.27 Fig. 3 and 4 illustrate the
presence of biological material in Arctic snow samples and
particles containing various metals, demonstrating how diverse
particles in snow are and how biological matters coexist with
various types of particles, including nanoparticles, which are
abundant in snow.

During the last two decades, research has been focusing on
understanding how some of the most efficient INPs work,
namely the bacterial ice-nucleating protein (InaZ),177 and how
some processes affect immersion freezing of well-known INP
(e.g. the oxidative polymerization of catechol on dust parti-
cles178). There has also been researches on novel materials that
can act as INPs like graphene–graphene oxide nanoparticles179

and inorganic composite particles.170 Recent studies indicate
that several types of anthropogenic particles, including
emerging compounds such as nano- and micro-plastics and
synthetic complex inorganic materials,169,172 in addition to dust
and biological particles, can serve as effective ice nuclei.

Human activities continuously create new materials,
including nano- and microparticles, which are released in the
environment. Such particles are detected in the air,43 and they
are deposited15 in snow. As such, there will be likely new ice
freezing nuclei and anti-freeze materials, which will be released
in the Earth's ecosystem, facilitating freezing or melting
processes in the future.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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4. Emerging contaminants in snow

Emerging contaminants refer to synthetic or natural
compounds that are not monitored in the environment regu-
larly. Yet, these compounds are known (or suspected) to have
adverse effects on the ecosystem or/and on human health.180

Emerging contaminants are considered to be of serious concern
due to their potential health effects. Recent scientic and
technological advances allow ultra-trace quantication of
selected contaminants in the environment. Recent innovations
in medical eld allow researchers to assess health impacts of
selected emerging contaminants. Such pollutants are every-
where, frommicroplastics in oceans to nanometals in electronic
waste.181 These emerging contaminants have also been
observed in various types of snow, in Arctic regions, industrial
sites, and Urban settings.158

Emerging contaminants include synthetic or natural micro-
organisms and their products, which can adversely affect
ecosystems and human health. These contaminants are widely
distributed in the environment, frommicroplastics in oceans to
nanometals in landlls. An example of this is the Athabasca Oil
Sand Region in Alberta, Canada, where the extraction and
processing of oil sand generate aerosols that can be deposited
in snow. Snow from this region contains high concentrations of
C, Si, Al, and Fe.37,39,182

The concentrations of metallic species in snow, compiled
from literature, are shown in Table 3. These species can be of
lithogenic origin. They are released into the environment by
activities and processes such as mining, land clearing, and
wind-blown dust.182 Metallic species that are recognized as
priority pollutants by U.S. EPA and WHO (Cr, Ni, Cu, As, Se, Cd,
and Pb) have also been detected in snow from oil sand regions54

at concentrations that are 10 to 25 times higher than those in
urban areas.

Snowmelt runoff can introduce these metals into aquatic
bodies, which ultimately become concentrated in aquatic life
and irrigated food crops. Consumption of contaminated sh
and crops increases human exposure to these toxicants.183–185

Recent research conrms the existence of nano- and micro-
plastics (<5 mm) in snow.44,186,187 These particles are in low
concentrations but are present globally – from the Arctic to the
Alps and cities and Arctic sea ice.44,188,189 The sources of these
particles are suspected to be the protective coatings on ships,
vehicles and buildings, containing various plastic materials
such as polyethylene and polystyrene.44

In recent decades, there has been rapid development of
analytical techniques (Table 3) and remediation technologies
relevant to emerging contaminants. For instance, several tech-
niques have been used to detect microplastics in environmental
samples like Raman spectroscopy and thermal assisted mass
spectrometry.190,191 However, pre-concentration methods are
required, especially in the case of snow where concentrations
can be in the ultra-trace level. New techniques are being
developed and applied to the ultra-trace analysis of micro-
plastics like nanostructured laser desorption/ionization time-
of-ight mass spectrometry (NALDI-TOF-MS).47 This technique
© 2022 The Author(s). Published by the Royal Society of Chemistry
allows direct micro-/nano-plastic analysis in different environ-
mental matrices like snow, without requiring pre-treatment. It
is benecial to continue with the research and development of
tools to detect and quantify microplastics.
4.1. Potential health impacts of microplastics

Large particles of plastics or macro-plastics have shown to have
adverse health effects on the Earth's ecosystem. For instance,
upon ingestion of plastics, certain wildlife starve to death or
suffocate by plastics.192 During the last decade, several studies
suggested the potential adverse health effects of nano- and
micro-plastics in ecosystem and human health.193 There are
a couple of evidence of health impacts in other animals.194–197

One of these studies has shown that microplastic may affect the
genome by inducing transcriptional change, immune response,
and behaviour alteration in adult zebrash.196 In the second
study,197 the analysis of juvenile Daphnia revealed a variety of
subtle responses of morphological traits. Yet, in adult Daphnia,
alterations in the expression of genes related to stress response
genes involved in body function and body composition were
observed already 48 h aer exposure. As for human exposure
research, a recent study has evaluated microplastic consump-
tion by humans.48 They estimated that Americans consume
39 000 to 52 000 microplastic particles per year, depending on
age and sex. These estimates increased to 74 000 and 121 000
when inhalation was considered. In brief, macro-plastic adverse
health effects are well-established. However, there is growing
evidence for other animals, and the adverse effect of micro-
plastic on human and ecosystem health are likely, but further
research is required to further substantiate it.
5. Light-absorbing carbonaceous
particles in snow
5.1. Sources of LACs

Light-absorbing carbonaceous particles (LACs) consist of black
carbon (BC) and light-absorbing organic carbon (i.e., brown
carbon, BrC). The primary source of BC are fossil fuel
combustion and biomass burning. The dominant component
of BC is elemental carbon (EC) which makes it strongly absorb
solar radiation ranging from UV to near infrared. However, the
sources of BrC are more diverse. BrC primarily comes from
biomass burning and fossil fuel combustion, whereas the
secondary sources include photochemical reactions of anthro-
pogenic or biogenic secondary organic aerosol precursors,209–212

and heterogenous reactions with NOx.210–213 The complex
matrices of BrC make it difficult to determine every component
of BrC, but there are several representative compounds that
have been proved to be BrC, such as HULIS, nitroaromatics,
PAHs, and vanillin.210–212,214

LACs can undergo long-range atmospheric transport (LRAT)
and then deposit on the surface of snow and glaciers. During
this process, both wet deposition and dry deposition can take
place.201 For dry deposition, when the size and weight of LACs
gradually increase, it would be easier for LACs to be deposited
by wind. For wet deposition, which is the main deposition of
Environ. Sci.: Atmos., 2022, 2, 891–920 | 903
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LACs, there are more ways to deposit LACs. For instance, LACs
can serve as ice nuclei or cloud condensation nuclei to form ice,
cloud, or rain. They can also be scavenged by precipitation.
Although there are very limited human activities in the cryo-
sphere like Arctic,215–218 Tibetan Plateau219 and Alps,220–222 LACs
can be deposited in cryosphere by LRAT, affecting regional and
global climate in the end.
5.2. Optical properties of LACs

Absorption coefficient (Abs) is usually used to describe the
absorption of LAC particles in a power-law relationship with
absorption Angström exponent (AAE),

Abs(l) ¼ K � l�AAE (6)

where Abs is with the unit of Mm�1; K is a constant; l is the
wavelength of light with the unit of nm. Once the mass
concentration of LACs is determined, mass absorption cross-
section (MAC) or mass absorption efficiency (MAE) at
a specic wavelength can be calculated by eqn (7),

MACðlÞ or MAEðlÞ ¼ AbsðlÞ
C

(7)

where MAC or MAE is with the unit of m2 g�1; C is the mass
concentration with the unit of mg m�3. MAC is usually used to
describe the optical property of BC or BrC particles, whereas
MAE is used to describe the optical property of BrC solution.211

AAE of BC is close to unity. Consequently, BC shows less
dependence on wavelength, strongly absorbing light from UV to
near infrared. However, AAE of BrC varies from smaller than 1
to as great as 8,230 indicating high wavelength dependence. As
a result, the absorption of BrC sharply decreases with increasing
wavelength, with strong absorption on UV but weak absorption
on short-wavelength visible light. The value of AAE of BrC can be
calculated in a selected range of wavelength by eqn (8),

AAE ¼ �lnðAl1=Al2Þ
lnðl1=l2Þ (8)

where Al is the absorbance of BrC at wavelength l, which can be
measured by UV-vis spectrophotometer.

The measurement of BC absorption has been well summa-
rized by Bond et al.223 Briey, there are various instruments
based on several methods to measure the absorption of BC: (1)
photoacoustic method, such as photoacoustic extintiometer
(PAX); (2) lter-based optical absorption method, such as
aethalometer; (3) thermal-optical method, such as thermal
optical reectance (TOR); (4) laser-induced incandescence
method, such as single particle soot photometer (SP2).
Compared with the diverse methods for BC, to our best
knowledge, there is no commercial instrument designed
specically for BrC. Although PAX has a short-wavelength laser
module, it cannot distinguish mineral dust from LACs.
Absorption measured by aethalometer can be used to estimate
the contribution of BrC absorption only if the value of AAE is
determined, whereas AAE for BrC in the ambient air will not be
constant. Current methods to determine the absorption, mass
concentration, and chemical constitutions of BrC are lter-
904 | Environ. Sci.: Atmos., 2022, 2, 891–920
based. Generally, samples are collected on one lter and then
are subtracted by water or methanol to do further analyses,
including total organic carbon (TOC) analysis, UV-vis spectro-
photometry, and GC-MS or LC-MS. The lter-based methods
will not change the chemical properties of BrC. However, they
may change the size distribution and morphology of BrC,
causing bias in measuring the optical properties of BrC.

Fresh BC particles are nanosized spheres with sizes less than
100 nm.223 Once emitted, BC will undergo internal or external
mixing with other components in the air, including BrC, to form
aggregates with sizes ranging from nanometers to microme-
ters.223 Internal mixing or external mixing with BrC would also
modify the optical properties of BC to cause enhanced absorp-
tion, which is termed as “lensing effect”.211,224,225 In turn, the size
and morphology of BC can affect light absorption of BrC,
causing overestimation on MAC of BrC.226,227 In addition, the
effects of atmospheric evolutions of BrC are more complex. On
the one hand, photochemical or heterogeneous reactions could
facilitate the formation of new BrC components and lead to
absorption enhancement.210,211 On the other hand, these reac-
tions may cause photobleaching of BrC,210,211 decreasing the
absorption contributed by BrC. The complex matrices of BrC
make it difficult for researchers to comprehensively evaluate the
overall impacts of various atmospheric processes on BrC,
which, in the end, hinders the work on accurately modeling the
climate effect of BrC.
5.3. The radiation impacts of LACs deposited on snow

The radiation impacts of BC have been comprehensively
investigated and evaluated by other researchers.201,215,216,223,228 To
be brief, BC deposited in the cryosphere mainly comes from
anthropogenic sources like fossil fuel combustion in winter and
biomass burning in summer.201 The deposition of BC in snow
can cause radiative forcing (RF) with a few watts per square
meter in fresh snow. Nevertheless, as snow ages, RF induced by
BC will gradually increase to even as large as hundreds of watts
per square meter, leading to the acceleration of glacier melt.114

Unlike BC, although BrC in snow has drawn more attention
in the past two decades, there are only a few studies which
investigated and evaluated the optical properties and RF of BrC
in the cryosphere. Wu et al. summarized the knowledge of MAE
and AAE of BrC but did not include the data of RF.225 Table 4
provides a summary of up-to-date knowledge of the optical
properties and RF of BrC in the cryosphere. As shown in Table 4,
the RF of BrC is sometimes described as a ratio of radiative
forcing of BC, which is due to lack of knowledge of precise
components of BrC. As discussed above, the complex constitu-
tions of BrC make it challenging to determine the mass
concentration of BrC, and thus MAC of BrC can be either
overestimated or underestimated. The RF of BrC can only be
estimated as a ratio of RF of BC. And for the cases which provide
RF in the form of numbers, the values of RF of BrC are not
accurate either. Additionally, it is evident that AAE of BrC varies
more than AAE of BC, which conrms the strong wavelength
dependence of BrC. Moreover, the variation of AAE indicates
BrC consists of both strong absorbers and weak absorbers,
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 4 The optical properties and RF of BrC in the cryosphere. aIndicates the measurement was done on dissolved organic carbon (DOC).
bIndicates middle altitude of Asia. cIndicates the measurements were done on water-soluble BrC. dIndicates the values were reported as MAE;
eindicates the measurements were done on water-soluble organic carbon

Site Sample type Method MAC (m2 g�1) AAE RF (W m�2) Ref.

Tibetan
plateau

Snow UV-vis spectrophotome-ter 1.4 � 0.4 (365 nm) 5.0 � 5.9 0.43 248

Laboratory Snow UV-vis spectrophotome-ter N/A 4.12–6.28 (330–400
nm)

1.23 per ppm of BrC 249

Altai
mountaina

Snow UV-vis spectrophotome-ter 0.45 � 0.35 (365 nm) 2.59 � 1.03 0.11 250

Global Arctic
Asiab

Simulated in
snow

GEOS-Chem, MERRA2, RRTMG 0.46–1.7 (300–700 nm) N/A 0.0064, 0.13 (Arctic
summer)

215

0.24 (Asia winter)
Arctic Snow Integrating-sandwich

spectrophotome-ter, SP2
N/A 3.5–7.0 N/A 216

Arctic Aerosolc UV-vis spectrophotome-ter 0.10–0.98 (365 nm)d 8.5 � 4.2 5–34% of BC 217
Arctic Aerosole UV-vis spectrophotome-ter 0.70 � 0.44 to 1.54 � 0.75

(365 nm)d
2.91 � 1.02, �4.76 �
2.28

N/A 218
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making it hard for model researchers to parameterize the
optical properties of BrC, causing deviation in modeling RF of
BrC in the end.

Furthermore, neither experimental methods nor modeling
methods could provide a relatively precise concentration of BrC
in the atmosphere or snow/ice. For experimental methods, both
water extraction and methanol extraction methods would
discard insoluble organic carbon which may contain a fraction
of BrC. The following absorption measurement by UV-vis
spectrophotometer cannot reect the contribution from insol-
uble BrC. For modeling methods, currently, the mass concen-
tration of BrC is estimated by using a certain percentage of
organic carbon,229,230 which no doubt would cause deviation in
the radiative impacts of BrC.
5.4. Ice nucleation of LACs

5.4.1. Ice nucleation of BC. The ice nucleation of BC has
been widely investigated in the past decades. However, the
question whether BC particles are important and efficient INPs
in the atmosphere is still under hot debate because there are
many conicting results from both laboratory experiments and
eld campaigns.223,231 For example, some early research indi-
cates BC can nucleate ice below �20 �C,223,232,233 and can be as
ice active as mineral dust.233 However, later experiments found
contradictory results, suggesting BC particles are poor ice
nuclei.223,234–236 Even for eld campaigns from the same site,
results can be contradictory. Cozic et al. reported BC enrich-
ment in ice particle residuals, and therefore BC may be able to
nucleate ice efficiently in the mixed-phase cloud at Jung-
fraujoch, Switzerland.220 However, at the same site, Kamphus
et al. and Kupiszewski et al. found that BC was depleted in ice
residuals, indicating BC was unimportant in mixed-phase cloud
ice nucleation.221,222 One of the reasons for controversial results
of ice nucleation abilities of BC is that BCmay undergo different
modes of heterogeneous ice nucleation. For instance, BC
particles may be good ice nuclei under contact mode and
immersion mode,198 but poor ice nuclei under deposition mode
© 2022 The Author(s). Published by the Royal Society of Chemistry
at homogeneous IN temperature.199 Another factor which can
affect the ice activation of BC is the mixing state of BC particles.
Mixing with OC would modify the surface of BC particles,
decreasing the deposition ice nucleation of BC.200

Although there are already several articles reviewing ice
nucleation of BC, this work includes recent advances in Table 5
which can complement previous work. Recent work by Nich-
man et al., Mahart et al., and Zhang et al. applied the pore
condensation and freezing (PCF) mechanism to explain the
results they obtained on soot (BC), and PCF did t better with
their experiments than classic nucleation theory, which provide
insights on future research.226,237,238 PCF was rstly proposed to
predict ice formation on porous materials.239 The porous
surface of soot or BC makes it suitable to apply PCF to predict
the ice nucleation ability of BC.

Table 5 also gives clues of why the results of BC ice nucle-
ation are contradictory. In these selected studies, materials
chosen by researchers are usually different, such as lamp soot,
diesel soot, and carbon black. Sources and combustion condi-
tions strongly affect size, morphology, and chemical constitu-
tions of BC particles, and eventually, results of experiments.
Moreover, there is a need to prove the atmospheric relevance of
these materials. For example, commercial carbon black parti-
cles used by Nichman et al.237 and Zhang et al.226 are manufac-
tured for coating or painting, which are not considered as one of
important sources of atmospheric BC, although the advantage
of manufactured carbon black is that physicochemical proper-
ties of these particles can be controlled.

Consequently, it should be taken into consideration that to
what extent, ice nucleation experiments based on these
commercial materials or homemade combustion products can
suggest actual processes of BC in the atmosphere. As such, one
of the challenges in studying ice nucleation of BC is to generate
BC particles with controllable physicochemical properties,
including size, morphology, coating, and so on. Furthermore,
these BC particles should be comparable with atmospheric BC
so that conclusions based on these BC particles have
Environ. Sci.: Atmos., 2022, 2, 891–920 | 905
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Table 5 Selected laboratory experiments on ice nucleation of BC. RHi indicates relative humidity to ice, and SSi indicates supersaturation with
respect to ice. RHi and SSi are describing the same physical condition. And T indicates temperature

Material Size Nucleation mode T Active fraction density RHi/SSi Ref.

Lamp soot 240 nm Deposition 213–233 K N/A N/A 232
Soot 100–250 nm Deposition 216–233 K N/A 135–154% 251
Soot with OC coating N/A Deposition 223–226 K N/A 1.22–1.70 244
Diesel soot 100–270 nm Deposition 243 K N/A 137% 240
Diesel soot 120–280 nm Deposition 223 K N/A 143% 252

228 K 142%
233 K 136%

Carbon black 800 nm PCF 217–235 K 0.6 � 106 to 1.2 � 106 cm�2 100–150% 237
Soot graphite N/A Deposition 228–258 K 3.7 � 10�2 to 5.2 � 10�2 cm�2 1.0–1.35 241

6.4 � 10�2 cm�2

Soot 400 nm PCF 218 K N/A 100–180% 238
233 K

Carbon black 100–400 nm PCF 227–235 K N/A 1.15–1.45 226
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atmospheric signicance. Some researchers use miniature
combustion aerosol standard (miniCAST) to generate BC
particles in a stable and reproducible way,231,234,238,240–242 which
may indicate a feasible methodology to generate various BC
particles. Whereas the selection of specic sizes has been ach-
ieved by using differential mobility analyzer (DMA).

Another challenge is how the mixing state will impact ice
nucleation ability of BC. Fresh BC particles are nanosized
spherules but will grow to aggregate and then agglomerate
when aging in the atmosphere.223 During this process, not only
will the sizes grow, but also other aerosols, such as organic
aerosols and dust, will be internally or externally mixed with BC
particles, complicating the physicochemical properties of BC
particles.201,223,226,238,243 For example, besides the aforementioned
“lensing effect”, the coating of organic carbon on BC particles
can change the ice nucleation ability of BC, either enhancing232

or, in most of cases, decreasing ice nucleation of BC.234,240,244

Externally mixing with other aerosols may also alter the
surface of BC, affecting hydrophilicity, hygroscopicity and pores
or cavities on the surface.223 However, more research shall be
done to investigate how these surface properties affect ice
nucleation ability of BC. For instance, according to molecular
dynamic simulation by Lupi et al., hydrophilicity, simulated by
introducing hydroxyl group on the surface of graphite, cannot
generally predict ice nucleation ability of BC.245 Yet, a recent
study by Xue et al. indicates that the introduction of hydroxyl
group on the surface of BC can greatly enhance ice nucleation
ability.246 It should be noted that Lupi et al. did simulation on
the surface of graphite,245 whereas Xue et al. did their experi-
ments on the surface of graphene,246 whichmay, to some extent,
lead to the discrepancy between their results. Thus, more
studies are favored on these properties to draw rm
conclusions.

5.4.2. Ice nucleation of brown carbon (BrC). To our best
knowledge, currently, there is no review on the ice nucleation of
BrC. Although Laskin et al. and Hems et al. reviewed chemical
processes of atmospheric BrC,210,211 ice nucleation ability of BrC
and the impacts of aging process on ice nucleation ability were
not discussed. Knopf et al. summarized both experimental
906 | Environ. Sci.: Atmos., 2022, 2, 891–920
research and eld study on ice nucleation of organic carbon,
which covers the components of BrC such as HULIS and PAHs.91

BrC was not discussed specically in their work, which may
further cause discrepancy when modeling the effects of organic
carbon on climate. Most of the components of organic carbon
are transparent to light and have cooling effect on climate.201

Whereas BrC particles can not only serve as ice nuclei but also
absorb radiation, which makes them have more complex effects
on the climate,211,212,225 calling for discriminating BrC from
other organic carbon when comprehensively evaluating the
impacts of organic carbon on climate.

Moreover, it is necessary to bridge the gap between ice
nucleation ability and optical properties of BrC. A recent study
by Chen et al. reveals that HULIS entities are efficient ice nuclei,
comparable with mineral dust and bioaerosols, under mixed-
phase cloud conditions, demonstrating the potential impacts
of atmospheric BrC in ice nucleation.247 Conjugating optical
properties and ice nucleation ability of BrC may facilitate the
prediction of ice nucleation ability of BrC by measuring its
optical properties. The change of optical properties can reect
the modication of physicochemical properties in molecular
level and thus the change of ice nucleation ability.

A major challenge in evaluating ice nucleation of BrC is still
the complexity of BrC constitutions discussed above. Knopf
et al.91 illustrated that amorphous organic carbon could exist in
different phases depending on RH and temperature, from
liquid phase to glassy phase.91 The phase of organic carbon
governs the mode of ice nucleation that it will undergo in the
atmosphere. For example, HULIS, depending on its phase,
could serve as immersion IN ins supercooled droplets or as
deposition IN under lower supersaturation.201 As such, it is
likely that the various components of BrC will serve as efficient
INPs like HULIS in mixed-phase clouds, or poor INPs under
other conditions. More experiments and eld campaigns shall
be done to provide more details on ice nucleation ability of BrC
and the related conditions. Furthermore, another challenge, as
illustrated above, is to discriminate ice nucleation of BrC from
that of BC, so that the contribution from BrC to ice nucleation
and RF can be assessed.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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A signicant and challenging task is presently to develop an
instrument which can specically detect BrC in the atmosphere.
Such data will be pivotal to assess the contribution of BrC to
climate change, considering the proportion of BrC relative to BC
in the atmosphere may increase if fossil fuel combustion is
constrained. In addition, an open-access database on BrC
components would greatly facilitate the research on BrC.
Further machine learning methods may be developed on the
database to discriminate new components of BrC, in near
future.
6. Snow management in cities in the
age of increasing emerging
contaminants

Snow removal is important municipal management for cold
regions which receive a large amount of snow every year. Table 6
summarizes the situations in selected areas in the world,
including annual snowfall and the amount of road salts used for
snow removal. In urban areas, accumulated snow on pavements
and roads will hinder pedestrians' walking and transportation.
When ice forms on the ground, it will pose an even serious
threat on vehicles and pedestrians. Furthermore, snowpack in
urban areas will take part in several heterogeneous processes
shown in Fig. 8, causing accumulation, transformation, and
transport of particles and metals.

There are several methods to do snow removal worldwide,
depending on local situations and municipal budgets. One of
the most prevalent methods is using snowplows that can effi-
ciently remove snow and ice aer snowfalls. However, high
labor costs and high rentals for snowplows make it necessary to
combine other methods to lower the expenses. Another preva-
lent but cost-effective method is to spread deicers, such as NaCl,
MgCl2, and CaCl2.

Table 7 shows several common deicers, their costs, and their
lowest effective temperatures. NaCl is the most widely used
deicing materials among these deicers because of its good
availability and low cost. However, there are increasing
concerns about using NaCl.279–283 First, using NaCl will increase
the salinity of fresh water when snow or ice melts, threatening
the biota in fresh waters. Secondly, soil which absorbs
Table 6 Selected aeras which receive snowfall during a year

Location Snowfall
Annual budget for
snow removal

Montreal Canada 235.6 cm 166 m CAD
Calgary Canada 103.6 cm 40.9 m CAD
Helsinki Finland 74.0 cm 24 m EURO
Oslo Norway 87.2 cm 5.3 m EURO
Stockholm Sweden 99.8 cm 190 m SEK
Sapporo Japan 437 cm 190 m USD
Ohio US N/A 65 m USD
Illinois US 100.0 cm 100 m USD
New Jersey US N/A 92.5 m USD
New York city US 93.7 cm 92.3 m USD

© 2022 The Author(s). Published by the Royal Society of Chemistry
snowmelt with high salinity cannot support vegetation growth.
Li et al. found that shrubs were severely damaged, due to
deicing salt pollution of the soils, whereas arbors were less
vulnerable.284More importantly, extra NaCl entering ecosystems
will increase the mobilization of heavy metals such as Cu, Cd,
and Pb (Fig. 8).

Mahrosh et al. reported that the application of road salts
(NaCl) caused an increment of Cu in freshwater systems. The
high concentration of NaCl mixed with Cu could lead to less egg
survival, delayed hatching, and high percentage of deformities
of Atlantic salmon.285Whereas Cl�may facilitate the dissolution
of Pb in soils. And when water with a high concentration of Cl�

enters municipal water supplies, the water plumbing may
undergo dezincication and galvanic corrosion, thinning pipe
walls and releasing Pb into drinking water, which severely
threatens human health of residents.282

The atmosphere may also be affected from salt addition to
snow in the cities. High concentrations of chloride found in
urban cities in winter period, and the concentration of photo-
active chlorine in the atmosphere showed a positive correlation
with the concentration of chloride.18

Economic costs of de-icing: Snowmelt with high salinity causes
corrosion of infrastructures and vehicles, bringing extra
economic costs of repair and maintenance of infrastructures
and vehicles. For instance, Vitaliano et al., estimated that the
damages caused by road salts in the US cost at least $615 per ton
for bridge repairs and highway maintenance. And the estima-
tion on vehicular corrosion was $113 per ton.286 These costs may
have been increasing in the past three decades, considering the
expansion of the transportation network and the increment of
vehicle ownerships.202

The current threshold recommended by USEPA for NaCl in
the environment has been questioned and needs to be updated,
considering the usage of road salts has been increasing in the
past decades.203 Beside NaCl, there are also some other de-icers
that are used in the world, such as calcium magnesium acetate,
urea, beet juice, salt brine, and abrasives.204 However, due to the
problem of costs and effectiveness, these de-icers are not used
as widely as NaCl.

Another method for snow removal is to use anti-icers before
snow, such as salt brine. And in aviation, organic uids like
Amount of road salts Ref.

More than 200 kilotons 253 and 260
30 to 40 kilotons 254, 261 and 268
80 to 100 tons 255, 262, 264 and 269
250 kilotons (nationwide) 256, 263 and 270
300 kilotons (nationwide) 257, 264 and 276
N/A 258 and 265
600 kilotons 259, 271 and 281
522 kilotons 259, 266, 268 and 272
375 kilotons 273
About 407 kilotons 259, 267 and 274
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Fig. 7 Electron microscopy of frozen snow with embedded particles using high resolution Leica EM VCT100 cryo-stage on the Dual Beam (FIB-
SEM; courtesy of McGill microscopy facilities). The person in a clean suit is Rodrigo Rangel who was collecting snow samples to be analyzed in
Montreal, QC, Canada.
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ethylene glycol are usually applied on the surface of airplanes
for anti-freezing, but they are seldomly used in urban areas
because of the cost and impacts on the environment.

Although the side effects of using NaCl have been discussed
above, it is still the most common deicer in the world. At
present, there is no cost-effective and environmental-friendly
alternative for NaCl.282 Thus, most efforts in snow manage-
ment are focused on optimizing snow removal strategies to
lower the cost of snowplows and reduce the usage of deic-
ers.282,287 However, it should be noted that, as discussed in
Fig. 8 Air-snow particle interaction in urban areas.

908 | Environ. Sci.: Atmos., 2022, 2, 891–920
Sections 2 and 4, snowpack on the roads can serve as a good
reservoir for vehicular exhausts and emerging contaminants.
Even aer snow removal by snowplows, it is necessary to treat
those snow properly. Dumping snow into local rivers or streams
would still introduce emerging contaminants and road salts to
local water systems, leading to health concerns for residents. It
might be a good idea to store snow in deposit sites built with
impermeable materials and then treat snow or snowmelt to
make sure it is clean and safe enough to enter the city's drainage
or rivers.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 7 The costs and lowest effective temperature of common de-
icers. Temperatures were reported in Fahrenheit and converted into
Celsius in this table. It should be noted that potassium acetate (Kac.) is
usually used as solution with 50% concentration

Deicer Cost

Lowest effective
temperature
(�C) Ref.

NaCl $26 per ton �9.4 275 and 277
MgCl2 $95 per ton �23.3 275
CaCl2 $294 per ton �28.9 275 and 277
Calcium magnesium
acetate (CMA)

$670 per ton �6.7 275 and 277

Potassium acetate
(kac.)

$4.50 to
$5.12
per gallon

�26.1 275, 277 and
278
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7. Future directions

We need to better understand the inuence of snow and ice
surfaces on the processes and life cycle of air pollutants, with
eld work, laboratory research and modelling studies. We
specically require evaluating the chemical, physical and bio-
logical processes occurring on snow and ice surfaces from
urban, rural, industrial, as well as remote sites and synthesize
an in-depth understanding of the biogeochemical cycling and
toxicological effects of snow-borne particles on living ecosys-
tems as well as human health impacts.

Future research direction should address the existing chal-
lenges, namely:

� There is a need to better characterize the chemical
composition, speciation, and abundance of organic volatile,
semi-volatile compounds (including bio-organic), metal
pollutants, and particulate matter in snow samples, in urban,
rural, industrial, and remote areas. To do so, improvements in
analytical methods and instruments are required.

� To advance the understanding of the impact of ice nucle-
ation in snow/ice processes, we recommend: (a) to develop
instruments that can generate various BC particles in a stable
and reproducible way, like miniCAST mentioned above, so that
results from different research groups are more comparable; (b)
more studies shall be done on mixing states of BC by using
various materials, especially organic carbon, to gure out how
BC will interact with these materials and what sort of materials
can enhance the ice nucleation ability of BC; (c) more charac-
terizations on BC particles used in experiments shall be done to
provide details and impacts of physicochemical properties of
BC; (d) more research on the size distribution of BC particles are
recommended, since size-resolved information of BC particles
are signicant for more precise modelling study and
predictions.

� There are a couple of technologies which have a potential
to contribute to future snow research. The rst one is cryo-stage
high-resolution microscopy that allows snow samples at their
original temperature to be studied. Fig. 7 depicts a snow sample
taken in an urban park (Mont Royal, Montreal, Canada) and
© 2022 The Author(s). Published by the Royal Society of Chemistry
analyzed with such a unit (Leica EM VCT100 cryo-stage on the
DualBea). This technique may obtain insights into structure
particle distribution and morphology within frozen snow.
Another promising technique is Digital Inline Holography
Microscope (DIHM),205 which has been used for atmospheric
research205 and marine research.206 Both these technologies
hold promise for future physicochemical snow research,
particularly with the elements of robotics and automation.

� There is evidence of reactive urban grime, which refers to
lms deposited on urban surfaces, including snowy cities.207

Potential biological effects on lm extracts, using zebrash
embryo essays, evaluated a dose-dependent syndrome of
abnormalities including cardiovascular, hematopoietic, and
behavioral defects.207 These lms are composed of a complex
mixture of organic and inorganic compounds, containing
signicant levels of inorganic nitrate and sulfate.14,16,208 Yet,
upon photolysis, they release air pollutants such as NOx (NO +
NO2) and HONO in urban areas. There is not much known
about the interactions of snow and urban grime, yet some
components of urban grime such as PAHs have been observed
in snow. Hence further research in the domain is
recommended.

� We must answer fundamental questions such as: What is
the fate of snow-borne compounds aer photochemical aging?
Do the aging processes change the emission uxes of chemical
compounds to the gas phase? How do chemical compounds of
anthropogenic origin change the distribution and composition
of nanoparticles in the air and snow at the snow grain level?
What types of interactions do snow-borne anthropogenic
materials have with the atmosphere, water, and soil? Can we
use snow as a probe for new emerging contaminants, as some
contaminants have been shown to be more concentrated in
snow than rain?What is the life cycle of emerging contaminants
in snow?What are the effects of the cycles of melt, precipitation,
and freezing on chemical compositions and distribution of
emerging contaminants?
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