Hydrogel-Exosome Complexes: A Novel Strategy for Cardiovascular Regeneration

Abstract

Cardiovascular disease (CVD) remains one of the leading causes of high mortality and morbidity worldwide, posing a substantial threat to global health. Mesenchymal stem cell (MSC) therapy has emerged as a promising treatment approach, primarily through the secretion of various bioactive factors. Exosomes (Exos), in particular, stand out as the most effective components, as their noncoding RNA and proteins play a crucial role in promoting the repair of cardiac function, positioning them a promising cell-free therapy for CVD. However, challenges such as poor stability, low delivery efficiency, weak targeting, and rapid immune-mediated clearance hinder the broader application of Exos, presenting significant obstacles for further clinical translation. Recent advancements in biomaterials, particularly hydrogels, offer new avenues for Exos-based CVD therapies. Hydrogels, with their ability to improve stability, release control, and targeting, have gained considerable attention in the biomedical field. This review explores the latest research developments regarding the treatment of CVD using Exos, and highlights their synergistic application with hydrogels, which provide valuable insights for advancing Exos-based therapies and developing novel therapeutic strategies for CVD.

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
28 2月 2025
Accepted
10 5月 2025
First published
12 5月 2025

Nanoscale, 2025, Accepted Manuscript

Hydrogel-Exosome Complexes: A Novel Strategy for Cardiovascular Regeneration

Y. Fu, Z. Qiu, Y. Cao, M. Jiang and X. Cui, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR00892A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements